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Power Analysis and Determination of Sample Size for 
Covariance Structure Modeling 

Robert C. MacCallum, Michael W. Browne, and Hazuki M. Sugawara 
Ohio State University 

A framework for hypothesis testing and power analysis in the assessment of 
fit of covariance structure models is presented. We emphasize the value of 
confidence intervals for fit indices, and we stress the relationship of confidence 
intervals to a framework for hypothesis testing. The approach allows for 
testing null hypotheses of not-good fit, reversing the role of the null hypothesis 
in conventional tests of model fit, so that a significant result provides strong 
support for good fit. The approach also allows for direct estimation of power, 
where effect size is defined in terms of a null and alternative value of the 
root-mean-square error of approximation fit index proposed by J. H. Steiger 
and J. M. Lind (1980). It is also feasible to determine minimum sample size 
required to achieve a given level of power for any test of fit in this framework. 
Computer programs and examples are provided for power analyses and calcu- 
lation of minimum sample sizes. 

A major  aspect of the application of covariance 

structure modeling (CSM) in empirical research 

is the assessment of goodness of fit of an hypothe- 

sized model to sample data. There  is considerable 

literature on the assessment of goodness of fit of 

such models, providing a wide array of fit indices 

along with information about their behavior (e.g., 

Bentler & Bonett,  1980; Browne & Cudeck, 1993; 

Marsh, Balla, & McDonald,  1988; Mulaik et al., 

1989). Empirical applications of CSM typically 

evaluate fit using two approaches: (a) the conven- 

tional likelihood ratio X 2 test of the hypothesis 

that the specified model holds exactly in the popu- 

lation; and (b) a variety of descriptive measures 

of fit of the model to the sample data. In this article 

we focus on an inferential approach to assessment 

of fit involving a particular measure of model 
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fit, root-mean-square error of approximation 

(RMSEA; Steiger & Lind, 1980). Knowledge of 

distributional properties of this fit index allows for 

the construction of confidence intervals (CIs) and 

the formulation and testing of point or interval 

hypotheses, as shall be shown. We strongly urge 

the use of CIs for fit measures,  and we use the 

hypothesis-testing f ramework for R M S E A  as a 

vehicle for defining a procedure for statistical 

power analysis and determination of minimum 

sample size for CSM. These developments  provide 

for the estimation of power for any test of model 

fit f ramed in terms of RMSEA,  as well as the 

determination of necessary sample size to achieve 

a given level of power for any such test. 

Of  relevance throughout this article is the fact 

that a point estimate of fit is imprecise to some 

degree when considered as an estimate of model 

fit in the population. For some fit indices, such 

as RMSEA,  whose distributional properties are 

known, the degree of imprecision can be captured 

in a CI. On the basis of the CI, one can say with 

a certain level of confidence that the given interval 

contains the true value of the fit index for that 

model in the population. Alternatively, one can 

take into account the imprecision in the sample 

estimate of fit by testing an hypothesis about the 

population value of the fit index. There is a simple 
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relationship between a CI for a population value 

of a fit index and a test of an hypothesis about 

that population value. An appropriate CI implies 

the outcome of an hypothesis test. For instance, 

suppose we formed a 90% CI for some arbitrary 

fit index p. Suppose we also wished to test the null 

hypothesis that p was equal to some specific value 

t~, using a = .05. The outcome of the test is implied 

by the CI. If the CI contains the value ~ ,  then the 

hypothesis is not rejected; but if the CI does not 

contain /~, then the hypothesis is rejected. Of 

course, the CI provides more information than 

the hypothesis test because the interval estimate 

indicates the degree of precision of the sample 

value of the index. In this article, although we 

frame many of our developments regarding power 

analysis for CSM in terms of hypothesis tests, we 

often make use of the tie between such tests and 

the more informative CIs. 

When testing an hypothesis about model fit, it is 

of course highly desirable to (a) test a meaningful, 

relevant hypothesis and (b) draw the correct con- 

clusion about that hypothesis. There is little point 

in conducting an hypothesis test when the hypoth- 

esis being tested is not empirically interesting and 

for which the outcome is not informative in our 

efforts to evaluate a model. Once an appropriate 

hypothesis is defined, it is important to know the 

likelihood of drawing the correct conclusion when 

the hypothesis test is conducted. Incorrect conclu- 

sions could lead the investigator far astray in the 

process of model development and evaluation. For 

example, if the model is truly a good model in 

terms of its level of fit in the population, we wish 

to avoid concluding that the model is a bad one. 

Alternatively, if the model is truly a bad one, we 

wish to avoid concluding that it is a good one. 

However,  such invalid conclusions can certainly 

occur, as they always can in an hypothesis-testing 

context. For instance, if a model fits badly in the 

population and we test the null hypothesis that 

the model fits well, the correct outcome is rejection 

of the null hypothesis. Failure to reject constitutes 

a Type II decision error. Such errors can occur 

because our sample measures of fit are imprecise 

indicators of fit in the population. In the case just 

described, we may fail to reject the false null hy- 

pothesis if we happen to draw a sample wherein 

the model fits well or if our sample size is not 

sufficiently large to provide a precise estimate of 

goodness of fit. 

In the present article we have three objectives. 

First, we define appropriate hypotheses to test re- 

garding fit of covariance structure models, along 

with methods for testing them. We also show how 

appropriate CIs imply the outcome of such tests 

and provide additional information. Second, we 

provide procedures for conducting power analyses 

for these hypothesis tests, thus providing a mecha- 

nism for determining the likelihood of drawing the 

correct conclusion about a false null hypothesis 

regarding model fit. Although there does exist 

some literature on power analysis for covariance 

structure models (e.g., Saris & Satorra, 1993; Sa- 

torra & Saris, 1985), which are discussed later in 

this article, our approach is simpler than existing 

methods and is more easily applied. Finally, we 

provide procedures for determining minimum 

sample size necessary to achieve a desired level 

of power for testing hypotheses about fit of covari- 

ance structure models. We anticipate that these 

procedures will be useful in the design of studies 

using CSM. 

M o d e l  Es t im a t i o n  and  A sse s sm en t  of  Fit  

Discrepancy Functions and 
Parameter Estimation 

Given p manifest variables (MVs), let £0 repre- 

sent the p × p population covariance matrix. A 

covariance structure model represents the ele- 

ments of £0 as functions of model parameters. Let 

y be a vector of order q containing the q parame- 

ters of a specified model. Then the model could 

be represented as 

X¢, = ~.(y), (1) 

where £ (y)  is a matrix-valued function that speci- 

fies the functional relationship between the popu- 

lation covariances and the model parameters. 

Many models belong to the class represented by 

Equation 1, including structural equation models 

with latent variables, factor analysis, path analysis, 

simultaneous equation models, and others. 

In practice a specified model is fitted to a 

p × p sample covariance matrix, S. For any se- 

lected vector of parameter  estimates, ~,, the model 

specified in Equation 1 can be used to obtain a 

reconstructed or implied covariance matrix, 1£: 

~. = x(~) (2) 
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The objective in parameter  estimation is to find 

so that the resulting X is as similar as possible to 

S. The difference between 2 and S is measured 

by a discrepancy function, F(S, ~), which takes 

on a value of zero only when S = 1£ and otherwise 

is positive, increasing as the difference between S 

and X increases. A number of different discrep- 

ancy functions have been defined. The most com- 

monly used such function is the normal-theory 

maximum likelihood (ML) function, defined as 

FML = In 121 - in IS] + Tr ($2 - ' )  - p. (3) 

Developments in this article are not dependent 

on the use of the ML discrepancy function for 

parameter  estimation but could be used with other 

discrepancy functions such as generalized least 

squares (GLS) or asymptotically distribution free 

(ADF; see Bollen, 1989, for a discussion of discrep- 

ancy functions). All that is required for the use of 

developments in this article is that a discrepancy 

function be used that provides an asymptotic X 2 

fit statistic, discussed shortly, and that the distribu- 

tional assumptions underlying the selected dis- 

crepancy function be adequately satisfied. Given 

the selection of an appropriate discrepancy func- 

tion, parameter  estimation is then carried out by 

determining the vector of parameter  estimates, ~, 

that produces a X that in turn yields the minimum 

value of the discrepancy function. That minimum 

value is a sample statistic that will be designated 

F. The magnitude of P reflects the degree of lack 

of fit of the model to the sample data. 

Testing Hypotheses A b o u t  Model  Fit 

A variety of methods and statistics have been 

proposed for evaluating the relative magnitude of 

P so as to achieve an assessment of model fit. A 

common procedure is the conventional likelihood 

ratio (LR) test. Let Y0 represent the vector of un- 

known population parameter  values. We can de- 

fine a null hypothesis/4o: E0 = Z(y0), representing 

the hypothesis that the specified model holds ex- 

actly in the population. This null hypothesis can 

be tested using the test statistic (N - 1)F. If the 

distributional assumptions underlying the discrep- 

ancy function being used are adequately satisfied, 

and if N is sufficiently large, then (N - 1)F will 

be approximately distributed as X~ with degrees 

of freedom d = p(p  + 1)/2 - q, where q is the 

number of distinct parameters to be estimated. 

