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POWER ANALYSIS AND SAMPLE SIZE PLANNING IN ANCOVA DESIGNS

Gwowen Shieh

NATIONAL CHIAO TUNG UNIVERSITY

The analysis of covariance (ANCOVA) has notably proven to be an effective tool in a broad range
of scientific applications. Despite the well-documented literature about its principal uses and statistical
properties, the corresponding power analysis for the general linear hypothesis tests of treatment differences
remains a less discussed issue. The frequently recommended procedure is a direct application of the ANOVA
formula in combination with a reduced degrees of freedom and a correlation-adjusted variance. This article
aims to explicate the conceptual problems and practical limitations of the common method. An exact
approach is proposed for power and sample size calculations in ANCOVA with random assignment and
multinormal covariates. Both theoretical examination and numerical simulation are presented to justify the
advantages of the suggested technique over the current formula. The improved solution is illustrated with
an example regarding the comparative effectiveness of interventions. In order to facilitate the application
of the described power and sample size calculations, accompanying computer programs are also presented.
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1. Introduction

The analysis of covariance (ANCOVA) was originally developed by Fisher (1932) to reduce

error variance in experimental studies. Its essential nature and principal use were well explicated

by Cochran (1957) and subsequent articles in the same issue of Biometrics. The value and use of

ANCOVA have also received considerable attention in social science, for example, see Elashoff

(1969), Keselman et al. (1998), and Porter and Raudenbush (1987). Comprehensive introduction

and fundamental principles can be found in the excellent texts of Fleiss (2011), Huitema (2011),

Keppel and Wickens (2004), Maxwell and Delaney (2004), and Rutherford (2011). It is essential

to note that ANCOVA provides a useful approach for combining the advantages of two highly

acclaimed procedures of analysis of variance (ANOVA) and multiple linear regression. The exten-

sive literature shows that it is one of the major methods of statistical analysis in applied research

across many scientific fields.

The importance and implications of statistical power analysis in scientific research are well

demonstrated in Cohen (1988), Kraemer and Blasey (2015), Murphy et al. (2014), and Ryan

(2013), among others. Accordingly, it is of great practical value to develop theoretically sound

and numerically accurate power and sample size procedures for detecting treatment differences

within the context of ANCOVA. There are numerous published sources that address statistical

theory and applications of power analysis for ANOVA and multiple linear regression. Specifically,

various algorithms and tables for power and sample size calculations in ANOVA have been

presented in the classic sources of Bratcher et al. (1970), Pearson and Hartley (1951), Scheffe

(1961), and Tiku (1967, 1972). The corresponding results for multiple regression and correlation,

especially the distinct notion of fixed and random regression settings, were given in Gatsonis
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and Sampson (1989), Mendoza and Stafford (2001), Sampson (1974), and Shieh (2006, 2007).

However, relatively little research has attempted to address the corresponding issues for ANCOVA.

This lack of further discussion can partly be attributed to the simple framework and conceptual

modification of Cohen (1988) on the use of ANOVA method for power evaluation in ANCOVA

research. It is argued that the ANCOVA of original responses is essentially the ANOVA of the

regression-adjusted or statistically controlled measurements obtained from the linear regression

of unadjusted responses on the covariates that is common to all treatment groups. However, some

modifications are required to account for the number of covariate variables and the strength of

correlation between the response and covariate variables. Accordingly, both the error degrees of

freedom and variance component are reduced. Then, the power and sample size computations in

ANCOVA proceed in exactly the same way as in analogous ANOVA designs. The methodology

of Cohen (1988) has become common practice for power analysis in ANCOVA settings as repeat-

edly demonstrated in Huitema (2011), Keppel and Wickens (2004), Levin (1997), Maxwell and

Delaney (2004), and Yang et al. (1996).

