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ABSTRACT

It is crucial for researchers to optimize RNA-seq experimental designs for differential expression detection. Currently, the field
lacks general methods to estimate power and sample size for RNA-Seq in complex experimental designs, under the assumption
of the negative binomial distribution. We simulate RNA-Seq count data based on parameters estimated from six widely
different public data sets (including cell line comparison, tissue comparison, and cancer data sets) and calculate the statistical
power in paired and unpaired sample experiments. We comprehensively compare five differential expression analysis packages
(DESeq, edgeR, DESeq2, sSeq, and EBSeq) and evaluate their performance by power, receiver operator characteristic (ROC)
curves, and other metrics including areas under the curve (AUC), Matthews correlation coefficient (MCC), and F-measures.
DESeq2 and edgeR tend to give the best performance in general. Increasing sample size or sequencing depth increases power;
however, increasing sample size is more potent than sequencing depth to increase power, especially when the sequencing
depth reaches 20 million reads. Long intergenic noncoding RNAs (lincRNA) yields lower power relative to the protein coding
mRNAs, given their lower expression level in the same RNA-Seq experiment. On the other hand, paired-sample RNA-Seq
significantly enhances the statistical power, confirming the importance of considering the multifactor experimental design.
Finally, a local optimal power is achievable for a given budget constraint, and the dominant contributing factor is sample size
rather than the sequencing depth. In conclusion, we provide a power analysis tool (http://www2.hawaii.edu/~lgarmire/
RNASeqPowerCalculator.htm) that captures the dispersion in the data and can serve as a practical reference under the budget
constraint of RNA-Seq experiments.
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INTRODUCTION

RNA-Seq is a new approach to transcriptome analysis based
on next-generation sequencing (NGS) technology. It is
quickly replacing microarrays as the platform for gene ex-
pression profiling, owing to the advantages of high reproduc-
ibility but low noise level. Beyond revealing gene expression
patterns, the information gained from RNA-Seq has already
greatly enhanced our understanding in many other areas,
such as mechanisms of alternative splicing and the discovery
of many novel isoforms of mRNA transcripts (Morin et al.
2008; Kim and Salzberg 2011). Furthermore, it has led to
the discovery of many novel RNA transcripts, as well as the
massive amount of newly discovered long intergenic noncod-

ing RNAs (lincRNAs) relative to the small number of
lincRNAs identified before RNA-Seq became popular
(Morin et al. 2008; Trapnell et al. 2009; Wang et al. 2009;
Kim and Salzberg 2011).
RNA-Seq data are a set of short RNA reads that are often

summarized as discrete counts. The Poisson distribution
had previously been used to analyze RNA-Seq data (Marioni
et al. 2008; Jiang and Wong 2009; Robinson and Oshlack
2010; Srivastava and Chen 2010; Wang et al. 2010; Pham
and Jimenez 2012). Several earlier RNA-Seq studies have at-
tempted to use the Poisson distribution to perform power
analysis and sample size estimation using algebraicmanipula-
tion of Wald statistics and likelihood ratio methods (Chen
et al. 2011; Busby et al. 2013).Chenet al. (2011) studied several
test statistics (Wald test, likelihood ratio test, Fisher’s exact
test, variance stabilized test, and conditional binomial test)
on Poisson distribution simulations and compared their
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performances in terms of statistical power. They justified the
use of the Poisson distribution in the simulation data by argu-
ing that the Poisson distribution can be used when there are
only technical replicates. However, the much larger variation
from biologic replicates (McIntyre et al. 2011) was not ad-
dressed in the paper. Moreover, it was found that the
Poisson distribution does not fit the empirical data due to
the over-dispersionmainly caused by natural biological varia-
tion (Anders and Huber 2010; Robinson and Oshlack 2010).
As a result, the negative binomial distribution has become
widely used to analyze RNA-Seq data which allowsmore flex-
ibility in assigning between-sample variations.
It is very challenging to estimate power and satisfactory

sample size for the RNA-Seq differential expression (DE)
tests. One issue is that analytical solutionsmaynot always exist
for RNA-Seq sample size and power calculations (McCulloch
1997; Aban et al. 2008; Pham and Jimenez 2012), due to the
complexity of the negative binomial model. Instead, numeri-
cal methods such as Monte Carlo simulations have been em-
ployed to analyze the properties of negative binomial models
(McCulloch 1997; Robinson and Smyth 2007; Aban et al.
2008; Srivastava and Chen 2010; Robles et al. 2012; Vijay
et al. 2013). Other issues involved in power estimation include
the combination of multiple hypotheses testing (MHT), P-
value calculation, and various ways to estimate dispersion
and normalization factors for library sizes. In RNA-Seq anal-
ysis, tens of thousands of genes are analyzed for statistical sig-
nificance simultaneously. A naïve approach would analyze
each individual gene independently without consideration
of the entire data set. However, in reality different genes are
correlated instead of being independent of each other in the
same sample. Moreover, samples in the same condition are
also correlated. Such information should be taken into ac-
count in order to obtain more accurate results. This strategy
has been implemented in recent RNA-Seq DE packages
such as DESeq, DESeq2, edgeR, EBSeq, and sSeq (Anders
and Huber 2010; Robinson et al. 2010; Leng et al. 2013; Yu
et al. 2013; Love et al. 2014).
Several studies examined differences between statistical