For a selected ~ level, one can determine a critical 

value of X~. Let that valued be designed X~. If the 

observed value of the test statistic exceeds X~, then 

H0 is rejected; if not, H0 is not rejected. 

The result of this test is reported in virtually 

every application of CSM. In interpreting the out- 

come of this test, it is important to recognize that 

the hypothesis being tested is the hypothesis of 

exact fit, that is, that the specified model is exactly 

correct in the population and that any lack of fit 

in the sample arises only from sampling error. This 

is a stringent null hypothesis, one that in practical 

applications is always false to some degree for any 

overidentified model. In the process of specifying 

and estimating covariance structure models, the 

best one can hope for realistically is that a model 

provides a close approximation to real-world rela- 

tionships and effects. These models can not be 

expected to fit the real world exactly. However,  

even if a model is a good one in terms of represent- 

ing a fairly close approximation to the real world, 

the test of exact fit will result in rejection of the 

model if N is adequately large. Because large sam- 

ples are necessary in CSM so as to obtain precise 

parameter  estimates as well as to satisfy asymp- 

totic distributional approximations, samples will 

often be large enough to lead to rejection of good 

models via the test of exact fit. Thus, we believe 

that the test of exact fit is not particularly useful 

in practice because the hypothesis being tested is 

implausible and is not empirically interesting and 

because the test will result in rejection of good 

models when N is large. If one is going to test 

hypotheses about model fit, it is necessary to test 

realistic hypotheses so as to obtain useful infor- 

mation. 

We next consider a line of development in as- 

sessment of model fit that provides a capability 

for establishing CIs for some fit measures and for 

testing hypotheses other than that of exact fit. 

These developments began with work by Steiger 

and Lind (1980) and have been extended in recent 

work by Browne and Cudeck (1993). We briefly 

consider here some basic elements discussed in 

more detail by Browne and Cudeck but that have 

their origins in the seminal work of Steiger and 

Lind. 

Prior to presenting this information, it is useful 

to review some basic background material. The 

procedures proposed by Browne and Cudeck 

(1993) and Steiger and Lind (1980), and assump- 
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tions underlying those procedures, make use of 

noncentral 1,2 distributions. Basic properties of 

such distributions are reviewed here for the benefit 

of readers not familiar with them. Given d normal 

variates Zl, z2, ... z,~, with unit variances and zero 

means, Y~z2 follows a central 1,= distribution 

with d degrees of freedom and expected value 

E(1,~)  = d. Given d normal variates x~, x2 . . . .  xj, 

with unit variances and nonzero means/z~, p~2 . . . .  

/x,~, then ~x~ follows a noncentral 1,2 distribution. 

Such a distribution has two parameters: degrees 

of freedom, d, and a noncentrality parameter,  A = 

~/z~. The expected value is given by E(1,~I.A)= 

d + A. Thus, the noncentrality parameter  shifts 

the expected value of the distribution to the right 

of that of the corresponding central 1,2. In the 

ensuing material we make extensive use of 

noncentral 1,2 distributions. 

Returning to the context of model evaluation, 

suppose that the population covariance matrix ]£0 

were known and that a model of interest were fit 

to ~0. We define F, as the resulting value of the 

discrepancy function reflecting lack of fit of the 

model in the population. If F, = 0, meaning that 

exact fit holds in the population, then, as noted 

earlier, (N - 1)F follows approximately a central 

1,2 distribution with d degrees of freedom. How- 

ever, when the model does not hold in the popula- 

tion, which will be the normal case in empirical 

applications, Fo will have some unknown nonzero 

value. It is desirable to obtain an estimate of F,. 

When F~ # 0, then (N - 1)F will be distributed 

approximately as noncentral X~.A, where the 

noncentrality parameter  A = (N - 1)F,, under the 

additional assumption that lack of fit of the model 

in the population is of approximately the same 

magnitude as lack of fit arising due to sampling 

error. 

All of the developments presented in the re- 

mainder of this article make use of the noncentral 

1,2 distribution as an approximation for the distri- 

bution of (N - 1)/~. Steiger, Shapiro, and Browne 

(1985) provided the theoretical basis for the use 

of the noncentral 1,2 distribution in the c o n t e x t  

considered in this article. This approximation will 

be satisfactory under the same conditions in which 

the widely used test of exact fit is appropriate, with 

the additional assumption just mentioned that lack 

of fit due to model error and sampling error are 

of approximately the same magnitude. Thus, as- 

sumptions about the population must be ade- 

quately satisfied. The nature of these distributional 

assumptions depends on the discrepancy function 

being used. For instance, for ML estimation, one 

nominally assumes multivariate normality in the 

population; for ADF estimation, no rigid assump- 

tion about the population distribution needs to be 

made. Regarding the assumption about the rela- 

tive magnitude of model error and sampling error, 

Steiger et al. (1985) and Browne and Cudeck 

(1993) stated that the noncentral X z approximation 

will be adequate as long as distributional assump- 

tions are satisfied adequately, sample size is not 

too small, and F0 is not too large. If this condition 

is violated severely, which would involve the case 

of a poor model fitted to data from a large sample, 

then results of model fitting would clearly show 

the model to be a poor one, and the adequacy of 

the noncentral X -~ approximation would be irrele- 

vant. There has been no large-scale Monte Carlo 

investigation of the adequacy of this approxima- 

tion under violations of assumptions, although a 

limited study by Satorra, Saris, and de Pijper 

(1991) showed the approximation to work fairly 

well under conditions in which N was small and 

model misspecification was not too severe. An ex- 

tensive investigation of these issues is beyond the 

scope of this article. In any case, these distribu- 

tional assumptions are necessary to perform any 

power analysis in the context of CSM and are no 

more constraining than the assumptions required 

for other aspects of model fitting and testing. 

As discussed by Browne and Cudeck (1993), if 

(N - 1)F has a noncentral X 2 distribution, then 

the sample discrepancy function value Fis a biased 

estimator of F0, with expected value given by 

E ( F )  = Fo + d i ( U  - 1). (4) 

Thus, a less biased estimator of F0 can be ob- 

tained by 

~ ,  = P -  d / ( N  - 1). (5) 

If Equation 5 yields a negative value, then F0 is 

defined as 0. 

The notion of the population discrepancy func- 

tion value F0 and its estimator ~j forms the basis 

of a measure of fit first proposed by Steiger and 

Lind (1980) and now usually referred to as 

RMSEA. The definition of RMSEA is based on 

the property that the minimum value of the dis- 

crepancy function is equal to, or closely approxi- 
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mated by, a sum of d squared discrepancy terms, 

where the discrepancy terms represent systematic 

lack of fit of the model. On the basis of this prop- 

erty, the RMS measure of model discrepancy in 

the population, to be designated e in this article, 

can be defined as 

= X/-Fo/d .  (6) 

This index indicates discrepancy per degree of 

freedom and is thus sensitive to the number of 

model parameters. Given two models with equal 

fit in the population (i.e., equal values of F0) but 

different degrees of freedom, this index will yield 

a smaller (better) value for the model with more 

degrees of freedom (fewer parameters). As de- 

fined in Equation 6, e is a population measure 

that is a function of the unknown value of F0. An 

estimate of e can be obtained by substituting the 

estimate of F0 from Equation 5 into Equation 6, 

yielding 

= X / P o / d .  (7) 

Steiger (1989), Browne and Mels (1990), and 

Browne and Cudeck (1993) offered guidelines for 

interpretation of the value of e. By analyzing many 

sets of empirical data and evaluating the behavior 

of e in relation to previous conclusions about 

model fit, Steiger (1989) and Browne and Mels 

(1990) arrived independently at the recommenda- 

tion that values of e less than 0.05 be considered 

as indicative of close fit. Browne and Cudeck pro- 

vided a number of empirical examples to support 

this guideline, wherein values of e less than 0.05 

yielded conclusions about model fit consistent with 

previous analyses of the same data sets. Browne 

and Cudeck also suggested that values in the range 

of 0.05 to 0.08 indicate fair fit and that values above 

0.10 indicate poor fit. We consider values in the 

range of 0.08 to 0.10 to indicate mediocre fit. 

Clearly these guidelines are intended as aids for 

interpretation of a value that lies on a continuous 

scale and not as absolute thresholds. 

