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Abstract—A set of -band power amplifier (PA) modules
using monolithic microwave integrated circuits (MMICs) have
been developed for the local oscillators of the far-infrared and
sub-millimeter telescope (FIRST). The MMIC PA chips include
three driver and three PAs, designed using microstrip lines, and
another two smaller driver amplifiers using coplanar waveguides,
covering the entire -band. The highest frequency PA, which
covers 100–113 GHz, has a peak power of greater than 250 mW (25
dBm) at 105 GHz, which is the best output power performance for
a monolithic amplifier above 100 GHz to date. These monolithic
PA chips are fabricated using 0.1- m AlGaAs/InGaAs/GaAs
pseudomorphic T-gate power high electron-mobility transistors
on a 2-mil GaAs substrate. The module assembly and testing,
together with the system applications, will also be addressed in
this paper.

Index Terms—GaAs, HEMT, millimeter wave, MMIC, power-
amplifier module.

I. INTRODUCTION

W -BAND MMIC power amplifiers (PAs) have been de-
veloped for transmitter applications [1], [2]. These am-

plifiers can be used as drivers for local-oscillator (LO) sources
at frequencies into the terahertz range. The LOs for the far-in-
frared and sub-millimeter telescope (FIRST) will be comprised
of synthesizers and active multipliers to provide output frequen-
cies of 71–112.5 GHz, PAs to amplify these-band signals,
and finally, chains of Schottky diode multipliers to achieve tera-
hertz frequencies. Table I presents the frequency range of the PA
chip set and the associated frequency multiplication plan. The
PA frequency breakdown is a trade of the power output and the
bandwidth based on state-of-the-art capability of current GaAs
power high electron-mobility transistor (HEMT) monolithic-
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TABLE I
FREQUENCYRANGE OF THEPA CHIP SET AND THE ASSOCIATEDFREQUENCY

MULTIPLICATION PLAN AS DRIVERS FORLO SOURCES ATFREQUENCIESINTO

THE TERAHERTZ RANGE

microwave integrated circuit (MMIC) technology. The motiva-
tion of this paper is to develop a set of-band PAs, which could
be used for the FIRST LO chains.

This paper presents the results of these-band PA modules,
as well as the MMIC PA chips. The MMIC chips are fabri-
cated using 0.1-m AlGaAs/InGaAs/GaAs pseudomorphic
(PM) T-gate power HEMT MMIC technology on a 2-mil
GaAs substrate. Although InP-based HEMT MMICs have
demonstrated excellent power performance at-band [2],
GaAs-based HEMT MMIC technology was selected for this
project due to the process maturity. The 2-mil GaAs HEMT
PAs not only demonstrated good power performance with high
yield at -band (94 GHz) [1], but also showed impressive
results from - to -band [3]–[6]. In this paper, three sets of
PA chips and their driver amplifiers covering 72–81, 90–101,
and 100–113 GHz were designed using microstrip lines. The
three-driver amplifiers were designed with a common-output
gate periphery of 640m, while the PAs had 1280m, to fulfill
output power requirements. Another two medium driver ampli-
fiers with gate peripheries of 160 and 320m were designed
with coplanar waveguide (CPW) to cover frequency bands of
70–100 and 80–115 GHz. The measurement results indicated
each microstrip-line driver amplifier and PA provide at least
20 and 22 dBm (160 mW), respectively, in the frequency
range that it covered, while the CPW designs have output
power level of 14–17 dBm (25–50 mW). For the first time,
the full power data as a function of frequency are presented
in -band and the wide-band capability is demonstrated.
Moreover, the 100–113-GHz PA has a peak power of greater
than 250 mW (25 dBm) at 105 GHz, which is the best output
power performance for a monolithic amplifier above 100 GHz
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Fig. 1. Three microstrip-lineW -band monolithic PAs. (a) 72–81 GHz. (b)
90–101 GHz. (c) 100–113 GHz. The chip sizes are 2.3� 1.6 mm .