packages of RNA-Seq DE analysis (Kvam et al. 2012;
Nookaew et al. 2012; Robles et al. 2012; Rapaport et al.
2013). Nookaew et al. evaluated the differences in DE using
the experimental data of yeasts in different growth conditions.
Conversely others (Kvam et al. 2012; Robles et al. 2012;
Rapaport et al. 2013; Soneson and Delorenzi 2013) calculated
true positive rate (TPR) and false positive rate (FPR) using
simulated data sets under varying parameters. In this report,
we took a unique combination of simulated and experimental
data approaches, where the parameters in the simulations
were based on six different experimental data sets that span
a wide range of conditions and samples. This approach is sol-
idly grounded upon realistic RNA-Seq data, yet it is very flex-
ible and can realistically reveal the relationships among
parameters relevant to the power analysis. We analyzed the
entire simulated data sets as well as sub-data sets that are strat-

ified by log2-fold changes (LFC) or expression levels, so that
we could detect DE limits given varying parameters in the
model. To follow the most recent progress in the RNA-Seq
DE area as well as to present results with minimal bias, we se-
lected twowidely usedmethods (DESeq and edgeR) and three
recent DE analysis packages released within the past year
(DESeq2, EBSeq, and sSeq). DESeq2, the most recent deriva-
tive of DESeq, was reported to have better power compared
with the DESeq package (Love et al. 2014). EBSeq displayed
robustness and better performance in analyzing isoform-level
expression, yet comparable with other methods in analyzing
gene-level expression (Leng et al. 2013). Additionally, sSeq
package was chosen as it achieved better sensitivity for exper-
imentswith small sample sizes (Yu et al. 2013). Through com-
prehensive comparison among all thesemethods, we aimed to
reveal the true relationships between statistical power and its
contributing factors.

RESULTS

Estimation of parameters in the data sets

We based our simulation results on six representative RNA-
Seq data sets. We removed the genes with zero counts in all
conditions, as well as genes whose maximum counts are <5
as recommended (Rau et al. 2013). The description of param-
eters for these data sets is summarized in Table 1. Among
them, four data sets used polyA enriched method while the
other two used Ribosome depletion method. Four data sets
had unpaired experimental designs and two had paired-sam-
ple designs. The data sets have a wide variety of sample sizes
ranging from six samples (Tuch) to 129 samples (M–P), as
well as a variety of experimental conditions spanning from
cell-line, tissue, viral infection, cancer to population compar-
isons. We chose this variety to capture the wide range of dif-
ferent parameters from various types of experiments.
We estimated the parameters from each of the six data sets

and fit them by GLMs with negative binomial distribution
(Table 1). For unpaired data sets, we used the five RNA-
Seq analysis packages (DESeq, DESeq2, edgeR, EBSeq, and
sSeq) to detect DE genes, whereas for paired data sets,
EBSeq was not used as it is not adapted to the paired-design
(C Kendziorski, Y Li, and N Leng, pers. comm.). We took a
conservative approach to call DE genes by taking intersected
DE genes from all four or five RNA-Seq analysis packages
(Table 2).
In summary, the library sizes (reads mapped to the tran-

scriptome) of the six data sets range from a log10 mean of
6.11 (Bullard) to 7.00 (Qian), the normalized median gene
expressions log2 counts per million (CPM) ranged from
3.96 (Bottomly) to 5.22 (Tuch), and the median LFCs of
DE genes range from 3.33 (Huang) to 0.751 (M–P).
Among them, the Bullard data set which compared between
brain tissue and the UHR RNA library had the highest per-
cent DE (59.3%) and a median LFC (2.13). The samples
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for this data set were technical replicates and thus the median
dispersion was extremely low (0.000391). In contrast, the
M–P data that compared Caucasian with African populations
have a much lower percent DE (21.5%) and the highest
median dispersion (0.231). These results indicate that com-
parisons at tissue levels (e.g., Huang and Bullard) have
more significant differences between conditions, whereas
comparisons at the population level (e.g., M–P) have a very
small significant change due to the large heterogeneity among
populations.

Effects of experimental parameters on power
of RNA-Seq analysis

Due to the cost of RNA-Seq experiments, it is imperative to
know prior to an experiment the number of biological repli-
cates required to achieve the desirable power among genes of
interest (e.g., specific expression levels and/or fold change
range). We used the negative binomial distribution and ap-
proximate parameters from six RNA-Seq public data sets to
create simulated data for unpaired and paired experiments.
We performed 100 simulations per condition to calculate
the statistical power for five categories of DE genes: all DE
genes, DE genes with low expression, high expression, low
fold change (FC), and high FC that are separated by quartiles.
Figure 1 and Supplemental Figures S1 and S2 show the

