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 2 

 

 

���	��	� 

Estimation of statistical power and sample size is a key aspect of experimental design.  

However, in metabolic phenotyping, there is currently no accepted approach for these tasks, 

in large part due to the unknown nature of the expected effect. In such hypothesis free 

science, neither the number or class of important analytes, nor the effect size are known� ��

������. We introduce a new approach, based on multivariate simulation, which deals 

effectively with the highly correlated structure and high dimensionality of metabolic 

phenotyping data. First, a large data set is simulated based on the characteristics of a pilot 

study investigating a given biomedical issue. An effect of a given size, corresponding either to 

a discrete (classification) or continuous (regression) outcome is then added. Different sample 

sizes are modeled by randomly selecting data sets of various sizes from the simulated data. 

We investigate different methods for effect detection, including univariate and multivariate 

techniques. Our framework allows us to investigate the complex relationship between sample 

size, power and effect size for real multivariate data sets. For instance, we demonstrate for an 

example pilot data set, that certain features achieve a power of 0.8 for a sample size of 20 

samples, or that a cross validated predictivity �
�
	 of 0.8 is reached with an effect size of 0.2 

and 200 samples. We exemplify the approach for both Nuclear Magnetic Resonance and 

Liquid Chromatography – Mass Spectrometry data from humans and the model organism 
��

������.  
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 3 

��	����	����

Ethical considerations and economic constraints urge scientists and physicians to 

properly design their experiments. In the commonly used inferential framework of null 

hypothesis significance testing (NHST), multiple observations are analyzed and summarized 

through a model and a respective test statistic, from which a ������ can be estimated. 

Different types of error can occur in NHST based inference.
1
 Of particular interest are the 

significance level α, that represents the risk of falsely identifying truly negative results as 

statistically significant, and the parameter β that represents the risk of falsely rejecting truly 

positive results as non significant. They are also referred as type I (false positive) and type II 

(false negative) errors, respectively.  

Statistical power analysis relates sample size, effect size and significance level to the 

chance of detecting an effect in a dataset. In inferential statistics, the null hypothesis H0 

represents the absence of an effect, such as a relationship or difference between the measured 

phenomena, whereas the alternative hypothesis HA represents the existence of an effect. The 

power is the probability 1 β of flagging a true effect as statistically significant: P(reject H0|HA 

is true). For study design purposes, these analyses are usually performed by fixing power at a 

desired level (usually 80 90%, thus leading to false rejection of true effects in 10 20% of the 

cases), and estimating the sample size required, given an effect size, significance level and 

particular test to be used.
2
 In power analysis, the effect size corresponds to the quantitative 

measure of the strength of a phenomenon relative to the variation in the population (���� how 

different two groups of samples are relative to the within group variance). The stronger the 

effect, the more easily it will be detected, thus requiring a smaller number of samples to meet 

similar power requirements.  

Statistical power analysis should be performed before the beginning of a study. It is a 

safeguard that estimates the probability of obtaining meaningful results, and thus success of a 

study.
3,4

 Pilot studies are the primary source of information for power calculations, giving 

information on variable distributions and effect sizes.
5,6

 A pilot of 20 samples has been 

suggested as sufficient to perform robust power analysis.
7,8,9

 The protocol used in the pilot 

and main studies should be identical. If pilot data are not available, useful information might 

be retrieved from relevant literature, such as epidemiological studies. Despite some 

methodological debates about �� ���������� power calculations,
10

 these studies are useful to 

estimate variation within the population and thus to aid future experimental design.
2
 As long 
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 4 

as the sampling and analytical protocols follow standard operating procedures, data can be 

assumed to be reproducible. It is, for instance, possible to use the control group of a large 

cohort to evaluate an effect not associated to the initially studied effect. 

Metabolic phenotyping is being increasingly applied in clinical and epidemiological 

studies,
11,12

 yet meaningful statistical power calculations in this field are hard to accomplish. 

In common with other ‘omics’ techniques, metabolic phenotyping is normally used in an 

untargeted, hypothesis free, top down approach, without prior knowledge of the important 

molecular markers (in this case, metabolites). However, some challenges are unique to the 

metabolic field. For example, the number of observed metabolites is unknown ��������� and 

highly dependent on the analytical platform and the dynamic range of metabolite 

concentrations, considerations that do not apply to genomics. The data are characterized by 

high dimensionality, with typically hundreds of samples but thousands of variables
13

. Further, 

there is strong multicollinearity between variables, arising both from technical sources 

(different signals from same chemical entities, for e.g. adducts in mass spectrometry) but also 

due to the inter metabolite relationships comprising the metabolic network.
14,15

 Since in these 

studies thousands of variables can be surveyed at once, multiple hypotheses testing 

corrections must be performed, for example by controlling the family wise error rate (FWER) 

or false discovery rate (FDR).
16–18

 These issues complicate the task of designing an 

experiment with the adequate sample size to precisely detect and estimate the magnitude of a 

metabolic effect.  