It is well known that the ANOVA adopts the fundamental assumptions of independence, nor-

mality, and constant variance. The corresponding hypothesis testing and theoretical considerations

are valid only if these assumptions are satisfied. The consequences of violations of independence

assumption in ANOVA have been reported in Kenny and Judd (1986), Pavur and Nath (1984), and

Scariano and Davenport (1987), among others. An essential assumption underlying ANCOVA is

the regression coefficients associating the response variable with the covariate variables are the

same for each treatment group. Therefore, the regression adjustment in Cohen’s (1988, pp. 379–

380) covariance framework includes the common regression coefficient estimates derived from

the multiple regression between the response and covariate variables across all treatment groups.

Unlike the original responses, the adjusted responses are generally correlated and thus violate the

independence of observations assumption for ANOVA. Therefore, Cohen’s (1988) procedure is

intrinsically inexact, even with the technical considerations of a deflated degrees of freedom and

a correlation-adjusted variance. Consequently, this prevailing method only provides approximate

power and sample size calculations in ANCOVA designs. It should be stressed that no research

to date has acknowledged this crucial problem and the result has most likely been interpreted as

an exact solution.

Toward the goal of choosing the most appropriate methodology for ANCOVA studies, the

present article focuses on the Wald tests for the general linear hypothesis of treatment effects.

Under the two different assumptions of a priori specified covariate values and multinormal dis-

tributed covariate variables, the exact power functions of the Wald statistic are derived. The analytic

derivations for a general linear hypothesis require the involved operations of matrix algebra and

sophisticated evaluations of matrix t variables that have not been reported elsewhere. Detailed

numerical investigations were conducted to evaluate the existing formulas for power and sample

size computations under a wide range of model settings, including non-normal covariate variables.

According to the analytic justification and empirical assessment, the suggested approach has a

decisive advantage over the conventional method. An applied example regarding the comparative

effectiveness of interventions is presented to illustrate the distinct features and practical usefulness

of the proposed techniques. Computer codes are also presented to implement the recommended

power calculation and sample size determination in planning ANCOVA studies.

2. General Linear Hypothesis

A one-way fixed-effects ANCOVA model with multiple covariates can be expressed as

Yi j = µi +

P∑

k=1

Xki jβk + εi j , (1)
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where Yi j is the score of the j th subject in the i th treatment group on the response variable, µi is

the i th group intercept, Xki j is the score of the j th subject in the i th treatment group on the kth

covariate, βk is the slope coefficient of the kth covariate, and εi j is the independent N (0, σ2) error

with i = 1, . . . , G (≥ 2), j = 1, . . . , Ni , and k = 1, . . . , P (≥ 1). The least-square estimator for

the i th intercept µi is given by

µ̂i = Ȳi −

P∑

k=1

X̄ki ·β̂k, (2)

where Ȳi =
Ni∑

j=1

Yi j/Ni , β̂ = (β̂1, . . . , β̂P )T = S−1
X X SXY , SX X =

G∑
i=1

Ni∑
j=1

(Xi j − X̄i )(Xi j −

X̄i )
T, SXY =

G∑
i=1

Ni∑
j=1

(Xi j − X̄i )(Yi j − Ȳi ), Xi j = (X1i j , . . ., X Pi j )
T, X̄i =

Ni∑
j=1

Xi j/Ni =

(X̄1i ·, . . ., X̄ Pi ·)
T, and X̄ki · =

Ni∑
j=1

Xki j/Ni . Accordingly, the least-squares estimators µ̂i of µi

have the following distributions:

µ̂i ∼ N (µi , σ
2{1/Ni + X̄T

i S−1
X X X̄i }) and Cov(µ̂i , µ̂i ′) = σ2X̄T

i S−1
X X X̄i ′ (3)

for i �= i ′, i and i ′ = 1, . . . , G. Because the covariances between regression-adjusted estimators

{µ̂1, . . ., µ̂G} are generally not zero, they should not be treated as independent variables. For

notational simplicity, the prescribed properties are expressed in matrix form:

µ̂ ∼ NG(µ, σ2V), (4)

where µ̂ = (µ̂1, . . ., µ̂G)T,µ = (µ1, . . .,µG)T, V = D+X̄TS−1
X X X̄, D = Diag(1/N1, . . ., 1/NG)

is the G × G diagonal matrix with diagonal elements {1/N1, . . ., 1/NG}, and X̄ = (X̄1, . . ., X̄G).