A useful feature of this RMSEA fit index is that 

it is possible to compute CIs for the population 

value of e (Steiger & Lind, 1980). Details are pre- 

sented in Browne and Cudeck (1993). The 

RMSEA value and its associated CI are now avail- 

able in many standard CSM computer  programs, 

including LISREL 8 (JOreskog & S6rbom, 1993), 

CALIS (SAS Institute, Inc., 1992), R A M O N A  

(Browne, Mels, & Coward, 1994), AMOS (Ar- 

buckle, 1994), SePath (Steiger, 1994) and others. 

For users without access to recent versions of these 

programs, a program called F ITMOD is available 

for computing RMSEA and its CI, as well as other 

information about model fit. ~ We recommend that 

such CIs be used in practice. The calculation and 

interpretation of a point estimate of an index of 

model fit does not take into account the impreci- 

sion in the estimate, potentially misleading a re- 

searcher. The associated CI provides information 

about precision of the estimate and can greatly 

assist the researcher in drawing appropriate con- 

clusions about model quality. For instance, if a 

model were to yield a low value of ~ but a wide 

CI, the investigator could recognize that there may 

be substantial imprecision in k, in which case one 

cannot determine accurately the degree of fit in 

the population. A very narrow CI, on the other 

hand, would lend support to the interpretation of 

the observed value of k as a precise indicator of 

fit in the population. It can be shown that the width 

of the resulting CIs is greatly influenced by both 

N and d. If both are small, then CIs for e will be 

quite wide. If d is small, then a very large N is 

needed to obtain a reasonably narrow CI. On the 

other hand, if d is very large, which would occur 

in studies with a large number of measured vari- 

ables and models with relatively few parameters, 

then rather narrow CIs for e are obtained even 

with a moderate N. 

Given that CIs for e can be determined, it is 

also feasible to frame hypothesis tests in terms of 

this index of model fit. Recall that, given adequate 

approximation of assumptions, when F~ ¢ 0, then 

(N - 1)F will be distributed approximately as 

noncentral ~'~.A, where the noncentrality parame- 

ter A = (N - 1)F0. Note that the value of the 

noncentrality parameter  is a function of lack of fit 

of the model in the population. Making use of the 

fact from Equation 5 that F0 = de 2, we can define 

the noncentrality parameter  in terms of the 

RMSEA index, e: 

A = ( X -  1)de z. (8) 

This development can be used to reffame proce- 

Information on how to obtain the computer program 
FITMOD can be obtained by writing to Michael W. 
Browne, Department of Psychology, 1885 Nell Avenue, 
Ohio State University, Columbus, Ohio 43210. 
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dures for testing hypotheses about model fit. The 

conventional LR test of exact fit can be redefined 

as a test of H0: e = 0, that is, perfect fit of the model 

in the population. Under  this null hypothesis, the 

test statistic (N - 1)P would follow a X 2 distribu- 

tion with d degrees of freedom and noncentrality 

parameter  h = 0 from Equation 8. Thus, the test 

statistic is evaluated using a central g~ distribution, 

as described earlier. Given the problems discussed 

earlier regarding this test, it is useful to consider 

defining and testing other hypotheses about fit. In 

the present context, this is quite straightforward. 

For example, Browne and Cudeck (1993) sug- 

gested testing a null hypothesis of close fit, defined 

as H0: e -< .05. This hypothesis is more realistic 

than the hypothesis of exact fit and can be tested 

quite easily. Under  this null hypothesis, and given 

sufficiently large N and adequate approximation 

of assumptions mentioned earlier, the test statistic 

(N  - 1)P would follow a noncentral g~,, distribu- 

tion, with h = (N - 1)d(0.05) 2. Therefore,  for a 

given a level, the significance of the test statistic 

is evaluated by comparing it to a critical X~, where 

X~ cuts off an area of ct in the upper tail of the 

distribution of 2 Xd.,. In comparison with the test of 

exact fit, the same test statistic is used, but the 

value of X2c will be greater because critical values 

in the noncentral distribution of X2, are shifted to 

the right of corresponding values in the central 

distribution of ) 2, as is shown in Figure 1. As a 

result, an obtained value of (N - 1)P that leads 

to rejection of the hypothesis of exact fit might 

well lead to failure to reject the hypothesis of close 

fit. Such an outcome is not at all unusual for good 

models when N is large; see the examples in 

Browne and Cudeck (1993). 

If one wishes also to conduct a formal hypothesis 

test about the value of e, such tests are straight- 

forward using the noncentral g 2 distribution as 

described earlier. Although it would be possible 

to test many such hypotheses, we believe the hy- 

pothesis of close fit (H0: e -< 0.05) is a sensible 

alternative to the hypothesis of exact fit (H0: e = 

0). Although it must be acknowledged that the 

value of 0.05 is somewhat arbitrary, that value is 

supported by independent sources in the litera- 

ture, as noted earlier (Browne & Mels, 1990; 

Steiger, 1989). Furthermore,  the test of close fit 

has been recognized by authors of some major 

CSM software packages and incorporated into 

their programs (e.g., LISREL8: J6reskog & S6r- 

born, 1993; CALIS: SAS Institute, Inc., 1992; and 

RAMONA:  Browne et al., 1994). Most important, 

testing a hypothesis of close fit using some reason- 

able definition of close fit (e.g., H0: e <- 0.05) is 

clearly more sensible and substantively interesting 

than testing a hypothesis of exact fit. If future 

research suggests that some value other than 0.05 

is preferable for such a test, it is trivial to adapt 

the methodology accordingly. 

The developments presented to this point re- 

garding the RMSEA fit index and associated CIs 

as well as the test of close fit are discussed in more 

detail by Browne and Cudeck (1993). We now 

wish to consider further developments based on 

this approach. There exists a problem associated 

with the role of the null hypothesis in both the 

test of exact fit and the test of close fit. In both 

cases, assuming one is seeking to support a model 

under study, one wishes to garner support for the 

null hypothesis. If the null hypothesis is rejected, 

we conclude that the observed data are highly 

inconsistent with the hypothesis of exact or close 

fit, whichever is being tested. The model is not 

supported. If the null hypothesis is not rejected, 

we conclude that the data are not sufficiently in- 

consistent with the null hypothesis for us to reject 

that hypothesis. This latter outcome does not im- 

ply clear support for the model but rather the 

absence of strong evidence against it. It is difficult 

to argue for support of a model using the tests of 

exact or close fit. 

The current framework for testing hypotheses 

about e offers a mechanism for addressing this 

problem by reversing the role of the null hypothe- 

sis. Consider defining the null hypothesis as repre- 

senting a lack of close fit in the population, thereby 

creating a situation in which we hope to reject that 

hypothesis. For example, we could define H0: 

e -> 0.05, meaning that the fit of the model in the 

population is not close. Rejection of this hypothe- 

sis would support the conclusion that the fit of the 

model in the population is close, that is, support 

for the alternative that e < 0.05. Testing this null 

hypothesis is straightforward. Under  H0: e -> 0.05, 

and given sufficiently large N and adequate ap- 

proximation to assumptions, the test statistic 

(N - 1)F would be distributed as noncentral 

X2d,,, where A = (N - 1)d(0.05) 2. One would now 

conduct a one-tail test using the lower tail of the 

distribution, because a sufficiently low value of 

(N - 1)P would result in rejection of H0. Thus, 
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given a, the critical X~ would cut off an area of a 

in the lower tail of the distribution of X~.a, and H0 

would be rejected if (N - I )F  < X~. This case is 

illustrated in Figure 2. We refer to the test just 

described as a test of not-close fit. 
The test of not-close fit provides for more appro- 

priate roles for the null and alternative hypotheses 

in the context of model evaluation. When speci- 

fying and evaluating a model, our research hypoth- 

esis would normally be that the model provides a 

good approximation to the real-world phenomena  

under study. As is often pointed out in introduc- 

tory treatments of hypothesis testing (e.g., Cham- 

pion, 1981), the research hypothesis is most appro- 

priately represented by the alternative hypothesis, 

so that rejection of the null hypothesis implies 

support  for the research hypothesis. If the research 

hypothesis corresponds to the null hypothesis, 

then it becomes very difficult to support the re- 

search hypothesis, as is the case in usual tests of 

model fit in CSM. 

To summarize the direct relationship between 

a CI for e and the tests of close and not-close fit 

discussed in this section, consider Table 1. This 

table shows how a 100(1 - 2o0% CI for e implies 

the outcome of tests of close and not-close fit using 

significance level a. In addition, it is useful to rec- 

ognize that a CI with a lower bound of 0 will result 

in failure to reject the hypothesis of exact fit. It is 

clear that CIs provide more information than is 

yielded by an hypothesis test. The interval esti- 

mate of e indicates the degree of imprecision in 

this estimate of fit. This information is not reflected 

nearly as clearly in an hypothesis test. Thus, we 

strongly encourage the use of CIs in their own 

right as well as for purposes of inferring results of 

hypothesis tests. 