Metabolic phenotyping studies deal with both discrete (classification) and continuous 

(regression) outcome variables. They usually aim at both sample classification where the 

focus is on prediction, and the identification of candidate biomarkers, with a focus on variable 

selection/importance. Despite recent efforts, there is still no widely accepted method for 

sample size determination in metabolic phenotyping. Power analysis is often avoided and 

sample size determination becomes driven by sample availability or is based on pilot data or 

extrapolated from the literature. Approaches developed in other fields either preclude the 

hypothesis free approach, or provide a limited investigation of effect and sample sizes.
19

 

Moreover, they typically do not account for the strong correlation structure seen in metabolic 

phenotyping data arising both from the fact that multiple signals can belong to the same 

compound and the fact that metabolites in shared metabolic pathways are often not 

independent of each other. The Data driven sample size determination (DSD) algorithm
20

 was 

developed to be used with small pilot study data and for a specific set of univariate analyses, 
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 5 

but does not account for correlation in the data. Another algorithm, MetSizeR
21

 offers 

calculations for some multivariate latent variable models, which are rarely used in metabolic 

phenotyping. Other approaches have been derived for other “omics”
19,22

; however, they rely 

on an �� ������ estimation of the effect size, independent from the variables under 

consideration. Trutschel et al. recently exemplified how pilot study data, including technical 

replicates and quality controls, can optimize experimental design, by evaluating the different 

sources of variance.
23

 Recently, a sample size determination module has been implemented in 

MetaboAnalyst 3.0,
24

 based on the Bioconductor package Sample Size and Power Analysis 

developed for genomics
25

 but this approach doesn’t take into account correlation between 

variables and relies on an a concept of summary average power for the dataset
24

. However, 

there is no reason to expect that each variable exhibits the same power, and since for most 

studies no preconception about which variables will be affected exists, it is preferable to set a 

study sample size to a number where the majority of variables reach a minimum level of 

power.  

In this study, we introduce a new approach, which explicitly incorporates the 

correlations between variables characteristic of metabolic datasets, to investigate the 

relationship between statistical power, sample and effect size, and obtain estimates of the 

required sample size for metabolic phenotyping studies. Based on pilot data, we simulate new 

samples with marginal distributions and correlation structure similar to the ones observed in 

the pilot data. These can be used to study the sensitivity of power and other metrics to sample 

size. The data are simulated using a multivariate log normal distribution fit to the pilot data, 

which allows us to maintain the long tails and strong correlations that are typically seen in 

metabolic studies. Then, the desired effect size is introduced in the simulated dataset, 

depending on the type of outcome variables used in the data set and the statistical method 

intended for data analysis. This procedure is repeated multiple times with samples randomly 

drawn from the simulated data and the outcomes of the statistical analyses are stored and used 

to derive estimates and confidence intervals of performance statistics (e.g. true positive, false 

negative rates), from which power and other quantities of interest may be calculated. 

Different multiple hypothesis testing corrections can be used and their effect on power and 

efficiency (���� in controlling FDR) benchmarked.  

Our proposed method provides a straightforward way to perform power analysis and 

sample size determination in metabolic phenotyping studies using any spectroscopic platform 

(e.g. nuclear magnetic resonance (NMR) or mass spectrometry (MS)). It captures the 
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 6 

dependence structure between variables and allows a synchronized investigation of how 

sample and effect sizes affect power for each variable individually, or for multivariate 

approaches, identification of significant features or sample classification and prediction 

capability. Experimental design in metabolic phenotyping is performed by extracting the 

effect size from pilot data and determining the corresponding sample size to reach the desired 

level of power, using a specific statistical analysis method strategy and applying stringent 

multiple hypothesis testing corrections. �

��	
��� 

��	����	���This study uses data sets published and described elsewhere.  


������������������ High resolution magic angle spinning (HRMAS) 
1
H NMR experiments 

were carried out on a Bruker Avance II spectrometer operating at 700MHz. The data set is 

composed of 33 spectra of entire wild type 
��������.
26,27

 16k data points with 512 scans 

were acquired using a spectral width of 8503Hz, for a total acquisition time of 

approximately 25 minutes. 1
H HRMAS NMR spectra were phased�and referenced to the β 

proton signal of alanine (δ = 1.48 ppm) using Topspin 2.1� (Bruker GmbH, Rheinstetten, 

Germany). Residual water signal (4.61 to 4.99ppm) was�excluded. Spectra were divided into 

0.001 ppm wide bins over the chemical shift range [0; 10ppm] using the AMIX software 

(Bruker GmbH). 

�����������������������
�������������������� 
!���������� 1861 human urine spot samples 

from a community based cohort of middle aged adults (55 65) in the U.S., measured by 

standard�
1
H NMR.

28
 The NMR pulse sequence and spectra acquisition parameters are detailed 

elsewhere.
29

  

� �"�#$� %����� &���������� ������ ����� ����� AIRWAVE is a cohort study of police and 

emergency workers that has been designed to evaluate the effects of portable communication 

devices on health.
30

 951 standard human plasma samples were profiled by reversed phase 

Ultra Performance Liquid Chromatography Mass Spectrometry (UPLC MS), with an 

ACQUITY UPLC�and�Xevo G2 S oaToF MS in positive electrospray ionization mode (both 

Waters Corp., Milford, MA, USA). �

�

������������ Different preprocessing steps were used on the data sets to accommodate 

analytical characteristics. 