The adjusted group means are the expected group responses evaluated at the grand covariate

means:

µ∗
i = µi +

P∑

k=1

X̄k··βk for i = 1, . . . , G, (5)

where X̄k·· =
G∑

i=1

Ni∑
j=1

Xki j/NT , k = 1, . . . , P, and NT =
G∑

i=1

Ni . A natural and unbiased estimator

of the adjusted group mean µ∗
i is

µ̂∗
i = µ̂i +

P∑

k=1

X̄k··β̂k = Ȳi −

P∑

k=1

β̂k(X̄ki · − X̄k··). (6)

Then, the least-squares estimators µ̂∗
i of the adjusted group means µ∗

i have the following distri-

butions:

µ̂∗
i ∼ N (µ∗

i , σ
2{1/Ni + (X̄i − M)TS−1

X X (X̄i − M)})
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and

Cov(µ̂i , µ̂i ′) = σ2(X̄i − M)TS−1
X X (X̄i ′ − M), (7)

where M =
G∑

i=1

Ni∑
j=1

Xi j/NT = (X̄1··, . . ., X̄ P··)
T for i �= i ′, i and i ′ = 1, . . . , G. The vector of

adjusted group mean estimators µ̂
∗ = (µ̂∗

1, . . ., µ̂
∗
G)T has the distribution

µ̂
∗ ∼ NG(µ∗, σ2V∗), (8)

where µ∗ = (µ∗
1, . . .,µ

∗
G)T, V∗ = D + (X̄ − M1T

G)TS−1
X X (X̄ − M1T

G), and 1G is a G × 1 column

vector of all 1’s.

To test the general linear hypothesis about treatment effects or adjusted mean effects in terms

of

H0: Cµ∗ = 0c versus H1: Cµ∗ �= 0c, (9)

where C is a c × G contrast matrix of full row rank and 0c is a c × 1 null column vector, the Wald

test statistic is of the form

W ∗ = (Cµ̂
∗
)T(CV∗CT)−1(Cµ̂

∗
)/{(G − 1)σ̂2} (10)

where σ̂2 = SSE/ν, SSE =
G∑

i=1

Ni∑
j=1

(Yi j − Ȳi )
2 − ST

XY S−1
X X SXY , and ν = NT − G − P . Note

that the contrast matrix is confined to satisfy C1G = 0c. Hence, the general linear hypothesis of

H0: Cµ∗ = 0c versus H1: Cµ∗ �= 0c is equivalent to

H0: Cµ = 0c versus H1: Cµ �= 0c. (11)

Also, the Wald test statistic can be rewritten as

W ∗ = (Cµ̂)T(CVCT)−1(Cµ̂)/{(G − 1)σ̂2}. (12)

The Wald-type test has great practical and pedagogical appeal than the test procedure under the

full-reduced-model formulation. Because of its simplicity and generality, the associated properties

are derived and presented in the subsequent illustration. Under the null hypothesis with Cµ = 0c,

the test statistic W ∗ has an F distribution

W ∗ ∼ F(c, ν), (13)

where F(c, ν) is an F distribution with c and ν degrees of freedom, ν = NT − G − P , and

NT =
G∑

i=1

Ni . Hence, H0 is rejected at the significance level α if W ∗ > Fc, ν, α, where Fc, ν, α

is the upper (100 · α)th percentile of the F distribution F(c, ν). For fixed covariate values of

{Xi j , j = 1, . . ., Ni and i = 1, . . . , G}, the test statistic W ∗ has the general distribution

W ∗ ∼ F(c, ν,�), (14)

where F(c, ν,�) is a non-central F distribution with c and ν degrees of freedom and non-centrality

parameter
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� = (Cµ)T(CVCT)−1(Cµ)/σ2. (15)

The associated power function of the general linear hypothesis is readily obtained as

�(�) = P{F(c, ν,�) > Fc, ν, α}. (16)

3. Random Covariate Models

The prescribed statistical inferences about the general linear hypothesis are based on the

conditional distribution of the covariate outcomes. As noted in Gatsonis and Sampson (1989),