comparisons among the six data sets, five DE categories
and five DE detection methods. We observed the following
patterns: (1) In general, higher power is achieved as the num-
ber of samples increases. However, beyond a certain replicate
number, the gain in power gain is negligible. The number of
samples needed to reach saturation is dependent on disper-
sion and median LFC of the data: The smaller the dispersion
or the bigger median LFC, the smaller the number of samples
is to reach saturation. However, EBSeq showed lower power
at higher samples in the subset of genes with high expression
for the Huang data set, potentially due to a problem to handle
large counts in the simulation (C Kendziorski, Y Li, and N
Leng, pers. comm.); (2) Higher power is achieved as the se-
quencing depth increases; however, beyond 5–20 million
reads, depending on thedata set, thegain inpower gain ismin-
imal (Supplemental Fig. S1). Similar to sample size, the small-
er the dispersion or the biggermedian LFC (Bullard and Tuch

data), the smaller the sequencing depth is to reach saturation;
(3)High FCandhigh gene expressionquartiles generally show
increased power over low FC and low gene expression quar-
tiles, before the saturation point of samples (Supplemental
Fig. S2); (4) Power is highly affected by the experimental con-
ditions; and (5) No single DE program shows consistently the
highest power across all data sets. The relationships among
power, sample size, and data sets are complicated. However,
some general trends emerge: When the dispersions are small
(Bottomly, Bullard, M–P, Qian, and Tuch data), edgeR and
DESeq2 generally give higher power estimations, especially
when the number of samples ≤5. However, when the disper-
sion is large (M–P data), sSeq yields the highest power.
Generally, DESeq makes more conservative predictions, con-
firming the results of Robles et al. (2012).
Given that power is highly dependent on the data set, we ex-

amined the relationships among power, dispersion, and sam-
ple size further (Fig. 1; Table 1). Simulations based on the
Bullard and Tuch data show that all programs achieve very
high power close to one (e.g., 100% detection of DE genes).
In the Bullard data set, the estimated median dispersion pa-
rameter is extremely low (0.000391). This is likely due to
that fact that the samples in this data set are technical repli-
cates rather than biological replicates. Thus all DE analysis
packages used here could easily detect differences between
the two groups. In the Tuch data, the high power was achieved
largely due to the highmedian FCofDE genes (2.13) (Table 1)
and pair-designed samples. On the opposite side, the M–P
data consist of transcriptomes from 129 individuals. The
M–P data set had the highest median dispersion of 0.231
and the lowest median FC = 0.751 (Table 1). Only DESeq2,
edgeR, and sSeq were able to achieve a power of 0.8 or greater
at a sample size of 25 samples per condition (Fig. 1).

Performance analysis of other metrics

In addition to statistical power (sensitivity), specificity (com-
plement of FPR) is also an important factor to assess the per-
formance of eachDE program. To evaluate them together, we
generated receiver operator characteristic (ROC) curves
based on the results of the simulated data with 4 samples
per condition (Fig. 2A). The most optimal ROC curve jointly
displays high levels of TPR and FPR. DESeq2 and edgeR had

TABLE 2. DE genes (FDR≤ 0.05) detected by the different analysis packages

Significant genes by package

Data set Total genes DESeq2 DESeq edgeR sSeq EBSeq Intersection Percent DE

Bottomly 10,645 1348 588 1221 1200 579 457 4.29
Bullard 9100 7573 7381 7667 6371 5973 5396 59.30
Huang 17,872 9842 3306 10,062 12,291 8308 2795 15.64
Montgomery–Pickrell 9217 5014 2964 5264 3553 3018 1982 21.50
Qian 17,110 9670 8098 9404 16,442 N/A 7567 44.23
Tuch 15,668 2072 1340 1903 5011 N/A 1248 7.97

Power and sample size estimation for RNA-Seq
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similar and the best ROC curves for all data sets. DESeq per-
formed similarly to DESeq2 and edgeR, except for the M–P
data. However, EBSeq and sSeq generally did not perform
as well as the others. EBSeq sometimes yields a large increase
in FPR with little corresponding increase in TPR, suggesting

its limitation to control the type I error.We also evaluated the
different programs with other performance metrics: area un-
der the curve (AUC) of ROC curves, Matthews correlation
coefficient (MCC) which takes into account all true and false
positives and negatives, and F-measure which is the weighted
average of the precision and sensitivity (Fig. 2B). Although we
see that no single package consistently performs the worst or
the best in all data sets, we did observe similar results as in the
ROC curves: DESeq2 and edgeR generally have similar and
the best AUC, MCC, and F-measure, except for the M–P
data in which sSeq has the best MCC and F-measure (Fig.
2B, Supplemental Figs. S3, S4; Supplemental Table S1). The
performance metrics are dependent on the data sets. Gener-
ally, data sets with larger dispersions naturally lead to worse
accuracy in DE test results, and paired-sample design increas-
es the accuracy of DE test results.
Additionally, we examined the relationship between ob-

served FDR and target FDR in the data sets from the different
programs (Supplemental Fig. S5). Similar to the conclusions
drawn from the ROC curve metrics, the observed FDRs are
dependent on the data sets and programs. Generally, DESeq
gives more conservative FDR estimations than others, where-
as sSeq tends to give overestimated FDRs.