�� ������� ����� ���� Statistical Recoupling of Variables (SRV) was used to identify NMR 
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 7 

peaks in spectra.
31,32

 Recoupling parameters were determined empirically, to obtain 

satisfactory identification of metabolic features, based on previous biochemical 

characterization of the data set (singlet base width=0.01ppm, bucketing resolution=0.001ppm, 

correlation threshold=0.8).  

�� 
���������� 24 metabolites (creatinine, creatine, D glucose beta, alanine, lactate, acetate, 

succinate, citrate, dimethylamine, trimethylamine, betaine, glycine, fumarate, formate, 1 

methylnicotinamide, N dimethylglycine, trigonelline, hippurate, D lactose, acetone, D 3 

hydroxybutyric acid, acetoacetic acid, benzoic acid and ethanol) were quantified by Bruker 

BioSpin GmbH, using proprietary quantification technology. The data set was normalized by 

the quantified creatinine values and the other 23 metabolites used in the power analysis. 

� �"�#$�����������MS features where detected using Progenesis QI (Nonlinear Dynamics). 

Using pooled quality control (QC) samples injected periodically throughout the analytical run, 

and a QC dilution series, unreliable features were removed. Only features with a relative 

standard deviation below 20% in QC samples, and a Spearman correlation to the dilution 

factor higher than 0.9 and were kept. For the power analysis, a small number of remaining 

negative value artefacts were set to zero.  

�

��	�� ������	���� The workflow of the simulation and power estimation process is 

summarized in SI Figure 1. To efficiently simulate the long tailed distributions and 

correlations present in biochemical measurements, pilot data were log transformed before 

simulation and modeled in the log space as a multivariate normal distribution. An offset was 

added to avoid negative values prior to log transformation. A total of 5000 simulated profiles 

were sampled from a multivariate normal distribution with mean and covariance estimated 

from the log transformed pilot data using the mvnrnd function from MATLAB
TM

 (Matlab 

R2014a, Mathworks, Natick, MA). Data were then exponentiated to the original scale, and the 

offset was subtracted to generate the final simulated data set corresponding to a multivariate 

log normal distribution. A small number of remaining negative values were set to zero (for 

example, in the 
�� ������ data set, less than 5% of the total values were affected, with a 

maximum change in the mean of any variable of 0.72%). These negative values result from 

the use of a non truncated normal distribution. The same simulation process was performed 

setting the off diagonal elements of the covariance matrix to zero to study the effect of 

correlation on power analysis and sample size determination. 

�

����������������	������� Sample size was investigated by selecting data sets of various sizes 
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 8 

from the simulated data. The effect was introduced in different ways, depending on the nature 

of the intended statistical analysis. In the case of a two group comparison (the classification 

case), two similar datasets were generated. An effect of a given size was then applied to one 

of them, on a single predetermined variable and its highly correlated partners. Standardized 

effect sizes (ES) were implemented by adding to each selected variable '�� the product of the 

standard deviation of the variable σ and a number $�, (�≤�$�≤�) (in steps of 0.05), as shown 

in Equation 1. To preserve the correlation structure in the effect, the same effect was 

implemented on all variables showing a high Pearson correlation (r> 0.8) to the effect 

variable. 

Equation 1:  

For the regression case, a single data set was generated, and an effect of a given size was 

applied to a single predetermined variable. The effect was introduced for the selected variable 

'��by simulating an outcome variable 	 according to equation 2. The effect size β is chosen in 

the interval [0, 1] (with increments of 0.05). Normally distributed random noise was added 

(mean=0, standard deviation=1) to mimic biological and technological variability. 

 

Equation 2:   

 

For each combination of sample and effect size, 100 repeats were conducted using different 

randomly selected subsets of the simulation, to generate standard errors on the mean or 95% 

confidence intervals for the obtained results.  

�

����� ��������� The sample and effect sizes were then investigated in terms of prediction 

accuracy and identification of candidate biomarkers.  

For the identification of statistically significant variables in the classification case, both 

univariate and multivariate approaches were considered. For the univariate case, a one way 

analysis of variance (ANOVA) was used to investigate the intra and inter group variances, 

and compute a corresponding ������ to identify statistically significant variations. Multiple 

hypothesis testing corrections were then applied to control type 1 error. For � hypothesis (���� 

number of tests performed), the Bonferroni (equation 3), Benjamini Hochberg (Equation 4) 

and Benjamini Yekutieli (Equation 5) procedures
16–18

 are defined as follows: 

Equation 3: α’= α /� 

�' →
�' + $� × σ

	 =
�' × β +ε ε ≈ *(0,1)
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 9 

Equation 4: α '= max
� �

� ≤
�

�
α

 

 
 

 

 
  

Equation 5: α '= max
� �

� ≤
�

�
1

�
�=1

�

∑
α

 

 

 
 
 
 

 

 

 
 
 
 

 

Here, α is the family wise error rate or false discovery rate, α’ is the adjusted per test 

significance level and �� the p value of the �+��� most significant variable. By default the 

Benjamini Yekultieli procedure was used. We advocate its use for metabolic phenotyping 

studies, given its ability to deal with correlated data under negative dependence. The variables 

highlighted as significant were then compared to the variables selected to show effects in the 

simulation. This allows the identification of true positives (TP, variables that were selected 

and identified as significant), true negatives (TN, variables not selected and not significant), 

false positives (FP, variables that were not selected but identified as significant) and false 

negatives (FN, variables which were selected, but not significant).  