Examples of  Tests of  Model Fit for 
Empirical Studies 

Browne and Cudeck (1993) presented results of 

tests of exact and close fit for several data sets; we 

extend their analyses to include the test of not- 

close fit proposed here. They reported results of 

a series of factor analyses of data from McGaw 
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and J6reskog (1971); the data consist of  measures  

on 21 ability tests for a sample of  l 1,743 individu- 

als. In this example,  fit measures  are used to evalu- 

ate fit of  the c o m m o n  factor  model  with a specified 

number  of  factors. For  instance, a four-factor  

model  yields a 90% CI for e with bounds  of  0.046 

and 0.048. The  hypothesis  of  exact fit is rejected 

at the .05 significance level (g  2 = 3,548, d = 132) 

because the lower bound  of  the interval is greater  

than zero, mean ing  that exact fit in the popula t ion  

is highly implausible. This CI also implies the out- 

comes of  the tests of  close and not-close fit, as is 

summarized  in Table  1. The  hypothesis  of  close 

fit is not  rejected at the .05 significance level be- 

cause the entire interval lies below .05, meaning  

that close fit is not  implausible. A s t ronger  conclu- 

sion is implied by the test of  not-close fit. Because 

the upper  bound  of the CI is less than 0.05, the 

hypothesis  of  not-close fit (H0: e -> 0.05) is rejected 

at the .05 significance level, mean ing  that  not-close 

fit is highly implausible and providing s t rong sup- 

port  for close fit of  the four-factor  model .  This 

Table 1 

Relationship Between Confidence Intervals and Hypothesis Tests 

Nature of confidence interval a Reject close fit? Reject not-close fit? 

Entire confidence interval below 0.05 No Yes 

Confidence interval straddles 0.05 No No 

Entire confidence interval above 0.05 Yes No 

This table assumes that close fit is defined as e <- 0.05. If hypotheses are constructed on the 
basis of some other value, e,,. then that value becomes the reference point for relating confidence 
intervals to hypothesis tests. 



138 MAcCALLUM, BROWNE, AND SUGAWARA 

final result provides the clearest support  for the 

model and will tend to occur when a model fits 

very well and N and d are large, resulting in a low 

value of k and a narrow CI. 

It is interesting to contrast these results with 

results obtained by extending another  example 

presented by Browne and Cudeck (1993). In factor 

analyses on a bat tery of 24 intelligence tests in a 

sample of 86 individuals (data from Naglieri & 

Jensen, 1987), a five-factor model yielded a 90% 

CI for e with bounds of 0.034 and 0.081. Because 

the lower bound of this interval is greater than 0, 

the hypothesis of exact fit is rejected (X 2 = 215.74, 

d = 166, p < 0.05). Because the CI includes the 

value of 0.05, neither the hypothesis of close fit 

nor that of not-close fit is rejected, as is indicated 

in Table 1. Thus, neither close fit nor not-close fit 

are ruled out. In this case, it would be a mistake 

to infer close fit based on failure to reject the 

hypothesis of close fit. A rigorous inference of 

close fit would require rejection of the hypothesis 

of not-close fit, which is not achieved in this case. 

The wide CI shows that both close fit and not- 

close fit are plausible. 

P o w e r  Ana lys i s  for  Tes t s  o f  Fit  

In the previous section we described a frame- 

work for testing various hypotheses about model 

fit, where the null hypothesis indicates the degree 

of fit in terms of the e index. When using these 

tests for model evaluation, it is important  to have 

adequate power for detecting when an hypothesis 

about model fit is false. Power analyses for the tests 

described in the previous section can be conducted 

fairly easily. 

In general, H0 specifies an hypothesized value 

of e; let that value be designated as e~. If H0 is 

false, then the actual value of e is some value 

that is not consistent with H~; let that value be 

designated as e,. The value of ea represents the 

degree of lack of fit of the specified model in the 

population. In power analysis terminology, the dif- 

ference between e0 and ea reflects the effect size, 

conceptualized as the degree to which H0 is incor- 

rect. We emphasize that we are not defining a 

numerical index of effect size; specifically, the 

arithmetic difference between e0 and ea is not a 

numerical index of effect size because power is 

not a simple function of this difference. That  is, if 

we define ~ = e0 - e,, power is not the same for 

all choices of ~0 and ea that yield the same & 

Rather,  power depends on the particular values of 

e0 and e, that are chosen. This same phenomenon 

occurs in power analysis for other types of hypoth- 

esis tests. For instance, Cohen (1988, pp. 110-113, 

180-182) described this phenomenon in the con- 

texts of testing differences between correlation co- 

efficients and differences between proportions. In 

those situations it is conventional to define a nu- 

merical measure of effect size as a function of 

t ransformed values of correlations or proportions. 

In the present context it is not clear that a similar 

approach is viable or necessary. For current pur- 

poses, we define effect size in terms of a pair of 

values, e, and e,, and the power analysis methods 

we present operate on the selected pair of values. 

In selecting a pair of values, e, and ea, there 

is an unavoidable element of arbitrariness. Any 

power analysis requires a specification of effect 

size, which is unknown in practice (if it were 

known, then no hypothesis test would be neces- 

sary). Cohen (1988) routinely suggested somewhat  

arbitrary guidelines for designation of small, me- 

dium, and large effect sizes for various hypothesis 

tests. In the present context, we choose values of 

e0 and e~, on the basis of accepted guidelines for 

interpretation of e, as presented earlier. However,  

we emphasize that the methodology we present 

for power analysis is not tied to any particular 

values of e~ and e~,. The method is general and can 

be used for any pair of such values. However,  we 

believe the values we use here to illustrate the 

method are reasonable choices that could be useful 

in empirical studies. 

In testing the null hypothesis of close fit (H~; 

e -< 0.05), e, takes on a value of 0.05. (In general 

for tests of interval null hypotheses such as those 

used in the tests of close fit and not-close fit, e, 

would be defined as the most extreme value of e 

in the specified interval.) The value of ea must 

then be specified as some value greater than 0.05, 

representing the degree to which the model is con- 

sidered to be incorrect in the population. Although 

this value is unknown in practice, appropriate  val- 

ues of ~, can be specified for purposes of power 

estimation. For instance, e, could reasonably be 

specified as 0.08. One then has framed the follow- 

ing question: If the true value of e is 0.08 and we 

test H0: e <- 0.05, what is the power of the test? 

In other words, if the fit of the model is actually 

mediocre,  and we test the hypothesis that fit is 
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close, what is the likelihood of rejecting the null 

hypothesis? For the test of not-close fit, e0 also 

takes on a value of 0.05. In this case, ea should be 

defined as some value less than 0.05, so that H0: 

e -> 0.05 is false. We suggest setting e~ = 0.01, 

representing the case of an extremely good model. 

Power analysis of this case then addresses the fol- 

lowing question: If model fit is actually extremely 

good, and we test the hypothesis that fit is not 

close, what is the likelihood of rejecting the null 

hypothesis? Although these recommendat ions  for 

values of e0 and ea are somewhat  arbitrary, they 

are no less arbitrary than many other guidelines 

used in statistical analysis (e.g., a = .05), and we 

believe that they define interesting, meaningful 

questions for power analyses. Other  investigators 

are, of course, free to use and study other possible 

selections of e0 and e,. We caution investigators 

to choose meaningful values of e0 and e, and to 

recognize that if these two values are specified as 

very close together,  resulting power estimates will 

generally be quite low. Regardless of the values 

selected, it is significant to note that the specifica- 

tion of e, does not require any statement on the 

part  of the investigator as to how the model is 

misspecified; rather, ea indicates only the degree 

of lack of fit in the population. 

On the basis of the values of e() and ea, we can 

define two overlapping noncentral X 2 distributions. 

The first, representing the distribution used to 

test Ho, is the distribution of X~.~,,, where Ao = 

(N - 1) de 2. Under  Ho, the test statistic (N - 1)F 

follows this distribution. For a given level of c~, a 

critical value X~ is determined that cuts off an area 

of a in the upper  or lower tail of the distribution 

of X,~.~, (depending on whether/4o represents close 

or not-close fit, respectively). If (N - 1)F is more 

extreme than )C~ in the appropriate  tail, then/4o is 

rejected. If H0 is false in reality, and the true value 

of e is ea, then the test statistic is actually an obser- 

vation from a different noncentral X 2 distribution. 

Specifically, we define the distribution of A'~ ~ as 

the true distribution of the test statistic, given e,, 

where A, = ( N  - 1)de2a . Give X~, the critical value 

of the test statistic defined under H0, the power 

of the test is then defined as the area under the 

true distribution of the test statistic, beyond X~ in 

the appropriate  direction. That  is, if e0 < e,, which 

would represent the case of a test of good fit (e.g., 

exact or close), then power 7r is given by 

7r = Pr(x~.a~ >- X~). (9) 

On the other hand, if e0 > ea, as in the case of a 

test of not-close fit, power is given by 

r; = Pr (x2 ,~  <- X~). (10) 

The former  case is shown in Figure 3, in which 

the null hypothesis of close fit is rejected if a suffi- 

ciently large value of the test statistic is obtained; 

the latter case is shown in Figure 4, in which the 

null hypothesis of not-close fit is rejected if a suffi- 

ciently small value of the test statistic is obtained. 