Improved statistical power by the paired-sample
design

In the experimental design,multiple conditions or factors can
be set up to affect the expression level of each biological sam-
ple. For example, in paired-design experiments, each biolog-
ical sample has two conditions (such as cancer tissue and
cancer adjacent normal tissue) to generate RNA-Seq data.
In this study, we used the paired-sample design as a demon-
stration of multi-factor design, and treated the pairing infor-
mation as the second factor that affects the expression level of
each gene. We used a GLM with negative binomial distribu-
tion to estimate the effects of the experimental condition
and pairing information, based on parameters estimated
from the two paired data sets (Qian and Tuch data). Figure
3 shows the comparisons among the four DE categories in
these two data sets, under either single-factor (unpaired) or
paired statisticalmodel. It is clear that by considering the pair-
ing information, the statistical power is increased, especially
for the Qian data. The Qian data set has a lower median
LFC (0.929) relative to the Tuch data set (2.13), as well as a
lower median dispersion (∼40% lower than Tuch). This sug-
gests a big advantage to better differentiate genes by introduc-
ing additional pairing restrictions, when the overall LFC
among genes is not very large. Similar to Figure 1 and regard-
less of single-factor or paired-samplemodel, we observed that
DESeq2 and edgeR give the highest power estimations when
the number of samples is small; however sSeq quickly catches
up when the number of samples increases. Again DESeq gives
themost conservative estimation of power among the fourDE
test methods.

Power vs. Sample Size
Program DESeq DESeq2 edgeR EBSeq sSeq

Mouse strain comparison

LFC = 0.99

dispersion  = 0.035

Design type: one-factor

Brain vs. UHR

LFC = 2.13

dispersion  = 0.00039

Design type: one-factor

Stem cells vs. fetal head

LFC = 3.33

dispersion  = 0.13

Design type: one-factor

WNV transfection

LFC = 0.929

dispersion  = 0.045

Design type: paired

Tumor vs. adjacent tissue

LFC = 2.13

dispersion  = 0.078

Design type: paired

Population comparison

LFC = 0.75

dispersion  = 0.23

Design type: one-factor
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FIGURE 1. Power curves based on the number of samples per condi-
tion for the six public data sets and five RNA-Seq differential expression
analysis packages. Library sizes were estimated from the gene counts of
the real data sets. Per-gene dispersion was estimated through the Cox–
Reid adjusted profile likelihood. (A) Power curves relative to sample size
and differential expression methods in six public data sets. The four un-
paired-sample data sets (Bottomly, Bullard, Huang,M–P) were analyzed
with edgeR, DESeq, DESeq2, EBSeq, and sSeq. The paired-sample data
sets (Tuch and Qian) were analyzed with edgeR, DESeq, DESeq2, and
sSeq. Note that EBSeq is not included as it is currently not adapted to
analyzing paired-sample data. (B) Heatmap of averaged power over
the differential expression methods in six public data sets.
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Differences in experimental power based on
transcript type

Depending on the subsets of transcripts of interest, there
might be differences for achievable power. For example,
lincRNA are generally expressed at low or medium levels rel-
ative tomRNAs from protein coding genes (Cabili et al. 2011;
Garmire et al. 2011). Thus the mRNA transcriptome and
lincRNA transcriptome may yield different levels of power,
even when they are generated from the same RNA-Seq exper-
iments and the same biological samples. To test this, we con-

ducted simulations based on the Huang data set. This data set
was chosen because it used ribosomal RNA depletionmethod
rather than poly-A selection, so that lincRNA detection was
enhanced. To show the internal difference of the two types
of RNAs, we divided the data set by the type of transcripts
and summarized the parameters (Table 3). Indeed the most
striking difference between the two types of RNAs is the me-
dian expression level: The mRNA has a median expression
measured in log2 CPM of 4.63, whereas the lincRNA only
has a median log2 CPM of 1.25. As expected, the analysis
of protein coding genes had higher power compared with
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the analysis of lincRNA transcripts when the number of sam-
ples ≤3, which is often the limit for many experimental lab-
oratories (Fig. 4). DESeq is most conservative in power
estimation and showed the largest difference in power be-
tween the two types of transcripts, especially when the num-
ber of samples is low. At four samples per condition,
lincRNAs had a power of 0.65 compared with protein coding
genes power of 0.75. However, when the number of samples
is sufficient, this difference of power becomes minimal.

Optimizing sample size and sequencing depth
under budget constraints

In real-world RNA-Seq experimental design, the budget con-
straints usually exist and can significantly affect the trade-off
decision between the sample size and sequencing depth. To
demonstrate the practical application of RNA-Seq power
analysis, we conducted 100 simulations per condition to ap-
proximate the optimal sample size and sequencing depth, ex-
emplified by several different budget constraint scenarios
($3000, $5000, $10,000). The cost of RNA-Seq per sample
is dependent on the cost of constructing the RNA-Seq library,
as well as the cost of sequencing depth (or library size) per
sample under the multiplex arrangement, where multiple
samples will be barcoded to share one lane of the flow cell.
We used an estimated cost of $241 for library construction
and $1331 for single-end sequencing cost per lane. Since
not all reads map to the transcriptome, we used a mapping
percentage of 20%.We determined the optimal power, corre-
sponding sample size, and sequencing depth based on the

parameters estimated from the six data sets (Fig. 5 and Sup-
plemental Fig. S6). As demonstrated by the Bottomly data
in Figure 5, the higher the budget cap is, the more biological
samples are needed (Fig. 5A,C) to reach the optimal power
(Fig. 5A,B); however, the sequencing depth does not change
much relative to biological samples and stays around 20 mil-
lion, estimated frommost DEmethods (Fig. 5D). The highest
power was achieved by sSeq, followed closely by DESeq2 and
edgeR (Fig. 5A,B). However, sSeq also showed larger standard
deviations in the estimated power compared with the other
programs (Fig. 5A). DESeq, DESeq2, and edgeR tend to give
rise to less skewed power curves across number of samples,
relative to EBSeq and sSeq (Fig. 5A). EBSeq tends to yield low-
er optimal power estimation and skews toward fewer samples
but higher sequencing depths, whereas sSeq favorsmore sam-
ples and lower sequencing depth (Fig. 5A,D).