Fig. 2. ThreeW -band microstrip-line drive amplifiers. (a) 72–81 GHz. (b)
90–101 GHz. (c) 100–113 GHz.

to date. The MMIC PA chip testing and module assembly with
the WR-10 waveguide input/output ports will also be included
in this paper.

II. MMIC PROCESS ANDDEVICE CHARACTERISTICS

The 0.1- m power HEMT device development has been re-
ported [7]. The HEMT structure is grown using molecular beam
epitaxy (MBE) on 3-in substrates and uses a PM InGa As
channel. The HEMT device structure is based on a double het-
erostructure design to achieve a high-aspect ratio for 0.1-m
gate lengths. The devices typically exhibit a gate-to-drain break-
down voltage of 6 V measured at a gate current of 0.1 mA/mm, a
peak dc transconductance of 600 mS/mm, a maximum current of
600 mA/mm, a unit current gain frequency of 130 GHz, and a
maximum oscillation frequency of greater than 200 GHz.

The HEMT linear small-signal equivalent-circuit parameters
are obtained from careful fit of the measured small-signal-pa-
rameters to 50 GHz. These parameters are consistent with es-
timation based on device physical dimensions and parameters.

Fig. 3. TwoW -band medium power CPW drive amplifiers. (a) 65–102 GHz.
(b) 80–115 GHz.

Fig. 4. 70–115-GHz on-wafer small-signalS-parameter test set. (a) Block
diagram. (b) Photograph.

The Curtice–Ettenberg FET asymmetric model was used to de-
scribe the HEMT device nonlinear behavior [8]. The nonlinear
transconductance coefficients were then obtained from fitting
the dc–I-V measurement of the devices. The device models have
been verified by comparing the measured and simulation results
of simple prematched device structures [1].
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Fig. 5. (a) Configuration for longitudinal transition. (b) Drawing of the module housing design. (c) Photographs of a CPW driver amplifier chip mounted in the
module. (d) Cascaded associated driver or PA modules in the same frequency bands.

III. MMIC PA D ESIGN

The MMIC PAs can be designed using either microstrip line
or CPW. CPW has the advantage for ease of a shunt element, i.e.,
for a single HEMT with common source configuration, it can be
easily implemented in the layout design. However, for large de-
vice periphery (high-output power) designs, since a number of
HEMT devices need to be combined, it becomes difficult to ar-
range in the layout because a source ground cannot be easily
realized, especially in millimeter-wave frequency range. On the
other hand, microstrip-line environment is preferred to stack
common transistors device in parallel with a via-hole source
ground between the HEMT devices. Therefore, the microstrip
line is used to design the high-output PA and driver chips, while
the CPW is used to design the medium driver amplifiers in this
paper.

Fig. 1 shows the three PA chips (covering 72–81, 90–101, and
100–113 GHz). All the three PAs follow a common circuit archi-
tecture, which is a single-ended two-stage design. The first stage
employs four cells of eight-finger, 160-m HEMT devices, and
second stage has twice the device periphery with eight HEMT
devices. The topology used for the PA designs has been reported
in [1], with matching networks realized by high–low-impedance
transmission lines. For these new designs, reactive matching el-
ements were optimized for increased bandwidth and higher fre-
quency performance. EM simulations were performed for all the
passive structures using Sonnet [9]. The driver amplifiers also
follow a common circuit architecture, which is similar to that of
the PAs with half of the gate peripheries for both the first and
second stages. Fig. 2 shows the chip photographs of the three

driver amplifiers. The chip sizes for all of the amplifiers are
2.3 1.6 mm , in order to facilitate ease of dicing of the wafers.