We have applied this procedure to several cases 

of interest, defined according to values of e, and 

ea. We first consider power for the test of H0: e -< 

0.05, when true model fit is mediocre; that is, 

e, = 0.08. Following the procedure just described, 

the distribution of the test statistic under /4o is 

noncentral X~,,, where Ao = (N - 1)d(0.05) 2. For 

a given a, the critical value X~ would cut off an 

area of c~ in the upper  tail of that distribution, as 

in Figure 3. The distribution of the test statistic 

under the alternative that e, = 0.08 is noncentral 

X~l~,, where A~, = (N - 1)d(0.08) 2. Power is then 

given by Equation 9, as is illustrated in Figure 3. 

Resulting power estimates indicate the probability 

of rejecting the hypothesis of close fit when true 

model fit is mediocre. For a given c~ level, these 

estimates are dependent  only on d and N. For 

= .05, Table 2 shows power values for selected 

levels of d and N in rows labeled c lose  fit. For 

example, with d = 40 and N = 200, the probabili ty 

of rejecting H(): e -< 0.05 is approximately .69 if 

e, = 0.08. Inspection of power estimates in Table 

2 for the test of close fit indicate that power is 

consistently low when d is small even when N is 

relatively large. For studies with modera te  to large 

d, reasonable power is achieved with modera te  

sample sizes, and very high power is achieved with 

large samples. For instance, with d = 100, power 

is well above 0.90 if N is 200 or more. 

A second case of interest for power analysis 

involves the hypothesis of not-close fit described 

earlier. In this case, eo = 0.05 and, as mentioned 

earlier, we recommend setting ea = 0.01. Then 

the distribution of the test statistic under H0 is 

noncentral X~a,,, where A0 = (N - 1)d(0.05) 2. The 

critical value X~ cuts off an area of c~ in the lower 

tail of this distribution, as in Figure 4. The distri- 

bution of the test statistic under the alternative 

that ea = 0.05 is noncentral 2 X,tA,  where Aa = 

(N - 1)d(O.O1):, and power is given by Equation 
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Figure 3. Illustration of power for test of close fit. 

10 and illustrated in Figure 4. For selected values 

of d and N, power values for this condition are 

shown in Table 2 in the rows labeled not-close fit. 

These power values are a bit smaller than those 

for the test of close fit when d and N are not large. 

This finding is a result of the effective difference in 

effect size represented in the two cases considered 

here. For the test of close fit, the effect size is 

represented by the pair of values e0 = 0.05 and 

e, = 0.08; for the test of not-close fit, the effect 

size is reflected by the pair of values e0 = 0.05 

and ea = 0.01. Although the arithmetic difference 

is larger in the latter case, power analysis results 

in Table 2 show the latter case to represent an 

effectively smaller effect size than does the former. 

That  is, except when d and N are both quite large, 

one would have a bet ter  chance of detecting the 

former  effect than the latter. 
A third case of interest in power estimation for 

model tests involves investigation of the test of 

exact fit when true fit is close. Consider the power 

of the test of H0: e = 0 when the true fit of the 

model is e, = 0.05. Under  H0, the distribution of 

the test statistic is central X~, and the critical X~ 

cuts off an area of a in the upper  tail of that 

distribution. The distribution of the test statistic 

under the alternative is noncentral X~.~,, where 

A, = (N - 1)d(0.05) 2, and power is given by Equa- 

tion 9. Graphically, this case corresponds to Figure 

3, except that the null distribution in the present 

case is central rather than noncentral X 2. Power 

values for this case indicate the probability for 

rejecting the hypothesis of exact fit when true fit 

is close. This phenomenon is often considered to 

represent a serious problem inherent in the test 

of exact fit. Table 2 shows power values for this 

case for selected levels of d and N. Again, values 

are of roughly the same magnitude as for the other 

tests considered, with power becoming quite high 

as d and N increase. One might be tempted to 

draw a conclusion that it is desirable to have low 

d and N when testing exact fit, so as to have low 

probability of rejecting a good model. However,  

under such conditions power is low for both of 

the other tests considered also. For instance, for 

d = 15, N = 100, a = .05, and ea = 0.05, power 



POWER ANALYSIS IN CSM 141 

0.06 

0.05 

Noncentral )2 

for E a = .01 

0.04 

0.03 

Noncentra l  )2 

for test  o f  H0: e > .05 

0.02 

0.01 

0.00 

0 20 40 60 80 100 120 

Figure 4. 

2 
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for the test of exact fit is approximately 0.17, but 

power  for the test of not-close fit is only 0.13. It 

would be difficult under these conditions to reject 

either exact fit or not-close fit. The problem here, 

as discussed earlier, is that under such conditions 

the confidence interval for e is quite wide, leaving 

the investigator with imprecise information about 

model fit in the population. 

For all conditions depicted in Table 2, power 

increases as d or N increases. This phenomenon 

can be understood by referring to Equation 8 and 

Figures 3 and 4. Power is a function of the separa- 

tion of the distributions in Figures 3 and 4, which 

is a function of the difference between the non- 

centrality parameters  for the two distributions, 

hc~ and A~ where Ao = ( N - 1 ) d e ~ ,  and h~ = 

(N - 1)de~. Clearly, the difference between A0 and 

Aa is a function of d, N, e0, and e,. Holding any 

three of these terms constant, any change in the 

fourth term that produces a greater  difference be- 

tween A0 and Aa will increase power. Thus, power 

increases with larger N and with e, more discrepant 

from a fixed e0. Furthermore,  for fixed N, e0, and 

e,, power  is greater  in models with higher d. That 

is, a given effect size defined in terms of e, and E; a 

is more easily detected when d is higher. 

The power estimates computed by the method 

we have presented can also be interpreted with 

reference to CIs for e. Given a, d, N, e0, and ea, 

the resulting power can be interpreted as the prob- 

ability that if e = ea, the CI will not include e0. 

For example, for a = .05, d = 40, N = 200, &~ = 

0.05, and e, = 0.08, power from Table 2 is 0.69. As 

explained earlier, this is the probabili ty of rejecting 

the hypothesis of close fit under these conditions. 

It is also the probabili ty that a 90% CI for e will 

not include the value .05. As is shown in Table 1, 

the latter event implies the former. 

Computer  Programs for  Power  Calculations 

The computat ions involved in these analyses can 

be carried out easily following the methods de- 

scribed in conjunction with Equations 9 and 10. 

The Appendix provides a short SAS program for 

computing power given specified values of a,  d, 

N, e0, and ea. Note especially that the program 

allows the user to specify values of e0 and ea. Thus, 



142 MAcCALLUM, BROWNE, AND SUGAWARA 

Table 2 

Power Estimates for Selected Levels of Degrees of 
Freedom (dr) and Sample Size 

Sample size 

d fand  test 100 200 300 400 500 

5 Close 0.127 0.199 0.269 0.335 0.397 

Not close 0.081 0.124 0.181 0.248 0.324 

Exact 0.112 0.188 0.273 0.362 0.449 

10 Close 0.169 0.294 0.413 0.520 0.612 

Not close 0.105 0.191 0.304 0.429 0.555 

Exact 0.141 0.266 0.406 0.541 0.661 

15 Close 0.206 0.378 0.533 0.661 0.760 

Not close 0.127 0.254 0.414 0.578 0.720 

Exact 0.167 0.336 0.516 0.675 0.797 

20 Close 0.241 0.454 0.633 0.766 0.855 

Not close 0.148 0.314 0.513 0.695 0.830 

Exact 0.192 0.400 0.609 0.773 0.882 

30 Close 0.307 0.585 0.780 0.893 0.951 

Not close 0.187 0.424 0.673 0.850 0.943 

Exact 0.237 0.512 0,750 0.894 0.962 

40 Close 0.368 0.688 0,872 0.954 0.985 

Not close 0.224 0.523 0.788 0.930 0.982 

Exact 0.279 0.606 0,843 0.952 0.988 

50 Close 0.424 0.769 0.928 0.981 0.995 

Not chose 0.261 0.608 0.866 0.969 0.995 

Exact 0.319 0.684 0.903 0.979 0.997 

60 Close 0.477 0.831 0.960 0.992 0.999 

Not close 0.296 0.681 0.917 0.987 0.999 

Exact 0.356 0.748 0.941 0.991 0.999 

70 Close 0.525 0.877 0.978 0.997 1.000 

Not close 0.330 0.743 0.949 0.994 1.000 

Exact 0.393 0.801 0.965 0.996 1.000 

80 Close 0.570 0.911 0.988 0.999 1.000 

Not close 0.363 0.794 0.970 0.998 1.000 

Exact 0.427 0.843 0.979 0.998 1.000 

90 Close 0.612 0.937 0.994 1.000 1.000 

Not close 0.395 0.836 0.982 0.999 1.000 

Exact 0.460 0.877 0.988 0.999 1.000 

100 Close 0.650 0.955 0.997 1.000 1.000 

Not close 0.426 0.870 0.990 1.000 1.000 

Exact 0.491 0.904 0.993 1.000 1.000 

Note. All power estimates are based on a = ,05. For the test 
of close fit, e~, = 0.05 and e, = 0.08, where e~ is the null value 
of the root-mean-square error of approximation (RMSEA) 
and e, is the alternative value of RMSEA. For the test of not- 
close fit, e, = 0.05 and ~, = 0.01. For the test of exact fit, e~ 
= 0.00 and e, = 0.05. 

if the user wishes to study or  use values of  these 

quantit ies different f rom those we have suggested 

(e.g., to define a different cri terion for close fit 

o ther  than e <- 0.05), he or she is free to do so. 