DISCUSSION

RNA-Seq technology is gradually replacing microarray as the
method to detect transcriptome level gene expression, there-
fore it is a critical time to address the problem of desirable sta-
tistical power in the RNA-Seq experimental design. There
have been a few papers on power and sample size estimation
in RNA-Seq experiments; however, these methods need im-
provement to capture the dispersion in the data and serve as
a practical guideline given budget constraints. Busby et al.
(2013) measured power as the percentage of genes with two-
fold count change (by default) that were correctly detected
based on the statistical t-test, without realistically capturing

TABLE 3. Estimated parameters of protein-coding genes versus lincRNA transcripts

Huang data set

Total
number

Differentially
expressed

Median gene expression (log2
counts per million +1)

Median log2-fold
change of DE genes Median dispersion

Percent
DE

All genes 17,872 2795 4.37 (1.54–6.1) 3.33 (2.28–4.67) 0.128 (0.0594–0.25) 0.15639
Protein coding 15,834 2623 4.63 (2.05–6.23) 3.34 (2.27–4.67) 0.126 (0.0599–0.242) 0.165656
lincRNA 603 79 1.18 (−1.43–2.71) 3.32 (2.57–4.58) 0.139 (0.0406–0.285) 0.131012
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FIGURE 4. Power of protein coding genes versus long noncoding RNA (lincRNA) transcripts. The comparison was made using the Huang data set,
which used ribosomal RNA removal for RNA library construction. The transcriptome was separated into protein coding genes (solid line) or lincRNA
(dashed line) categories. Power was estimated in each simulation for these two categories, using the standard analysis pipelines for the respective pack-
ages as in Figure 1.
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the underlying data structure. Hart et al. (2013) performed
analysis on 127 RNA-Seq samples in human and fish. They
derived a first-order closed form approximation of GLM to
compute required sample size and desired power, by taking
into account of the variance, expected expression level and
fold change. Alternatively, Li et al. (2013) proposed an exact
test to replace hyper-geometric probabilities with the negative
binomial distribution. However, neither of their methods
considered these complexities: (1) more complicated multi-
factor experimental designs, (2) the various ways to estimate
dispersion through different analysis packages (they only
used edgeR package), and (3) practical optimization of exper-
imental design given a budget cap. The trade-off between
sequencing depth and the number of biological samples was
recently studied (Liu et al. 2014). The authors discovered
that adding biological samples increases the power to detect
DE genes better than the strategy of increasing sequencing
depth. However, they did not provide a direct solution for op-

timization given the fixed budget. Moreover like the others,
they did not consider multiple DE analysis packages, multi-
factor experimental design, or large scale RNA-Seq experi-
ments such as in the population-based studies.
Compared with these earlier studies, we havemade amajor

leap forward, rather than incremental progress toward pro-
viding first-hand and comprehensive references in consider-
ation of RNA-Seq experimental design. We systematically
evaluated five popular or more recent DE packages, and con-
ducted simulations based on 212 RNA-Seq samples from six
different data sets that span awide range of experimental con-
ditions, from cell-line, tissue, viral infection, cancer, and pop-
ulation comparisons. We chose the truth data based on more
coherent criterion, the intersection of DE genes that are con-
sistent from all different RNA-Seq analysis packages, rather
than the more arbitrary LFC threshold like others (Kvam
et al. 2012; Robles et al. 2012). Moreover, we provided a ref-
erence framework to analyze paired-sample, or more general
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multifactor experiments, using the GLM approach. Last but
not least, we have provided a tool to enable researchers to
determine the sample size that optimizes the power, when
the budget is limited.

Our study provides many aspects of practical guidance to-
ward the RNA-Seq experimental design. First, dispersion
shows a striking impact on power. In data sets with very low
dispersions, such as the Bullard data, a power of 0.8 is easily
reached with very low sample size and sequencing depth.
On the other hand, in data sets with high dispersion, such
as M–P data, a power of 0.8 is hardly achievable except at
the highest limits of simulation parameters. Due to the strong
effect of dispersion, it is clear that statistical tests based on the
Poisson distribution (i.e., assuming dispersion = 0) are not
capable of handling situations with significant biological var-
iation. Dispersion is primarily due to biological variation;
however, it can also be attributed from technical variability
such as lane differences and the “shot noise” of the random
process (McIntyre et al. 2011). Genes with lower expression
have high variance (Anders and Huber 2010), and the subset
of DE genes in this group are more likely to have higher fold
change (Mutch et al. 2002). All of these factors lead to the
challenge of proper estimation of dispersions in the RNA-
Seq experiments.