Mendoza and Stafford (2001), and Sampson (1974), the actual values of covariates cannot be

known in advance just as the primary responses. It is vital to treat the covariates as random

variables and to derive the distribution of the test statistic over possible values of the covariate

variables. Moreover, Elashoff (1969) and Harwell (2003) emphasized that the statistical assump-

tions underlying the ANCOVA include the random assignment of subjects to treatments and the

covariate variables are independent of the treatment effects. Moreover, the normal covariate set-

ting is commonly employed to provide a fundamental framework for analytical derivation and

theoretical discussion in ANCOVA studies as in Elashoff (1969) and Harwell (2003). Thus, it is

constructive to assume the covariates have independent and identical normal distribution

Xi j ∼ NP (θ,�), (17)

where θ is a P × 1 vector and � is a P × P positive-definite variance–covariance matrix for

i = 1, . . . , G, and j = 1, . . ., Ni .

Under the multinormal distribution of {Xi j ∼ NP (θ,�), j = 1, . . ., Ni and i = 1, . . . , G},

it is straightforward to show (Gupta and Nagar 1999, Theorem 2.3.10 and Theorem 3.3.6) that

Z = X̄CT(CDCT)−1/2 has a matrix normal distribution and SX X has a Wishart distribution

Z ∼ NP,c(0,� ⊗ Ic) and SX X ∼ WP (NT − G,�), (18)

where Ic is an identity matrix of dimension c. Accordingly, both T = {SX X + ZZT}−1/2Z and

T∗ = Tξ have an inverted matrix variate t-distribution (Gupta and Nagar 1999, Section 4.4):

T ∼ I T P,C (ν + 1, 0, IP , Ic) and T∗ ∼ I T P,1(ν + 1, 0P , IP , Ŵ), (19)

where ξ = (CDCT)−1/2(Cµ)/σ and Ŵ = ξTξ = (Cµ)T(CDCT)−1(Cµ)/σ2. Moreover, A∗ =

T∗T
T∗/Ŵ has a matrix variate beta type I distribution (Gupta and Nagar 1999, Theorem 5.2.4) or

a Beta distribution

A∗ ∼ B I
1 (P/2, (ν + 1)/2) ≡ Beta{P/2, (ν + 1)/2}. (20)

Following these results, standard matrix algebra shows that non-centrality parameter � defined

in Equation 15 has the alternative form

� = ξT(Ic − TTT)ξ = ŴB∗, (21)
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where B∗ = (1 − A∗) ∼ Beta{(ν + 1)/2, P/2}. In connection with the effect size measures in

ANOVA, the first component Ŵ in � is rewritten as

Ŵ = NT γ2 (22)

where γ2 = σ2
γ/σ

2, σ2
γ = (Cµ)T(CQCT)−1(Cµ), Q = Diag(1/q1, . . ., 1/qG), qi = Ni/NT for

i = 1, . . . , G. Consequently, the non-centrality term � has a useful formulation

� = NT γ2 B∗. (23)

It should be pointed out that Gupta and Nagar (1999) only provides the generic definition and ana-

lytic properties of an inverted matrix variate t-distribution. Their results are applied and extended

here to the context of ANCOVA. Accordingly, under the random covariate modeling framework,

the W ∗ statistic has the two-stage distribution

W ∗|B∗ ∼ F(c, ν,�) and B∗ ∼ Beta{(ν + 1)/2, P/2}. (24)

The exact power function can be formulated as

�E (�) = EB[P{F(c, ν,�) > Fc, ν,�}], (25)

where the expectation EB is taken with respect to the distribution of B∗.