However ,  we urge users to carefully consider  justi- 

fication for selected values of  these quantities. 

Examples o f  Power Calculations for 

Empirical Studies 

We illustrate the power  analyses described 

above by using data f rom five published applica- 

tions of  CSM. These include the two factor  analytic 

studies ment ioned  earlier and presented by 

Browne  and Cudeck  (1993), as well as three addi- 

tional studies wherein  a part icular  model  was sup- 

por ted  (Fredricks & Dossett ,  1983; Meyer  & Gel- 

latly, 1988; Vance  & Colella, 1990). Table  3 shows 

d and N for a suppor ted  model  f rom each study, 

along with power  est imates for tests of  close and 

not-close fit. For  the McGaw and J6reskog (1971) 

data wherein d and N are both very large, power  

is essentially 1.0 for both  tests. The  Naglieri and 

Jensen (1987) and Fredricks and Dosset t  (1983) 

examples  show modera te  power  for both  tests. 

The former  data set is character ized by very high d, 

but  ra ther  low N, with the latter having modera te  

levels of  both  d and N. The final two data  sets in 

Table 3 show that when d and N are low, power  

is extremely low for both  tests. Such circumstances 

are problemat ic  in practice, resulting in a very 

low likelihood of  rejecting any sensible hypothesis  

about  fit. In those circumstances,  s ta tements  of  

support  of  models  must  be considered highly 

suspect. 

D e t e r m i n a t i o n  o f  N e c e s s a r y  S a m p l e  Size 

A n  impor tant  issue in research design involves 

the determinat ion of  sample size necessary to 

achieve adequate  power  to carry out p lanned hy- 

pothesis tests. In the present  context  of  testing 

hypotheses  about  model  fit, it would be desirable 

to be able to determine necessary N to have ade- 

quate  power  for detect ing when such hypotheses  

are false. In the previous section we provided pro- 

cedures  for power  calculation given a,  d, N, e0, and 

ea. We now consider the closely related problem of 

determining N, given c~, d, ec~, e,, and the desired 

level of  power,  7r,/. A solution to this problem could 

be of  value in research design by providing investi- 

gators with a mechanism for determining neces- 

sary N for model  testing in CSM studies, thereby 

avoiding waste and low-power  investigations. 

This p roblem can be solved easily in the present  

f r amework  for hypothesis  testing. The  solution is 



POWER ANALYSIS IN CSM 143 

Table 3 

Power Estimates and Minimum Sample Sizes for Selected Empirical Studies 

Source of data d N 

Power Minimum N 

Close Not close Close Not close 

McGaw & J6reskog (1971) 

Naglieri & Jensen (1987) 

Fredricks & Dossett (1983) 

Meyer & Gellatly (1988) 

Vance & Colella (1990) 

132 11,743 >0.999 >0.999 ll0 152 

166 86 0.747 0.502 95 133 

34 236 0.712 0.566 285 340 

8 56 0.107 0.073 954 875 

5 90 0.120 0.077 1,463 1,216 

Note. For all analyses, a = .05. For the test of close fit, e~ = 0.05 and e~ = 0.08. where e,~ is 
the null value of the root-mean-square error of approximation (RMSEA) and e, is the alternative 
value of RMSEA. For the test of not-close fit. r.~, = 0.05 and e~, = 0.01. 

not a direct one, however. If we define Nmi n a s  the 

minimum value of N being sought, it is not possible 

to calculate Nm~, directly from the other relevant 

factors. Rather, it is necessary to conduct a system- 

atic search for the appropriate value of Ninon. We 

use a simple procedure of interval-halving. In this 

procedure, upper and lower bounds are deter- 

mined to contain the value of Nm~0, and that inter- 

val is successively cut in half in a systematic man- 

ner until a very close approximation to the desired 

N°,~0 is found. Details of the procedure, along with 

a SAS program, are provided in the Appendix. 

Although it would be possible to use more compu- 

tationally sophisticated procedures that would ar- 

rive at a solution more quickly, we have found the 

interval-halving procedure to work effectively and 

quickly, usually in just a few seconds on a PC. 

Furthermore, this procedure is easy to explain and 

allows us to provide a simple SAS program to 

interested users. As with the SAS program for 

power calculation, note that the user is free to 

choose values ofe~ and e~. This flexibility, however, 

must not be abused. Users have the responsibility 

for justifying their choice of these values. 

Consider the application of this procedure in 

the case in which one plans to test H~j: e -< 0.05 

when ea = 0.08, using a = 0.05 and a desired power 

7r,~ = 0.80. Given these conditions, Nm,, depends 

only on degrees of freedom d. Table 4 shows mini- 

mum levels of N for this case for selected levels 

of d from 2 to 100. For example, for d = 40, 

Nm~n = 252 to assure power of at least 0.80 for 

rejecting the hypothesis of close fit if e, = 0.08. 

Also shown in Table 4 are minimum levels of N 

for the test of not-close fit, H0: e -> 0.05 when 

e~ = 0.01. Once again, this information can be 

interpreted equivalently in terms of CIs for e. 

Given e0, ea, d, c~, and desired power, Nr~o can be 

interpreted as the minimum sample size required 

to have the desired probability (power) for the 

appropriate CI to not include e~. As N increases, 

a CI for e becomes narrower, thus reducing the 

likelihood of it including e0, which, as is indicated 

in Table 1, implies rejection of the null hypothesis. 

Inspection of Table 4 reveals several interesting 

phenomena. Most obvious is the strong association 

between d and N,l,n. When d is small, a very large 

N is needed to achieve adequate power for these 

model tests. Studies with small d arise when the 

number of measured variables is small, when the 

specified model has a relatively large number of 

parameters, or both. In such cases, as is seen in 

Table 2, power is low for almost any sensible hy- 

pothesis test; Table 4 indicates that reasonable 

levels of power cannot be obtained without a very 

large N. 

The relevant phenomenon in such cases involves 

the relationship of the width of the CI for e to the 

levels of d and N. When d is small, these CIs will 

be very wide unless N is extremely large. Thus, 

is subject to considerable imprecision. To achieve 

adequate precision and in turn adequate power 

for the recommended hypothesis tests when d is 

small, N must exceed the levels shown in Table 

4. Given these results, we discourage attempts to 

evaluate models with low d unless N is extremely 

large. In conjunction with this view, we discourage 

the introduction of substantial numbers of param- 

eters into models so as to improve their fit. Such 

procedures have been shown to be susceptible to 

capitalization on chance (MacCallum, 1986; Mac- 

Callum, Roznowski, & Necowitz, 1992). Further- 

more, it is now clear that the resulting reduction 
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Table 4 

Minimum Sample Size to Achieve Power of 0.80 for 

Selected Levels of Degrees of Freedom (dr) 

Minimum N for test Minimum N for test 

df of close fit of not-close fit 

2 3,488 2,382 

4 1,807 1,426 

6 1,238 1,069 

8 954 875 

10 782 750 

12 666 663 

14 585 598 

16 522 547 

18 472 508 

20 435 474 

25 363 411 

30 314 366 

35 279 333 

40 252 307 

45 231 286 

50 214 268 

55 200 253 

60 187 240 

65 177 229 

70 168 219 

75 161 210 

80 154 202 

85 147 195 

90 142 189 

95 136 183 

100 132 178 

Note. For all analyses, a = .05. For the test of close fit, ~,, = 
0.05 and ea = 0.08, where e0 is the null value of the root- 
mean-square error of approximation (RMSEA) and e, is the 
alternative value of RMSEA. For the test of not-close fit, e0 
= 0.05 and ea = 0.01. 

in d causes substantial  reduct ion in power  of  

model  tests. 