Different RNA-SeqDE testing packages estimate dispersion
differently, making the systematical comparisons of these
packagesworthwhile.Wecompared the power andothermet-
rics, such as AUC of the ROC curve, MCC and F-measures in
five popular or most recent packages. For most data sets,
DESeq2 and edgeR give the highest estimate of power, closely
followed byDESeq (except theM–P data). DESeq (by default)
estimates dispersion by pooling all samples together, fitting
them to a parametric distribution and conservatively taking
the maximum. This conservative approach may explain why
DESeq gives a relatively lower power, as also noted by others
(Robles et al. 2012). DESeq2 is the new update to DESeq,
and it uses shrinkage estimation fordispersion:The first round
of dispersion–mean relationship is obtained by maximum
likelihood estimates (MLE), and this fit is then used as a prior
to estimate the maximum a posteriori estimate for dispersion
in the second round. edgeR estimates dispersion differently. It
moderates the dispersion per gene toward a common value
across all genes, or toward a local estimatewith genes of similar
expression. For paired-sample designs, the DESeq package
recommends using the Cox–Reid approximate conditional
maximum likelihood (CR-APL) method (Anders and Huber
2010). DESeq2 likewise uses the CR-APL method to derive
dispersion per gene, and then shrinks the dispersion toward
a parametric fit assuming a prior distribution of log dispersion
(Wuet al. 2013). edgeR also usesCR-APLand then shrinks the
dispersion estimate using empirical Bayes (Robinson et al.
2010). On the other hand, EBseq estimates dispersion by the
method of moments, and then uses Bayes posterior probabil-
ities as the measure of statistical significance. While EBSeq
generally does not perform as well as other packages, it could

outperform others on analyzing isoform level expression
(Leng et al. 2013), rather than gene level expression which is
the focus of this report. sSeq estimates dispersion by pooling
all the samples together using the method of moments, and
then shrinking the per-gene estimates through minimizing
the mean-square error (Yu et al. 2013). Although the authors
of sSeq stated that sSeq compared favorablywithother popular
packages in low sample sizes regarding sensitivities and spec-
ificities, using an external gold standard (Yu et al. 2013), we
found that it did not yield the highest powers in the
Bottomly andTuchdata setswhen the samples are≤5.This in-
dicates that the performance of sSeq is affected by the data sets
or the choice of truth measure.
Two other important factors that influence power are the

number of samples and sequencing depth. In general, more
biological replicates and greater sequencing depth help to
achieve greater statistical power to a certain extent. Sequenc-
ing depth is closely related to the expected counts of genes. As
sequencing depth increases within the range of 5–20 million
reads, genes with lower expression levels, lower fold change
and higher dispersions become detectable (Tarazona et al.
2011). However, above 20 million reads, the contribution of
sequencing depth to power gain becomes minimal. Com-
bined with preliminary data, sequencing depth can be used
for investigating genes of certain expression strengths. For ex-
ample, if one were interested in estimating the statistical pow-
er for lincRNAs, which are on average transcribe 10-fold lower
than mRNA transcripts (Cabili et al. 2011), one would not be
as concerned about the FDR adjustment for the entire data set.
It is therefore possible to enumerate the power and sample size
for transcripts of a specific type (e.g., genes with low versus
high expression) or over a certain range of parameters (e.g.,
lowLFCversus high LFC). Based onour results, wewould rec-
ommend aminimum of five samples in order to diminish the
power difference between protein coding mRNA and
lincRNAs for the sequencing depth of ∼20 million reads.
We also aimed to generalize the potential uses of two-fac-

tor analysis by estimating parameters from two paired-sam-
ple data sets: The Tuch data set is a paired cancer and
normal tissue experiment, and the Qian data set is a paired
West Nile Virus and mock transfection of cell cultures. We
compared the power to detect DE genes in these two sets us-
ing paired analysis versus one-factor analysis, and showed
that two-factor models can substantially increase detection
limit and hence power in RNA-seq analysis. Furthermore,
DESeq, DESeq2, and edgeR are capable of arbitrary design
matrices, including scenarios such as time series and blocking
design that reduces known variability in confounding factors.
We demonstrated the optimization of RNA-Seq experi-

ments under the budget constraint, a real-world problem
for investigators. We showed that a local optimum of power
is achievable for a particular samples size. More importantly,
we found that the dominant contributing factor to reach op-
timal power at specific a budget constraint is sample size, rath-
er than sequencing depthwhich is around the 20million reads
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range formostDE detection packages. This conclusion is con-
sistent with Liu et al. (2014), in that biological replicates are
more important than read depth for DE detection, although
we investigated differently from the power perspective with
budget constraints. DESeq, DESeq2, and edgeR presented
more symmetrical curves of sample size versus power, where-
as EBSeq and sSeq seemed to be more skewed. Correlating to
the ROC curves and earlier power estimation without budget
constraints, DESeq2 and edgeR appear to be the better choices
of software for their overall performances.
As RNA-Seq technology matures and sequencing becomes

cheaper, complex experiments withmore samples and greater
sequencing depth will become more prevalent and there will
be an increasing need to design RNA-Seq experiments more
thoughtfully. Our approach reported here can be applied
more generally to complex multi-factor designs that can be
modelled through the GLM framework, such as time series,
multi-level designs and blocking designs. We have also dem-
onstrated how optimal sample size and power can be calculat-
ed, given a budget constraint. It is our expectation that
researchers will find our methods useful and valuable in de-
signing RNA-Seq differential expression experiments.