Notably, the omnibus test of the equality of treatment effects is a special case of the general

linear hypothesis by specifying the contrast matrix as CDµ = 0(G−1) where

CD = (1(G−1),−I(G−1)) (26)

is a (G − 1) × G contrast matrix of full row rank. The component γ2 in the non-centrality term

� is simplified as

δ2 = σ2
δ/σ

2, (27)

where σ2
δ =

∑G
i=1 qi (µi − µ̃)2 and µ̃ =

∑G
i=1 qiµi . The corresponding non-central component

� is expressed as

�D = NT δ2 B∗. (28)

The power function of the omnibus F test of treatment differences is simplified as

�E (�D) = EB[P{F(G − 1, ν,�D) > F(G−1), ν, α}]. (29)

Note that σ2
δ reduces to the form σ2

δ =
G∑

i=1

(µi −µ̄)2/G with µ̄ =
G∑

i=1

µi/G when qi = 1/G for all

i = 1, . . ., G. Hence, δ2 has the same form as the signal to noise ratio f 2 in ANOVA (Fleishman

1980) for balanced designs. Although the prescribed application of general linear hypothesis is

discussed only from the perspective of a one-way ANCOVA design, the number of groups G

may also represent the total number of combined factor levels of a multi-factor ANCOVA design.

Hence, using a contrast matrix associated with a specific designated hypothesis, the same concept

and process of assessing treatment effects can be readily extended to two-way and higher-order

ANCOVA designs.
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4. Sample Size Determination

It is essential to note that the power function �E depends on the group intercepts {µ1, . . . ,µG}

and variance component σ2 through the non-centrality � or the effect size γ2, but not the covariate

coefficients {β1, . . . , βP } . Also, under the prescribed stochastic assumptions for the covariate

variables, the multivariate normal distribution leads to the unique conditional property on a beta

distribution in the general distribution of the test statistic W ∗. Due to the fundamental property

of the contrast matrix, the resulting distribution and power function do not depend on the mean

vector θ and variance–covariance matrix � of the multinormal covariate distribution. To determine

sample sizes in planning research designs, the power functions �E can be applied to calculate

the sample sizes {NE1, . . . , NEG} needed to attain the specified power 1 − β for the chosen

significance level α, contrast matrix C, intercept parameters {µ1, . . . ,µG}, variance component

σ2, and the number of covariates P .

For an ANCOVA design with a priori designated sample size ratios {r1, . . . , rG} with ri =

Ni/N1 for i = 1, . . . , G. The required computation is simplified to deciding the minimum sample

sizes NE1 (with NEi = NE1 · ri , i = 2, . . . , G) required to achieve the selected power level with

the power functions �E . Using the embedded functions in popular software systems, optimal

sample sizes can be readily computed through an iterative process. The SAS/IML (SAS Institute

2017) and R (R Development Core Team 2017) programs employed to perform the suggested

power and sample size calculations are available as supplementary material. The proposed power

and sample size procedures for the general linear hypothesis tests of ANCOVA subsume the

results in Shieh (2017) for a single contrast test as a special case. Notably, the derivations and

manipulations of an inverted matrix variate t are more involved than that of a Hotelling’s T 2

distribution as demonstrated in Shieh (2017).

Alternatively, a simple procedure for the comparison of treatment effects has been described

in Cohen (1988, pp. 379–380). Unlike the proposed two-stage distribution, it is suggested that

W ∗ has a simplified F distribution

W ∗ ∼ F(G − 1, ν,�A), (30)

where �A = NT δ2. The corresponding power function is of the form

�A(�A) = P{F(G − 1, ν,�A) > F(G−1), ν, α}. (31)

It is easily seen from the model assumption given in Equation 1 that σ2
Y = Var(Yi j ) = βT

�β+σ2

and ρ = Corr(Yi j ,
P∑

k=1

Xki jβk) = βT
�β/{σ2

Y · βT
�β}1/2 where β = (β1, . . . , βP )T. Hence, the

advantage of ANCOVA over ANOVA in the reduction of error variance from σ2
Y to σ2 = (1−ρ2)σ2

Y

by a factor (1−ρ2). For ease of illustration, the power function of the omnibus F test of treatment

differences in ANOVA is also presented here:

�O(�O) = P{F(G − 1, NT − G,�O) > F(G−1), (NT −G), α}, (32)

where �O = (1 − ρ2)�A. With the reduction of error variance from σ2
Y to σ2 = (1 − ρ2)σ2

Y , it

is evident that �O ≤ �A. Hence, the computed power �O is generally less than �A when all

other factors are fixed despite the marginal difference between the two error degrees of freedom

NT − G and ν = NT − G − P .
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The prevailing procedure of Cohen (1988) provides a direct application of the ANOVA

formula in combination with a reduced degrees of freedom and a correlation-adjusted variance.