In the regression scenario, the outcome variable Y was regressed on each variable to obtain 

estimated regression coefficients β�, and the corresponding ������ enabling identification of 

variables significantly associated to the outcome. False positive rates were controlled by 

multiple hypothesis testing corrections as above. True/false positives/negatives were 

identified by comparing the variables selected in the simulation to those deemed significant 

according to the regression.  

For all univariate approaches, the significance threshold (FWER or FDR) was set to 0.05. The 

numbers of true/false positives/negatives were summarised in confusion matrices
33

 from 

which all relevant performance statistics could be calculated. Performance statistics used were 

true negative/positive rates, false negative/positive, power and false discovery rates 

(TPR=Power=TP/(TP+FN), TNR=TN/(FP+TN), FPR=FP/(FP+TN), FNR=FN/(TP+FN), 

FDR=FP/(FP+TP)). In the univariate case such statistics refer to the ability to detect 

important variables. 

In addition to univariate analysis, multivariate analyses were implemented. An Orthogonal 

Partial Least Squares regression (O PLS)
34

 was performed to discriminate samples belonging 

to the 2 simulated groups in the classification case. The number of components was 

determined as the smallest number such that the �
�
	 predictive goodness of fit parameter did 

not increase by more than 5% on adding a subsequent component.
35

 A confusion matrix was 

then computed to assess classification performance, considering the initial Y classification 
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 10

vector and the predicted Y obtained from the O PLS model.  

 

������� ����� ��	�����	���� ��� ���
� �������� ������ ��� ����	� ��	��� To calculate the 

minimum sample size required to achieve adequate power in the 
���������pilot data set, we 

first computed observed Cohen’s � effect sizes for each variable�(Equation 6), defined as the 

difference of the mean of the variable in the two groups divided by a pooled standard 

deviation.
36

 

Equation 6: ,  

 

Here � represents the pooled standard deviation (Equation 6), σ1 and σ2 the standard 

deviations of the considered variable in the two groups under study, and �)�and��� the number 

of samples per group. 

The TPR and FNR were then computed for each variable in the pilot data, using the observed 

effect size �. For this �, we identified the smallest sample size such that the upper 95% 

confidence bound of the FNR was below 0.2 (corresponding power >0.8). This value was 

then considered as the necessary sample size, to achieve a statistical power of 0.8 and 

consequently identify a least one statistically significant variable at a significance threshold of 

0.05 using the Benjamini Yekutieli correction. Sample sizes determined for each variable 

were represented with a colour code on a typical spectral profile (Figure 3). The overall 

workflow is illustrated in SI Figure 1. 

The code is implemented in MATLAB
TM

 (Matlab R2014a, Mathworks, Natick, MA) and 

freely available in an online repository (https://bitbucket.org/Gscorreia89/power calculations). 

 

 ����	��

We propose a simulation approach based on pilot data to investigate power and sample size 

effects in untargeted metabolomic data. We first demonstrate our method using a pilot data set 

of 33 
�� ������ 
1
H NMR spectra. Later, we apply the approach to two larger data sets 

generated with NMR and LC MS platforms. 

������	��������������������!��������	����	
�������	
��	������	����� We compared 

the simulations using multivariate normal or multivariate log normal distributions to the pilot 

data set. While the mean and standard deviations of both approaches showed little difference, 

� = 1, −
2,

�
� = 1� −1( ) 1

2σ +
2� −1( ) 2

2σ
1� +

2� − 2
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 11

the skewness and kurtosis of the log normal were better matched to those of the pilot data. A 

PCA analysis indicated a good fit of data simulated using both approaches to the multivariate 

envelope of the pilot data (SI Figure 2A). Overall, the log normal simulation provided a better 

match with the long tailed distributions typically seen in metabolic data, and were therefore 

used in all subsequent simulations. 

Next we investigated the effect of correlation structure (i.e. the presence or absence of 

off diagonal elements in the covariance matrix). Figure 1A shows a scores plot from a PCA 

model trained on data simulated without correlations. The pilot data, and data from a 

simulation with correlations are projected on to the same model. Clearly, the simulation using 

a non zero correlation structure represents the pilot data more faithfully than that where 

correlations are not present. SI Figures 2B and 2C confirm that the correlation matrices 

resulting from the pilot data and the data simulated with correlations exhibited similar 

patterns of correlation, demonstrating that the simulation process can encapsulate the 

dependency structure among metabolic variables.  

 

������	��������������	������	������������������ Data sets of different sizes were constructed 

by randomly selecting samples from the large simulations (n=5000). For each sample and 

effect size, 100 data sets were sampled to allow estimation of the mean and variability of 

performance statistics. Both discrete (classification) and continuous (regression) outcome 

variables were considered. In the classification case, one of the groups was shifted relative to 

the other by randomly selecting a single variable and adding a given fraction of its standard 

deviation. For the regression case, the effect was implemented by modifying the regression 

coefficient of the variable under consideration. Figure 1 illustrates the discrete case, using all 

variables, for an effect size of 0 (Figure 1B) and 0.6 (Figure 1C). The effect is represented in 

a 3 dimensional PCA score plot, where the blue population is unaffected and the red is 

progressively shifted away. In Figure 1B, the two groups and their Hoteling’s T
2
 ellipses are 

superimposed. With an effect size of 0.6 (Figure 1C), the two data point clouds are already 

well separated in the PCA plot. 