The photographs of the two CPW medium power-driver
amplifiers are shown in Fig. 3. They are both broad-band
designs. The first one (Fig. 3(a), chip size 2.3 mm1.2 mm)
is a three-stage amplifier designed to cover a frequency
range of 70–100 GHz, while the second one [see Fig. 3(b)],
with the same chip size, is a four-stage design to cover
80–115 GHz. The matching networks are also implemented
with high–low-impedance transmission lines with metal–insu-
lator–metal (MIM) capacitors used in the interstage matching
networks for dc block and bias networks for RF bypass. The de-
vice peripheries are 160-160-160m and 160-160-160-320m,
respectively. Compared with the microstrip two-stage designs,
these two CPW designs have higher input/output impedance
at the device end and, thus, are easier to obtain broad band.
In addition, the three- and four-stage selections also provide
more gain margin to tradeoff bandwidth. Since the eight-finger,
160- m HEMT device is used for a unit device cell, the output
stage of the first CPW amplifier (320-m total gatewidth) is
composed of two separate unit HEMT device and combined
with a CPW -junction. If more devices were to be combined
in parallel, higher -way combiners (junctions) with low loss
in CPW must be carefully designed.

IV. PA MEASUREMENT

On-wafer small-signal -parameter measurements were
performed on the MMIC PAs for screening purposes before the
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Fig. 6. Measured on-wafer small-signal gain versus frequency of the: (a) threeW -band PAs, (b) threeW -band driver amplifiers, and (c) two CPW driver
amplifiers.

wafer was diced. The block diagram of the test set is depicted
in Fig. 4(a). Standard vector-network analyzers from HP and
Anitru can be readily adapted to high frequencies with external
extenders. The extenders can be fabricated in waveguide
band through 220 GHz. Fig. 4(b) depicts a photograph of this
70–115-GHz wafer probe test set. This test set has full two-port

-parameter test capability with large dynamic range [11].
For the output power measurement, -band on-wafer

pulsed-power capability has been demonstrated to resolve
the thermal issue and the correlation with in-fixture was also
verified [12]. However, there are two critical requirements, i.e.,
the -band pulser and power drive for the test set must cover
the probe path loss with enough bandwidth. Both of them may
not be easy to acquire at this frequency. Therefore, the PA chips
were tested in a WR-10 waveguide module for the output power
performance. The waveguide-to-microstrip-line transitions
used in the PA modules are longitudinally mounted in the
waveguide, meaning that the surface of the alumina substrate
aligns along the direction of propagation of the waveguide
[10], as shown in Fig. 5(a). This transition demonstrated a total
loss of 1 dB and a return loss of better than 15 dB from 85 to
107 GHz for a pair of back-to-back transitions. The drawing
of the module housing design is depicted in Fig. 5(b) and the
photographs of a CPW driver amplifier chip mounted in the
module are shown in Fig. 5(c). The power test set utilized
a backward wave oscillator (BWO) as the tunable source
at the input. A calibrated power meter with -band sensor

attachment was used to measure the output module. The extra
power required at the input port for high output PAs evaluation
are obtained by cascading the associated driver or PA modules
in the same frequency bands, as shown in Fig. 5(d).

V. MEASUREMENTRESULTS

The MMIC PAs were first tested for gain using on-wafer
small-signal -parameter measurements. A measured typical
small-signal gain of at least 8, 7, and 4 dB is achieved at 72–81,
90–101, and 100–113 GHz, respectively, at a drain voltage ()
of 1.5 V with a total drain current ( ) of 500 mA for the three
PAs, as shown in Fig. 6(a). The three microstrip-line driver am-
plifiers depict higher gain performance of 12, 7, and 7 dB, as
shown in Fig. 6(b), at V and mA. Fig. 6(c)
presents the small-signal gain performance of the CPW medium
power driver amplifiers from 65 to 115 GHz. The three-stage
design demonstrated small-signal gain of more than 8 dB from
65 to 100 GHz at V and mA, while the
four-stage design showed more than 10-dB gain from 80 to
100 GHz and greater than 8 dB up to 110 GHz at V
and mA.