MATERIALS AND METHODS

Estimation of biological parameters based
on real data sets

In this study, we evaluated two different types of experimental de-
signs: paired (two-factor) and unpaired (single-factor) designs. In
unpaired experimental designs, samples or individuals in one con-
dition are compared with independent samples in another condi-
tion. Paired design is a special case of multifactor (e.g., two-factor,
three-factor etc.) designs which consider factors that affect the ex-
pression level of each sample. Specifically, in paired experiments
each sample has two conditions (such as cancer tissue and cancer
adjacent normal tissue) that both yield RNA-Seq data. In this study,
we used the paired experimental design as a demonstration of the
multifactor design, where the pairing information was treated as
the second factor that affects the expression level of each gene.
In our simulated data, we used a general linear model (GLM) with

negative binomial distribution. We estimated their parameters from
public data sets employed in this study. For the unpaired data sets of
two groups, the counts for a particular gene in a sample i were mod-
eled by the following formula:

logmi = xi
Tb+ logNi. (1)

Here µi is the counts for sample i,Ni is the normalized library size for
sample i, β is the vector of coefficients for the two different experi-
mental conditions, and xi is a vector of length two indicating wheth-
er sample i belongs to condition one or condition two in the
experiment. The LFC was then determined by the difference of
the two elements of β. For paired-sample designs, the counts for a
gene were modified from equation (1) with the following formula:

logmi = x1i
Tb+ x2i

TP + logNi. (2)

Here a new vector of coefficients P of length n/2 is introduced to rep-
resent the relative expression level for each pair of samples. The other
new vector x2i denotes which pair a particular sample belongs to.
The GLM parameters for each gene in each real data set were es-

timated by the glm function in R, using a log link function for the
count data. The family of negative binomial distributions was calcu-
lated by the negative.binomial function in the MASS package. The
amount of dispersion per gene was estimated using the Cox–Reid
approximate conditional maximum likelihood (CR-APL) method
(McCarthy et al. 2012). This method modifies the maximum likeli-
hood estimate of dispersion by accounting for the experimental de-
sign through Fisher’s Information Matrix in the log-likelihood
function (McCarthy et al. 2012). CR-APL is implemented as the
dispCoxReidInterpolateTagwise function in the edgeR package, and
it is also used in DESeq to estimate the dispersion in multifactor ex-
perimental designs.

Generation of simulated count data

The count data were generated from the negative binomial distribu-
tion. For each gene, the count Yi was given by

Yi � NB(mean = mi, var = mi(1+ mifi)).
Here, ϕi is the per-gene dispersion calculated by the CR-APL meth-
od, and the expected value μi is a function of the library size. The
library size of each simulated sample was generated from a uniform
distribution whose parameters were estimated from the maximum
and minimum of the real data set.
We used five statistical packages for DE testing: DESeq (version

1.14.0) and edgeR (version 3.4.2) methods, as well as three newer
packages released within the past year: DESeq2 (version 1.2.9),
EBSeq (version 1.3.1), and sSeq (version 1.0.0). All packages are im-
plemented in the Bioconductor/R platform. We determined the
truth data for DE in the simulation as the overlapping DE genes de-
tected from all five statistical packages used in the study, using the
original real data sets. This approach is similar to other studies
(Rapaport et al. 2013; Soneson and Delorenzi 2013). In the simula-
tion, the LFC of DE genes was determined by equations (1) and (2).
We set the LFC of genes that are not differentially expressed to zero
in the generation of the simulated count data, as done by others
(Soneson and Delorenzi 2013).

Description of public data sets used in the study

The six public data sets are listed in Table 1 (see Results). We enu-
merate the parameters of each data set in the following.

Bottomly

Weused this published data set to compare gene expression between
C57BL/6J and DBA/2J mouse strains (Bottomly et al. 2011). An av-
erage of 22 million reads was generated for 21 mice (10 C57BL/6J
and 11 DBA/2J). Count data were downloaded from the ReCount
project (Frazee et al. 2011).

Bullard

Ambion’s human brain reference RNA (brain) and Stratagene’s
Universal Human Reference (UHR) RNA were compared (Bullard
et al. 2010). An average of 12.5 million reads was generated from
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seven brain and seven UHR technical replicates. Count data were
also downloaded from ReCount project (Frazee et al. 2011).

Huang

Differentiated embryonic stem cells were compared with fetal head
tissues of 14.5 d post coitum. Four biological samples were com-
pared using various rRNA removal methods, in order to analyze
coding and noncoding RNAs (Huang et al. 2011). Twenty-two tech-
nical replicates were used with an average of 17.7 million reads per
sample. Short Read Archive (SRA) reads were downloaded from
GEO (GSE22959) and aligned with tophat to mm10 reference ge-
nome. Count data were generated using HTSeq (http://www-huber
.embl.de/users/anders/HTSeq/doc/overview.html).