�

����� ��������� ������ �������	� ���������� Investigating the changes induced by different 

sample and effect sizes throughout the data set allows the identification of potential variables 

of interest. Different variables will exhibit different levels of variation in the population, 

leading to different minimum sample sizes to detect an effect. This is illustrated for the 
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 12

regression case in SI Figure 3. At a sample size of 200 or effect size of 0.5, one can easily 

select variables presenting a strong and early decrease of the FNR for which an effect can be 

detected. There were clear differences across the variables in the effect size that can be 

detected for a given sample size. For example, at a sample size of 100, there is 0.8 power to 

detect effect sizes of 0.44, 0.4 and 0.38 for the metabolites valine, glyceryl of lipids and 

unsaturated lipids respectively. 

 

A more comprehensive view for a single variable is given in Figure 2 where TPR and FNR 

are illustrated as a function of sample and effect sizes. The shape of the landscape allows the 

identification of the minimal sample size to detect a given effect size or the identification of 

the detectable effect size for a given sample size. For example, at an effect size of 0.5 and a 

sample size of 100, a TPR of 0.6 and FNR of 0.2 (0.8 power) is reached.  

 

��������������	�����	���� To exemplify how this method can be used to determine sample 

size using the two classes in the pilot data, the power and sample size results were illustrated 

on the NMR spectrum. First, the observed effect size for each variable is measured using 

Cohen’s �. We then used the simulations to identify the smallest sample size giving a FNR 

below 0.2. This value is color coded on a typical NMR spectrum, as shown in Figure 3 

presenting both the entire NMR spectrum and expansions of the aromatic, aliphatic and sugar 

regions. Panels E and F illustrate the differing sample sizes required to attain different powers 

for an aliphatic valine doublet (0.98 1.00ppm, Hγ). At sample size of 200 a power of 0.8 is 

achieved, but a sample size of 300 is required to obtain 0.95 power. We note that signals 

found to change in previous biological studies on this data set correspond to a low minimum 

sample size of around 20 samples (primarily lipid, glucose, glycerol and amino acid signals). 

Similar results were obtained for the regression case. 

 

"����	� ��� �����	����� �������	����� 	��	���� ����	����� To test the effect of correlations 

between variables on the power analysis, we compared the simulations using either the full 

covariance matrix estimated from the pilot data or a diagonal covariance matrix containing 

only the variances of each variable (no correlation). When variables are correlated, the 

effective number of independent variables is reduced, and therefore we might expect to see an 

increase in power. Results are presented in SI Figure 4 (A and B), for the regression case. As 

expected, the introduction of correlation seems to induce a gain in statistical power. However, 

these results have to be interpreted carefully, as in the simulation with correlations the number 
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 13

of positives is higher than the non correlated case (because all variables highly correlated 

(r>0.8) to the chosen variable are considered to be positives). We also examined the effect on 

power of three commonly used multiple testing corrections when correlation is present. 

Corrections appeared in the expected order (SI Figure 4 C and D), with an increase of FNR 

going from no correction, through Benjamini Hochberg correction, then Benjamini Yekutieli 

correction and finally to the conservative and relatively low power Bonferroni correction. 

 

�������	���� 	�� �	
�� �	�	��	����� ��	
���� ���� ��	�� ��	��� To illustrate the general 

applicability of the method,�sample size determination and power analysis were performed in 

several different contexts corresponding to common metabolic phenotyping situations. We 

examined different statistical methods (���� O PLS) and different profiling platforms (e.g. 

UPLC MS). Figure 4A shows the performance of an O PLS model discriminating two groups 

for the 
�������� pilot data. The predictive capacity of the model, represented by the cross 

validated goodness of fit parameter �
�
	, is shown in Figure 4B. �

�
	� was negative for low 

sample and effect sizes and, as expected, rose with both of them. In this case, half of the 

variables were randomly selected to implement the effect. A �
�
 above 0.8 is reached with an 

effect size of 0.2 and a sample size of 200 samples. A further NMR example illustrating the 

case of a targeted assay is presented in Figure 4C. Here, 24 metabolites were quantified from 

1
H NMR spectra of human spot urine samples from the ARIC cohort. The FNR is represented 

for each variable with respect to effect and sample size, for the regression case. Here it is easy 

to see that, for example, with 200 samples, one is able to detect an effect size of 

approximately 0.35 for most variables. Similar results are presented for a set of human sera 

from the AIRWAVE study profiled by UPLC MS in Figure 4D, with a simulated effect size 

of 0.5, also for the regression case. No variable reaches a power of 0.8 for a sample size of 50 

(red), only 54 for a sample size of 100 and all variables exhibit a power greater than 0.8 for a 

sample size of 250 samples. These examples exhibit the general utility of the simulation 

method in exploring power and sample size in many diverse situations. 