Let  us next focus on levels of  necessary N as d 

becomes  larger. As is indicated in Table  4, ade- 

qua te  power  for the r e c o m m e n d e d  tests can be 

achieved with relatively modera te  levels of  N when 

d is not  small. For  instance, with d = 100, a power  

of  0.80 for the test of  close fit (in compar ison  with 

the alternative that e, = 0.08) is achieved with 

N --- 132. Again,  such results reflect the behavior  

of  CIs for e. With large d, relatively nar row CIs are 

obta ined with only modera te  N. This p h e n o m e n o n  

has impor tan t  implications for tests of  model  fit 

using hypotheses  about  e. For  instance, using the 

test of  close fit, if d is large and actual fit is medio-  

cre or  worse, one does not  need a very large sample 

to have a high probabil i ty of  rejecting the false 

null hypothesis.  Consider  a specific example to 

illustrate this point. Suppose one has p = 30 mani-  

fest variables, in which case there would be 

p(p  + 1)/2 = 465 distinct e lements  in the 

p × p covariance matrix. If  we tested the null 

model  that the measured  variables are uncorre-  

iated, the model  would have q = 30 parameters  

(variances of  the manifest  variables), resulting in 

d = p ( p  + 1)/2 - q = 435. For  the test of  close 

fit, in compar ison  with the alternative that ea = 

0.08, we would find Nmin = 53 for power  of  0.80. 

That  is, we would not need a large sample to reject 

the hypothesis  that  a model  specifying uncorre-  

lated measured  variables holds closely in the popu-  

lation. In general,  our  results indicate that if d is 

high, adequate ly  powerful  tests of  fit can be carried 

out  on models  with modera te  N. 

This finding must  be applied cautiously in prac- 

tice. Some applications of  CSM may involve mod-  

els with extremely large d. For  instance, factor  

analytic studies of  test items can result in models 

with d > 2000 when the number  of  items is as high 

as 70 or  more.  For  a model  with d = 2000, a power  

of  0.80 for the test of  close fit (in compar ison  with 

the alternative that ea = 0.08) can be achieved 

with  Nmin --- 23 according to the procedures  we 

have described. Such a s ta tement  is not  meaningful  

in practice for at least two reasons. First, one must  

have N -> p to conduct  pa ramete r  est imation using 

the c o m m o n  ML method.  Second, and more  im- 

portant ,  our  f r amework  for power  analysis is based 

on asymptot ic  distribution theory,  which holds 

only with sufficiently large N. The noncentra l  1 ̀2 

distributions on which power  and sample size cal- 

culations are based probably  do not hold their 

form well as N becomes  small, resulting in inaccu- 

rate estimates of  power  and min imum N. There-  

fore, results that  indicate a small value of  Nmi° 

should be t reated with caution. Finally, it must 

also be recognized that we are considering deter- 

minat ion of  Nmin only for the purpose  of  model  

testing. The magni tude  of  N affects o ther  aspects 

of  CSM results, and an N that  is adequate  for one 

purpose  might not be adequate  for o ther  purposes.  

For  example,  whereas  a modera te  N might be ade- 

quate for achieving a specified level of  power  for 

a test of  overall  fit, the same level of  N may not 

necessarily be adequate  for obtaining precise pa- 

rameter  estimates. 
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Table 5 

Minimum Sample Sizes for Test of Exact Fit for 

Selected Levels of Degrees of Freedom (dr) and 

Power 

Minimum N Minimum N 

df for power = 0.80 for power = 0.50 

2 1,926 994 
4 1,194 644 
6 910 502 
8 754 422 

10 651 369 
12 579 332 
14 525 304 
16 483 280 
18 449 262 
20 421 247 
25 368 218 
30 329 196 
35 30O 180 
40 277 167 
45 258 157 
50 243 148 
55 230 140 
60 218 134 
65 209 128 
70 200 123 
75 193 119 
80 186 115 
85 179 111 
90 174 108 
95 168 105 

100 164 102 

Note. The a = .05, e,~ = 0.0, and e, = 0.05, where e~ is the 
null value of the root-mean-square error of approximation 
(RMSEA) and e, is the alternative value of RMSEA. 

An additional phenomenon of interest shown 

by the results in Table 4 is that the Nmin values for 

the two cases cross over as d increases. At low 

values of d, Nmm for the test of close fit is larger 

than Nm~, for the test of not-close fit. For d > 14, 

the relationship is reversed. This phenomenon is 

attributable to the interactive effect of effect size 

and d on power. The effect size represented by 

the test of close fit (e0 = 0.05 and ea = 0.08) is an 

effectively larger effect size than that for the test 

of not-close fit (e0 = 0.05 and e, = 0.01) at higher 

levels of d but is effectively smaller at lower levels 

of d. 

Let us finally consider determination of Nm~n for 

a third case of interest, the test of exact fit when 

ea = 0.05. Using c~ = .05, Table 5 shows values of 

Nmi n for selected levels of d, for two levels of de- 

sired power, 0.80 and 0.50. These results provide 

explicit information about the commonly recog- 

nized problem with the test of exact fit. Levels of 

Nmm for power of 0.80 reflect sample sizes that 

would result in a high likelihood of rejecting the 

hypothesis of exact fit when true fit is close. Corre- 

sponding levels of Nm~0 for power of 0.50 reflect 

sample sizes that would result in a bet ter  than 50% 

chance of the same outcome. For instance, with 

d = 50 and N -> 243, the likelihood of rejecting 

the hypothesis of exact fit would be at least .80, 

even though the true fit is close. Under  the same 

conditions, power would be greater  than 0.50 with 

N -> 148. As d increases, the levels of N that pro- 

duce such outcomes become much smaller. These 

results provide a clear basis for recommending 

against the use of the test of exact fit for evaluating 

covariance structure models. Our  results show 

clearly that use of this test would routinely result 

in rejection of close-fitting models in studies with 

moderate  to large sample sizes. Furthermore,  it is 

possible to specify and test hypotheses about 

model fit that are much more empirically relevant 

and realistic, as has been described earlier in 

this article. 

For the five empirical studies discussed earlier 

in this article, Table 3 shows values of Nm~n for 

achieving power of 0.80 for the tests of close fit 

and not-close fit. These results are consistent with 

the phenomena  discussed earlier in this section. 

Most important  is the fact that rigorous evaluation 

of fit for models with low d, such as those studied 

by Meyer and Gellatly (1988) and Vance and Col- 

ella (1990), requires extremely large N. Such mod- 

els are not rare in the literature. Our  results indi- 

cate that model evaluation in such cases is highly 

problematic and probably should not be under- 

taken unless very large samples are available. 

C o m p a r i s o n  to O t h e r  M e t h o d s  for  

P o w e r  Ana lys i s  in C S M  

As mentioned earlier, there exists previous liter- 

ature on power analysis in CSM. Satorra and Saris 

(1983, 1985; Saris & Satorra, 1993) have proposed 

a number  of techniques for evaluating power of the 

test of exact fit for a specific model. The methods 

presented in this earlier work are based on the 

same assumptions and distributional approxima- 
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tions as the methods proposed in this article. The 

major difference between our approach and that 

of Satorra and Saris involves the manner in which 

effect size is established. In our procedure, effect 

size is defined in terms of a pair of values, e0 and 

ea, where the latter defines the lack of fit of the 

specified model in the population. These values 

are used to determine values of noncentrality pa- 

rameters for the noncentral 1": distributions that 

are used in turn to determine power. Satorra and 

Saris used a different approach to reach this end 

requiring the specification of two models. Given 

a model under study, they defined a specific alter- 

native model that is different from the original 

model in that it includes additional parameters; 

the alternative model is treated as the true model 

in the population. The effect size is then a function 

of the difference between the original model and 

the true model. In their earlier procedures (Sa- 

torra & Saris, 1983, 1985), it was necessary for the 

user to completely specify the alternative model, 

including parameter  values. In later procedures 

(Saris & Satorra, 1993), it is not necessary to spec- 

ify parameter  values, but effect size is still associ- 

ated with changes in specific model parameters. 

For all of these methods, using the difference be- 

tween the model under study and the alternative 

model, several methods exist (see Bollen, 1989; 

Saris & Satorra, 1993) for estimating the non- 

centrality parameter for the distribution of the test 

statistic under the alternative model. Once that 

value is obtained, the actual power calculation is 

carried out by the same procedures we use (see 

Equation 9). 

Our approach to establishing effect size has sev- 

eral beneficial consequences that differentiate it 

from the approach of Satorra and Saris (1983, 

1985; Saris & Satorra, 1993). First, our procedure is 

not model-specific with regard to either the model 

under study or the alternative model. The only 

feature of the model under study that is relevant 

under our approach is d. Of course, if one wished 

to evaluate power of the test of exact fit for a 

given model versus a specific alternative, then the 

Satorra and Saris procedures would be useful. Sec- 

ond, our procedure allows for power analysis for 

tests of fit other than the test of exact fit. In this 

article we have discussed tests of close and not- 

close fit, along with associated power analyses. 