For the PA module testing, individual PA modules were eval-
uated for output power. The measurements were performed at

V to maximize output power and bandwidth of the
chips. The driver amplifiers showed up to 100 mW of peak
output power, and the PAs typically exhibited 200 mW of output
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Fig. 7. Output power versus frequency plot of the threeW -band packaged
PAs.

power. The amplifier modules were then cascaded in order of
increasing output stage gate periphery: the driver (640m) was
followed by a PA (1.28 mm). Fig. 7 shows the maximum output
power performance versus frequency at the output of the cas-
caded modules. Three frequency bands are covered in three sep-
arate pairs of modules. Each amplifier chain demonstrated at
least 22 dBm (158 mW) in the frequency range it covers. The
100–113-GHz PA has a peak power of greater than 250 mW
(25 dBm) at 105 GHz, which is the best output power perfor-
mance for a monolithic amplifier above 100 GHz to date. It is
also noted that the waveguide transition has an insertion loss of
0.35 dB up to 107 GHz, and 0.5 dB from 107–115 GHz [10].
For the output power results at the MMIC chip end, the num-
bers mentioned above need to be corrected by this loss factor.

Typical power-added efficiencies for an amplifier chain are in
the range of 4%–9%, with dc input power levels of 2.5–3.5 W.
For example, as the results indicated, by the evaluation of a chain
of the 72–81-GHz driver amplifier module (APH350C) cas-
caded with PA module (APH351C). Fig. 8(a) shows the small-
signal gain and return-loss responses of this cascaded chain
from 65 to 118 GHz. It demonstrates a peak gain of 29 dB at
75 GHz and greater than 24 dB from 72 to 81 GHz. The bias con-
dition is V with and 500 mA for the driver
amplifier and the PA, respectively. The output power versus fre-
quency is already shown in Fig. 7, and the drain efficiency from
70 to 83 GHz is plotted in Fig. 8(b).

Another chain of 90–101-GHz PA modules, formed by cas-
cading a CPW medium driver amplifier module (APH352C),
a driver amplifier module (APH348C), and PA (APH349C)
module. The small-signal gain and return loss from 80 to
120 GHz is presented in Fig. 9(a) with V and total

mA. The peak gain is 31.2 dB at 92.6 GHz and
greater than 20 dB from 88 to 102 GHz. The output power and
gain versus input power at 93 GHz are depicted in Fig. 9(b).
It shows a 3-dB compression at 16-dBm output power and a
saturation output power ( ) of 24.5 dBm.

In the output power measurements and the small-signal
gain measurements, 1–5 dB of ripple is present in the
cascaded-module experimental data, with a periodicity of
approximately 3 GHz. To explain this phenomena, we will dis-
cuss the problem of cascading two amplifier modules together:
a microstrip driver amplifier followed by a microstrip PA.

Fig. 8. Performance of the 72–81 GHz amplifier chain (microstrip driver+

PA). (a) Small-signal gain and return loss versus frequency. (b) Drain efficiency
versus frequency.

Both modules include a waveguide input, input alumina probe
transition, microstrip chip, output alumina probe transition, and
output waveguide, as shown in Fig. 5(c). A small mismatch
between the chip and probe transition at the output of the first
module, and another mismatch between the probe transition
and chip at the input of the second module, is responsible for
reflections with a periodicity related to the electrical length
between the two chips. In Fig. 10(a), we present the theo-
retical gain of the two amplifier modules cascaded together,
illustrating the ripple present in small-signal gain. For the
prediction, the theoretical probe transition data [10] was used to
simulate the effect of the probe, the power–current definition of
waveguide impedance ( ) was used to simulate the length of
waveguide between the chips, and the measured on-wafer gain
of two representative amplifier chips were used to model the PA
chips. Fig. 10(b) shows the experimental result of cascading the
modules. While Fig. 10(a) and (b) does not agreeexactly, our
crude theoretical model predicts the ripple effect reasonably
well. The differences between theory and experiment most
likely have to do with chip-to-chip variation (the on-wafer data
is taken from a different chip than the packaged chip), as well
as tuning effects present in each module due to variations in
packaging. In order to reduce this ripple, a better match must
be provided between the PA chip inputs and outputs, and the
probe transition. Improving the return loss of the chips is also
likely to reduce the ripple.
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Fig. 9. Performance of the 92–101-GHz amplifier chain (CPW driver+

microstrip driver+ PA). (a) Small-signal gain and return loss versus frequency.
(b) Output power and gain versus input power at 93 GHz.