Montgomery–Pickrell (M–P)

RNA-seq data from 60 individuals of European descent (Montgom-
ery et al. 2010) and 69 individuals of Nigerian descent (Pickrell et al.
2010) were sequenced with an average sequencing depth of 17 mil-
lion reads per sample. The data sets were used to analyze DE between
the two populations. Count data were downloaded from the
ReCount project (Frazee et al. 2011).

Tuch

Three paired tumor and nontumor tissues from oral squamous cell
carcinoma patients were sequenced for an average of 205 million
reads per sample (Tuch et al. 2010). Count data were downloaded
from Supplemental Table S1 of the original publication.

Qian

West Nile Virus (WNV) transfection of macrophage cells from 10
healthy donors were compared with mock transfection of the
same cell culture with a total of 28 million reads per sample (Qian
et al. 2013). Raw SRA read data were downloaded from GEO
(GSE40718) and aligned with tophat to Hg19 Refseq genes down-
loaded from UCSC Genome Browser. Count data were also gener-
ated using HTSeq.

Detection of DE in unpaired (single-factor)
experimental designs

We aimed to calculate P-values, sensitivity (power) and specificity
over the range of parameters. Toward these aims, we performed stan-
dard analyses with functions implemented in the five RNA-Seq anal-
ysis packagesDESeq2,DESeq, edgeR, sSeq, and EBSeq. Specifically, in
DESeq the count data were analyzed using newCountDataSet, fol-
lowed by estimateSizeFactors, estimateDispersions, and nbinomTest
functions. For DESeq2, DESeqDataSetFromMatrix was used, fol-
lowed by estimateSizeFactors, estimateDispersions, and nbinomWald
Test functions. For edgeR, count data were analyzed using DGEList
followed by calcNormFactors, estimateCommonDisp, estimate
TagwiseDisp, and exactTest functions. For EBSeq, the libraries were
first normalized usingMedianNorm and then DE genes were detect-
ed using the EBTest function. For sSeq, DE genes were detected using
nbTestSH function. In packages whereP-value adjustment was need-
ed, the p.adjust function in R with method=“BH” (Benjamini and
Hochberg FDR option) was employed.

Detection of DE in paired-sample (two-factor)
experimental designs

Similar to the unpaired or single-factor designs, we performed stan-
dard analyses for the paired-sample experimental designs.We calcu-
lated P-values, sensitivity (power) and specificity over the range of
parameters, using four statistical packages: DESeq2, DESeq, edgeR,
and sSeq. We did not conduct DE gene detection using EBSeq, as
it is not adapted to analyzing paired data currently (C Kendziorski,
Y Li, and N Leng, pers. comm.). In DESeq, data were analyzed sim-
ilar to above, using the two-factor design matrix and “method=
pooled-CR” for the dispersion estimation, followed by fitNbi-
nomGLMs function for both the null and alternative hypotheses,
and then by nbinomGLMTest function to calculate P-values per
gene. DESeq2 was used similarly to the single-factor analysis above,
using the two-factor design matrix (condition + pairing informa-
tion). For edgeR, count data were analyzed using DGEList followed
by calcNormFactors, estimateCommonDisp, estimateGLMTrended-
Disp, estimateTagwiseDisp, glmFit, and glmLRT functions. For
sSeq, function nbTestSH was used with pairedDesign=TRUE and
coLevels= the pairing information. P-value adjustment was done
the same way as in single-factor design, when needed.

Calculation of true positive rates (power) and false
positive rates

The sample sizes in the simulated data sets varied from n = 2 to n =
25 and the average library sizes varied from 1 million up to 50 mil-
lion reads. Each condition was simulated 100 times using random
seeds 1 to 100 using the set.seed function in R. Given a significance
threshold of 0.05, the TPR was calculated by

TPR (power) = TP

TP+ FN

and the FPR was calculated by

FPR = 1− specificity = FP

FP+ TN
.

Two standard performance measures, Matthews correlation coeffi-
cient (MCC, also known as the φ statistic) and F-measure are calcu-
lated by

MCC = TP× TN− FP× FN
����������������������������������������������(TP+ FP)(TP+ FP)(TN+ FP)(TN+ FN)√

and

F −measure = 2× TP/(TP+ FP) × TP/(TP+ FN)
(TP/(TP+ FP)) + (TP/(TP+ FN)) ,

where TP is true positives, TN is true negatives, FP is false positives,
and FN is false negatives.

Planning RNA-Seq under the budget constraint

For RNA-Seq cost calculation, we referred to Illumina Hi-Seq sin-
gle-end RNA-Seq prices listed by the Yale Center for Genome
Analysis (http://ycga.yale.edu/services/illuminaprices.aspx). The to-
tal overhead cost of each sample was estimated as $241, which in-
cludes sample quality check and mRNA library construction. The
remaining sequencing cost per lane was $1331 based on HiSeq
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2000 single-end sequencing. Simulated count data were generated as
before, bymodeling gene counts through equation (1) or (2) and the
negative binomial distribution. The formula to calculate the budget
is as follows:

Budget =overhead cost per sample× number of samples

+sequencing depth per sample

× number of samples /sequencing depth per lane× cost per lane

All R code is available for downloading from our website: http://www2.hawaii

.edu/~lgarmire/RNASeqPowerCalculator.htm

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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