Finally, it is quite simple in our framework to de- 

termine minimum sample size required to achieve 

a desired level of power. 

Gene ra l i z a t i ons  of  P r o p o s e d  P r o c e d u r e  

There are at least two ways in which the proce- 

dure proposed in this article could be generalized. 

One would be to use the same procedures for 

power analysis and determination of sample size 

using a different index of fit. Our approach uses 

the RMSEA index (e). The critical features of 

the approach involve the capability for specifying 

sensible null and alternative values of e and to 

define the noncentrality parameter  values for the 

relevant t '2 distributions as a function of e, as in 

Equation 8. Those distributions then form the ba- 

sis for power and sample size calculations. The 

same procedure could be used with a different fit 

index as the basis for the hypotheses, as long as 

one could specify noncentrality parameter  values 

as a function of that index. One possible candidate 

for such a procedure is the goodness-of-fit index 

called GFI, reported by LISREL (J6reskog & SOr- 

born, 1993). Steiger (1989, p. 84) and Maiti and 

Mukherjee (1990) showed that GFI can be repre- 

sented as a simple function of F, the sample dis- 

crepancy function value. Given this finding, one 

could express the noncentrality parameter  as a 

function of the population GFI and proceed with 

hypothesis tests and power analyses in the same 

way as we have done, but by basing hypotheses 

on GF!  rather than on RMSEA. We leave this 

matter for further investigation. 

A second generalization involves the potential 

use of our approach in contexts other than CSM. 

There are a variety of other contexts involving 

model estimation and testing that use discrepancy 

functions and yield an asymptotic 1"2 test  of fit. 

These other contexts involve different types of 

data structures and models than those used in 

CSM. Log-linear modeling is a commonly used 

procedure in this category. For such techniques, 

it may be quite appropriate to consider tests of 

hypotheses other than that of exact fit and to con- 

duct power analyses for such tests. The current 

framework may well be applicable in such con- 

texts, as well as in CSM. 

S u m m a r y  

We have stressed the value of CIs for fit indices 

in CSM and the relationship of CIs to a simple 
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f ramework for testing hypotheses about  model fit. 

The f ramework allows for the specification and 

testing of sensible, empirically interesting hypoth- 

eses, including null hypotheses of close fit or not- 

close fit. The capability for testing a null hypothesis 

of not-close fit eliminates the problem in which 

the researcher is in the untenable position of seek- 

ing to support  a null hypothesis of good fit. We 

have also provided procedures and computer  pro- 

grams for power analysis and determination of 

minimum levels of sample size that can be used 

in conjunction with this hypothesis testing f lame- 

work. These procedures can be applied easily in 

practice, and we have included simple SAS pro- 

grams for such applications in the Appendix. 
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A p p e n d i x  

S A S  P r o g r a m s  f o r  C a l c u l a t i n g  P o w e r  a n d  M i n i m u m  S a m p l e  S i z e  

P o w e r  A n a l y s i s  

Following is an SAS program for computing power of tests of fit on the basis of root-mean-square error of approximation 

(RMSEA).  The user inputs the null and alternative values of RMSEA (ec~ and e,), the ~ level, degrees of freedom, and sample 

size. The program computes and prints the power estimate for the specified conditions. 

t i t le  " p o w e r  e s t i m a t i o n  for  c s m " ;  

d a t a  o n e  ; 

a l p h a = . 0 5  ; *s ignif icance level  ; 

r m s e a 0 = . 0 5  ; *nul l  hyp  va lue  ; 

r m s e a a = . 0 8  ; *alt  hyp  va lue  ; 

d = 5 0  ; *deg ree s  of  f r e e d o m  ; 

n = 2 0 0  ; * sample  size ; 

n c p 0 =  ( n -  l ) * d * r m s e a 0 * * 2  ; 

n c p a = ( n -  1 ) * d * r m s e a a * * 2  ; 

if r m s e a 0 < r m s e a a  t h e n  do  ; 

c v a l = c i n v ( 1 - a l p h a , d , n c p 0 )  ; 

p o w e r =  1 - p r o b c h i ( c v a l , d , n e p a ) ;  

e n d  ; 

if r m s e a 0 > r m s e a a  t h e n  do  ; 

c v a l =  c i n v ( a l p h a , d , n c p 0 )  ; 

p o w e r  = p r o b c h i ( c v a l , d , n c p a )  ; 

end ;  

o u t p u t  : 

p r o c  p r in t  d a t a = o n e  ; va r  r m s e a 0  r m s e a a  a l p h a  d n p o w e r  ; r u n  ; 

D e t e r m i n a t i o n  o f  M i n i m u m  S a m p l e  S i z e  

We first discuss the interval-halving procedure used to determine the minimum value of N required to achieve a given level of 

power. Given o~, d, eo, ~,,, and ~,~, we begin by setting N = 100 and computing actual power, ~,,, by methods described in the section 

on power analysis. We then increase N as necessary by increments of 100 until ~,, > ~,~. Let the resulting value of N be called the 

first trial value, N,.  We then know that the desired minimum value of N, called N~n, lies between N,, and (N,, - 100). We define 

a new trial value N,, as the midpoint of that interval and recompute n',,. We then compare n',, to lt,~ to determine whether N,. is too 

high or too low. If ~,, > ~j, then N,, is still too high, in which case we set the new N,, as the midpoint of the interval between N,. 
and (N,, - 100). On the other hand, if ~,, < ~j, then N,. is too low, and we set the new N,, as the midpoint of the interval between 

N,, and N,. This process is repeated, setting each new irial value of N as the midpoint of the appropriate interval above or below 

the current trial value, until the difference between 7r,, and ~,~ is less than some small threshold, such as 0.001. The resulting value 

of N can then be rounded up to obtain Nmin. 
Below is an SAS program that follows the procedure just described for computing minimum sample size for tests of fit on the 

basis of the R M S E A  index. The user inputs the null and alternative values of RMSEA (e~, and e,), the ~ level, degrees of freedom. 

and desired level of power. The program computes and prints the minimum necessary sample size to achieve the desired power. 

t i t le  " C o m p u t a t i o n  of  ra in  s a m p l e  size for  tes t  of  f i t" ;  

d a t a  o n e  ; 

r m s e a 0 = . 0 5  ; *nul l  hyp  r m s e a  ; 

r m s e a a = . 0 8  : *air hyp  r m s e a  ; 
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d = 2 0  ; *degrees  of  f r e e d o m  ; 

a lpha= .05  ; *alpha level  ; 

p o w d = . 8 0  ; *des i red  p o w e r  ; 

*init ial ize values  ; 

p o w a = 0 . 0  ; 

n = 0 ;  

*begin loop  for  finding initial level of  n ; 

do  until  ( p o w a > p o w d )  ; 

n + 100 ;  

ncp0 = ( n -  1)*d*rmsea0**2 ; 

n c p a = ( n -  1 )*d*rmseaa**2  ; 

* c o m p u t e  p o w e r  ; 

if r m s e a 0 > r m s e a a  then  do ; 

cval = c inv(a lpha ,d ,ncp0)  ; 

powa  = probchi (cva l ,d ,ncpa)  ; 

end  ; 

if r m s e a 0 < r m s e a a  then  do ; 

cval = c i n v ( 1 - a l p h a , d , n c p 0 )  ; 

powa  = 1 - p r o b c h i ( c v a l , d , n c p a )  : 

end  ; 

end  ; 

* begin  loop  for interval  halving ; 

dir = - 1 ; 

n e w n = n  ; 

i n t v = 2 0 0  ; 

p o w d i f f = p o w a - p o w d  

do until ( p o w d i f f < . 0 0 1  ; 

i n tv= in tv* .5  ; 

n e w n +  dir*intv*.5 ; 

*compu te  new p o w e r  

n c p 0 = ( n e w n -  1)*d*rmsea0**2 ; 

ncpa = ( n e w n -  1 )*d*rmseaa**2  ; 

*compu te  p o w e r  ; 

if r m s e a 0 > r m s e a a  then  do ; 

cval = c inv(a lpha ,d ,ncp0)  ; 

p o w a  = probchi (cva l ,d ,ncpa)  ; 

end  ; 

if r m s e a 0 < r m s e a a  then  do ; 

cval = c i n v ( 1 - a l p h a , d , n c p 0 )  ; 

powa = 1 - p r o b c h i ( c v a l , d , n c p a ) ;  

end  ; 

p o w d i f f =  a b s ( p o w a -  powd)  ; 

if p o w a < p o w d  then  d i r =  1; else d i r = -  1 ; 

end  ; 

m i n n = n e w n  ; 

ou tpu t  ; 

p roc  pr int  d a t a = o n e ;  

var  rmsea0  rmseaa  powd  alpha d minn  powa  ; run ; 
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