Fig. 10. Small-signal gain of a microstrip-line driver-amplifier module
cascaded with a microstrip-line PA module. (a) Theoretical gain using
simulated probe transition. (b) Measured gain.

A 89–105-GHz amplifier chain was cooled to 100 K using
a cryogenic refrigerator to test the cryogenic performance. The
chain consisted of one microstrip-line driver amplifier followed
by a microstrip-line PA. A BWO supplied the input RF power.
A marked increase in the observed output power was observed

Fig. 11. Output power of a 89–105-GHz chain of two amplifiers as a function
of frequency, measured at 100 and 300 K.

upon cooling the amplifier modules. Fig. 11 shows the compar-
ison between the room-temperature output power measurement
and the 100-K measurement. A slightly higher drain voltage was
used for the measurement at 100 K, to maximize the peak output
power. A peak power of 350 mW is observed at 93–94 GHz
for the 100-K measurement, an increase of over 100 mW. A
1–2 dB increase was observed across the band. An additional ex-
periment was performed where the drain voltage was increased
to 5 V with the amplifier kept at 100 K. We observed that the
output power increased to 0.5 W at 94 GHz. This result is in con-
trast with the room-temperature data, where increases in drain
voltage did not result in increases in output power beyond

– V. When cooled, the PAs can be operated at a higher drain
voltage and drain current and, thus, results in approximately a
factor of two increase in output power over the room-tempera-
ture data. We did observe that when a large RF signal was ap-
plied to the PAs at V, the amplifier failed due to excessive
gate leakage current. Fortunately, we can run the amplifiers well
below the breakdown condition and still meet the output power
requirements.

VI. A PPLICATIONS TOFIRST

The PA results are particularly significant for the needs of
FIRST applications. Foremost, referring to Fig. 7, a single chain
of a driver amp cascaded with a high-power chip produced more
than 100 mW from 70 to 83 GHz (about 17% bandwidth), and
over 300 mW from 75 to 80 GHz. The peak output power for
this chain occurred at 79 GHz, with 390 mW of output power.
The high power between 79 and 80 GHz is particularly signif-
icant for the 1.9 THz (79 GHz 2 2 3 2) line of the
fine structure transition of singly ionized carbon (CII), to be ob-
served with a heterodyne instrument for FIRST (HIFI). Other
significant results include a record power bandwidth of greater
than 100 mW from 89 TO 105 GHz, and better than 100 mW
from 100 to 114 GHz. A few selected spectral lines of interest
to FIRST, along with their frequencies, required PA band, and
current state-of-the-art PA results, are shown in Table II.

VII. SUMMARY

In this paper, we have presented a set of monolithic-band
PA modules using 2-mil 0.1-m AlGaAs/InGaAs/GaAs PM
T-gate power HEMT MMIC production process technology
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TABLE II
A FEW SELECTED SPECTRAL LINES OFINTEREST TOFIRST, ALONG WITH THEIR FREQUENCIES, REQUIRED PA BAND, AND CURRENT STATE-OF-THE-ART PA

RESULTS. SINGLY IONIZED NITROGEN (NII), SINGLY IONIZED CARBON (CII) SINGLY IONIZED NITROGEN (NII), DEUTERATEDHYDROGEN(HD)

for LO sources, which are useful for astronomical telescope
applications. Measurement results show that at least 22-dBm
output power can be provided for the frequency bands of 72–81,
90–101, and 100–113 GHz. The 100–113-GHz PA and driver
amplifiers are the first reported MMIC PAs above 100 GHz.
The MMIC design, module assembly, as well as the system
application of these modules have been discussed in this paper.
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