 

�����������

�

Robust methods for power analysis and sample size determination in metabolic 

phenotyping have been needed for many years. There are many reasons why these issues have 

not been tackled earlier, the main one relating to the intrinsic complexity of typical metabolic 
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profiles, which is distinct from more conventional data. A key point is that since the approach 

is hypothesis free, we do not know size of the effect we are looking for or which metabolites 

might be affected. Secondly, the variability of metabolite levels, even in standard biofluids 

from normal healthy human populations, is not well characterized, let alone their levels and 

stability in disease states. Both of these reasons make it imperative to obtain pilot data in 

advance of designing larger studies. Further, each assay imprints its own statistical 

characteristics, such as noise levels and detection limits, on our ability to detect effects. In 

many situations, we detect chemically unidentified signals, while some signals may only 

appear in particular cohorts or pathophysiological scenarios. Finally, the relative youth of this 

technology has often led to the investigation of historical cohorts of samples that have been 

collected for other purposes such as GWAS rather than �� ������ applying rigorous 

experimental design appropriate for metabolic investigation.  

We designed a new flexible approach to deal with power analysis in metabolic 

phenotyping data sets. It consists of three steps: 1) modeling the distribution of pilot study 

data, 2) introducing an artificial effect, and 3) deriving estimates and confidence intervals for 

performance metrics. In addition, confounding effects, such as batch effects, can be easily 

accommodated. The approach is particularly attractive when using large population studies 

performed with standardized protocols, to inform sample size determination in future studies. 

To our knowledge, our method is the only one that models between variable 

correlations from pilot data. Concerning correlation between variables, high correlation seems 

to increase statistical power, and power is also affected when adjustment for confounders has 

to be performed. It is also not always clear how FWER and FDR correction methods handle 

the correlation in the data, and their consequences on power and FDR control. We argue that 

the greatest advantage of modeling correlations is the fact that now we can meaningfully 

benchmark and evaluate the power of multivariate methods, which are frequently used in 

metabolic phenotyping studies. Here, we presented a small example using a multivariate 

analysis method frequently used in metabolomic applications, Partial Least Squares.
37

 We 

plan to study the issue of power analysis for commonly used multivariate techniques in a later 

paper.   

In many situations, a high false positive rate can be more dangerous and costly than 

low power. Despite most of our examples focusing on power calculations or sample size 

determination to maximize power, other quantities and error types can be obtained equally 

easily with this approach. We performed the power analysis with the traditionally used NHST 

framework, but the methodology is not limited to classic hypothesis testing, and can be 
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quickly adapted to perform power calculations in different ways (e.g., to derive how many 

samples would be necessary to estimate an effect to a desired level of precision). 
38

 

We envisage that statistical power in a metabolic phenotyping study depends on a 

combination of analytical method variability and selectivity with the underlying phenotypic 

variability of the population from which the study samples will be drawn. For effective power 

calculations, pilot studies should be designed to obtain good estimates of variable 

distributions and covariance structure.  

The applications presented in this study are meant to illustrate the capacity of this 

approach to evaluate sample size and power analysis in metabolic phenotyping in different 

situations, from a specifically designed pilot study for a particular aim, to data reuse. The 

latter will be increasingly relevant, with the establishment of open data repositories like 

MetaboLights
39

. Figure 3 exemplifies how pilot study data variability and estimated effect 

sizes (based on the Cohen’s d pooled standard deviation) can be used to inform study design 

and the difference in power and sample size requirements between variables. We provided 

two application examples from large human cohort studies, one profiled with NMR and the 

other with MS, with some approximate numbers for the amount of samples that might be 

needed to perform a study in a healthy free living population.   

Metabolic phenotyping has already demonstrated its potential for biomedical studies, 

being the cornerstone of entire research programs. Ethical and economic issues force 

scientists and physicians to provide reliable power analysis to secure funding. That is why 

suitable approaches had to be developed to address this issue. Here we provide a new, 

comprehensive and efficient approach to perform sample size determination and power 

analysis in metabolic phenotyping studies based on NMR or MS data that clearly exceeds the 

capacities of previously developed methods. It is clear that this approach is not restricted to 

metabolic phenotyping studies and is applicable for other types of data. We suggest that 

metabolic phenotyping study designs, particularly for grant applications, should from now on 

include sample size estimations based on available pilot data, to justify inclusion requirements 

and ensure meaningful experiments and results. 

Page 15 of 29

ACS Paragon Plus Environment

Analytical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 16

��#�����������	� 

BB is supported by the Fédération pour la Recherche Médicale, the Société Française 

d’Anesthésie et Réanimation, the Académie Nationale de Médecine, the Association de 

Néonatologie de Port Royal and the City of Lyon. GC is supported by the Imperial College 

Stratified Medicine Graduate Training Programme in Systems Medicine and Spectroscopic 

Profiling (STRATiGRAD). TE acknowledges support from the EU COSMOS project (grant 

agreement 312941) and the EU PhenoMeNal project (project reference: 654241). We thank 

Drs Bénédicte Elena Herrmann, Jean Giacomotto, Laurent Ségalat, Pierre Toulhoat and Prof. 

Lyndon Emsley for providing the C. elegans data set. We would like to thank Bruker BioSpin, 

GmbH, Rheinstetten, Germany for metabolite quantification. This research has been 

conducted using the Airwave Study RTB Resource. The Airwave Health Monitoring Study is  

funded by  the Home Office (grant number  780  TETRA) with  additional support  from the  

National Institute  for Health  Research  (NIHR),  Imperial  College  Healthcare  NHS  Trust 

(ICHNT)  and  Imperial College Biomedical  Research  Centre  (BRC). We thank all 

participants in the Airwave Study for their contribution. We also thank the Institute for 

translational medicine and therapeutics (ITMAT). 

��	
�����	���	����$�BB, GC and TE designed the study, performed computational work 

and wrote the paper. JN and EH contributed expert advice to the project. AT and JH designed 

the ARIC cohort. PE and AV designed the AIRWAVE cohort. JP and ML performed the 

mass spectrometry analysis and preprocessing for the AIRWAVE samples.�

�����	����������	����

Additional information as noted in text. This material is available free of charge via the 

Internet at http://pubs.acs.org.  

�

Page 16 of 29

ACS Paragon Plus Environment

Analytical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 17

 ���������

%&'�� ������(�)�*�������(�"�������������	
�����������	����	
��&+,,(����%-.'(�.+/01&-��

%/'�� "��(�)������	�	���/--,(�����%/'(�,-+0,&,��

%,'�� ������2�	��(�2�*������������(�)��"�*������	��(���*������	��(�3�*�4����(�4����
���

�������������������/-&&(����%/'(�,-50,&1��

%.'�� �����(�6�*����#���(�2�*�������(�3����*�3
���(�������������
	������������/-&/(�����

%&'(�78�085���

%1'�� 9���3��:������(�"�*�;������(�9�� ����������������	���� �����!���"�����#��/--/(��$�

%.-'(�,,0,5��

%5'�� 9���3��:������(�"�� �*� �����(������*�;������(�9�*�<�
��(�=��%����&�� �����

/--&(��'�%,'(�/8+0/+1��

%7'�� 2��	
(� ��9������������/--&(�((�%,'(�&870&+,��

%8'�� ;�:���!3���#�(�>�����)��%��*������������/-&&(���%.'(�/8+0/+8��

%+'�� =���(����?�*����(����"�*�=��
��(����)�������������&+++(��#�%/&'(�/8,&0/8.1��

%&-'�� ;�����(�)����*�;�����(�����������������/--&(�((�%&'(�&+0/.��

%&&'�� ���
�����(�)��>�*�2�����(�)��@�*�;�����(�"��+��	�	��
��,����,	�������	�)���"�	���

������&+++(����%&&'(�&&8&0&&8+��

%&/'�� ���
�����(�)��>�*�;�����(�"�*�>�����(�)����*�����(����=�*�3�#�	�(�A�*�2�����(�)��

@�� ������/-&/(�'���%7./.'(�,8.0,+/��

%&,'�� B������(� ��"�����)��&��
	���	��)�	
�����-�����������	��(������	���C������	��

�����*�&+5&��

%&.'�� @�����(�6�*������(���!"�*�@���(���*�B�	��(� ��;�*�3���(�)�*�;�����(�)�*�

B����
�(�@�*�<������(���*�2�����(�)��@�*�;�����(�"�*����
�����(�)��������������

/--1(����%1'(�&/8/0&/8+��

%&1'�� B�����(�B��)�*�����	��(�9�*�"�����(�2�*�3���
��	(����%����	��	��������/-&&(����%+'(�

.,./0.,.8��

%&5'�� ����(�;��.�
�
���������������/--7��

%&7'�� B��:�����(�?�*�;��
���(�?��%������������	
��"�&++1(�(��%&'(�/8+0,--��

%&8'�� B��:�����(�?�*�?�#�	����(���������������/--&(����%.'(�&&510&&88��

%&+'�� 4����((�)����*�A��������(����*����%��"�	������/--5(�(�%&'��

%/-'�� B�����(�B��)��������������/-&,��

%/&'�� �����������(�<�*�<�����(����@�*�4��(�?�*�<�����
�(�=����*�B�����(�2��"���

"�	��/	�����
��/-&,(��'(�,,80,.1��

%//'�� )���(���!;�*�?����(�������%��"�	)������������/-&/(����%&'(�,-0./��

%/,'�� 3�	��
��(���*���
���	(���*�<����(���*��������(��������	�	��
��/-&.(����%.'(�

81&085-��

%/.'�� D��(�)�*��������#��(����9�*�;��(�B�*�=��
�	(������� �
���
��
���������/-&1(�'��%=&'(�

=/1&0/17��

%/1'�� 9����	����(���*��E	�;���(���*�����		�(���*�;�������(�<�*�����������(�)�*�����

6����(�<�*�B��(�)�*��������(� ��"���!��	��
��/--+(����%&'(�.,+��

%/5'�� B�����(�B��)�*�<������		�(�)�*�"����(�B�*������(���!"�*�3���
��	(���*�������	(�2�*�

"�����(�2����	
�� ������
�����
���/--7(���'�%1-'(�&+8-80&+8&/��

%/7'�� B�����(�B��)�*�<������		�(�)�*�3���(������*�3���
��	(���*����		�(���*�"�����(�2�*�

�F����	(�2�*������(���!"�*�"����(�B��%����	��	��������/--+(�#�%1'(�/1./0/11-��

%/8'�� ����%��.)�����	���&+8+(�����%.'(�58707-/��

%/+'�� ����(����@�*�)��F���(�B�*���
G��(�;�*�;�����(�"�*������(���*�2����(���� �*�

�����(�)��3����*�;�����(�"�*�2�����(�)��@�*����
�����(�)��>��������������/-&.(�#$�

%&+'(�+8870+8+.��

%,-'�� "����		(���*�9������(���!@�*�����
(���*�����
��(���*�����(�)�*�;���(����.�&��	���

Page 17 of 29

ACS Paragon Plus Environment

Analytical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 18

�����/-&.(���'(�/8-0/81��

%,&'�� B�����(�B��)�*��
��	�(�2�*�"����(�B�*�"�����(�2�*������(���!"�*�3���
��	(����������

������/--+(�#��%&1'(�5/./05/1&��

%,/'�� ����	��(�9�*����	������(�@�*�B�����(�"�*�B�����(�B��)��"�	��/	�����01/��.�����/-&,��

%,,'�� �	�
���(����9�����	���������.�&��	���&++7(�$��%&'(�7708+��

%,.'�� 3���(�)�*�=���(����%������	���/--/(��$�%,'(�&&+0&/8��

%,1'�� "���(�B�������������&+7+(���%&'(�&0/5��

%,5'�� @�
��(�)����������
����	2������������/	������"���&�	�����
���
��(�/����	����*�

 ��	�����$�;��������(���)(�&+88��

%,7'�� =���(���*��:H�	H�(���*�"�#����(�2������	���*�������3���������/--&(�(#�%/'(�&-+0

&,-��

%,8'�� ;�����(�2��<�*�@���!"���		(���*�9����(����2�*��������(�<��B�� ��������	���

/-&1(����%,'(�&7+0&81��

%,+'�� ��	���2��
	�I�������!�������������!������������	��������	����������

�	�����������������	�����	�!��	��


		�$JJ����K���:���������J���	��	J����J/-&/J&-J/8J����#�&--.������%���������

)���&1(�/-&1'��

�

 

  

Page 18 of 29

ACS Paragon Plus Environment

Analytical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 19

4�����&� ����������������	��������������	�	���� Principal component analysis score plot 

(A) trained on samples simulated from the pilot data using a multivariate normal without 

correlation (blue circles) with the 95% Hotelling’s T
2
 ellipse. Also shown is the projection of 

data simulated using a multivariate log normal with correlation (green triangles) and the pilot 

data (red squares). (B) & (C) Principal component analysis score plots for a discrete effect 

(two groups, red and blue). Simulations are based on a random multivariate normal including 

correlations, using the mean and covariance of the pilot data set. Examples are given for an 

effect size of 0 (B) and 0.6 (C) implemented on all variables. The 95% Hotelling’s T
2
 

ellipsoids for each group are represented in grey. 

 

4�����/�������	���	������������	�����������������������������������	
�����������������

Significance testing is performed with the Benjamini Yekutieli correction. The greyscale 

surface represents the mean true positive (A) and false negative (B) rate for a valine signal 

(2.22 2.23ppm) as a function of sample and effect size. The heat map at the bottom indicates 

the extent of the 95% confidence interval: dark blue indicates a confidence interval 

intersecting zero; the further the confidence interval is from zero the warmer the colors, the 

reddest color representing the longest distance of the lower bound on the 95% confidence 

interval from zero. The dotted line in B represents the false negative rate contour at 0.2, which 

corresponds to a power of 0.8. 

 

4����� ,� ������� ����� ��	�����	���� ������ 	
���� ���	������� ������� ��� 	��� �����

���������	���� Significance testing is performed with the Benjamini Yekutieli correction. 

The color code shows the necessary sample sizes for each variable to achieve a false negative 

rate of 0.2 (corresponding to a power of 0.8) Lowest sample sizes are represented in warm 

colors and plotted on a typical NMR spectrum (A). Expansions of different areas of the 

spectrum (B: aromatic area, C: aliphatic and sugar area, D: aliphatic area). Expansions of the 

aliphatic areas with a power of 0.8 (E) or 0.95 (F). Note the change of color from orange to 

green of the doublet at 0.98ppm. Grey colors represent areas of the spectrum not selected by 

the SRV binning algorithm. 

 

4�����.� �������	�����������������		����� (A and B) O PLS false negative rate (A) and �
�
	 

values (B) as a function of sample and effect sizes for a two group classification on the pilot 
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dataset. (C) False negative rates for 200 samples (top) or an effect size of 0.5 (bottom) for the 

24 quantified metabolic variables of the ARIC data, based on 
1
H NMR analysis of human spot 

urine samples, in the regression case. (D) Overview of the effect of sample size on power for 

an effect size of 0.5, on the 7585 variables obtained by ultra performance liquid 

chromatography – mass spectrometry analysis of human serum samples from a healthy human 

cohort (AIRWAVE), in the regression case. 
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