It is computationally simple because the simple formulation �A depends only on a non-central F

distribution. On the other hand, one critical disadvantage of this method is that the F distribution

and the associated sample size formula do not fully take into account the distributional features

of covariates. A direct comparison of the two non-centrality components in Equations 28 and 30

reveals that �D < �A because 0 < B∗ < 1. This indicates that the power function �A tends to

over-estimate the true power �E and it also leads to an under-estimated sample size in attaining

a desired power level. Notably, the suggested exact procedure is of pedagogical importance and

involves a beta mixture of non-central F distributions. These theoretical examinations assure that

the proposed technique has analytical superiority over the current method of Cohen (1988). Their

practical accuracy will be demonstrated in the succeeding empirical assessments.

5. Numerical Assessments

To further demonstrate the contrasting features and practical consequences of the proposed

approach and existing methods, detailed empirical appraisals are conducted to examine their

performance in power and sample size calculations. For ease of comparison, the numerical illus-

tration considered in Maxwell and Delaney (2004, pp. 441-443) for sample size planning and

power analysis is utilized as the fundamental framework.

In particular, Maxwell and Delaney (2004) described an ANOVA design with G = 3,

group intercepts {µ1,µ2,µ3} = {400, 450, 500} , and error variance σ2
Y = 10, 000. Then, an

ANCOVA model is introduced with the inclusion of an influential covariate variable X with

ρ = Corr(X, Y ) = 0.5 to partially account for the variance in the response variable Y . The cor-

responding unexplained error variance σ2 in ANCOVA is reduced as σ2 = (1 − ρ2)σ2
Y = 7, 500.

To detect the treatment differences, they showed that the total sample sizes required to have a

nominal power of 0.80 are 63 and 48 for the balanced ANOVA and ANCOVA designs, respec-

tively. Thus, the ANCOVA design has the potential benefits to attain the same power with nearly

25% fewer subjects than an ANOVA. It should be noted that the power formulas �A and �O

given in Equations 31 and 32, respectively, were applied for sample size calculations in Maxwell

and Delaney (2004). To show a profound implication of the sample size procedures, extensive

simulation study was performed under a wide range of model configurations.

First, the number of covariates and the population correlation between the response and

covariate variables are extended to P = 1, . . . , 10 and ρ = 0.1, 0.5, and 0.9. In each combined

case of P and ρ, the required total sample sizes NT O , NT A, and NT E are computed with the

power functions �O , �A and �E for the ANOVA, approximate ANCOVA, and exact ANCOVA

methods, respectively. Throughout this numerical investigation, the significance level and nominal

power are chosen as α = 0.05, and 1−β = 0.80, respectively. Note that the effect sizes associated

with ρ = 0.1, 0.5, and 0.9 are δ2 = 0.1684, 0.2222, and 0.8772, respectively. Second, to assess

the potential impact of different and smaller effect sizes, the intercept parameters are modified

as {µ1,µ2,µ3} = {410, 450, 490} in the second set of numerical investigations. The resulting

effect sizes are δ2 = 0.1077, 0.1422, and 0.5614 for ρ = 0.1, 0.5, and 0.9, respectively. Overall,

these considerations result in a total of 60 different combined configurations. For {µ1,µ2,µ3} =

{400, 450, 500} , the computed total sample sizes NT are summarized in Tables 1, 2 and 3 for

ρ = 0.1, 0.5, and 0.9, respectively. On the other hand, the corresponding results of {µ1,µ2,µ3} =

{410, 450, 490} are presented in Tables 4, 5 and 6.

The sample size calculations presented in Tables 1, 2, 3, 4, 5 and 6 reveal that, as expected,

the computed sample sizes of the ANOVA procedure remain identical for different number of

covariates P when all other factors are fixed. In contrast, the sample size of the exact approach
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Figure 1.
Errors of power estimation for G = 3 and ρ = 0.1

increases with increase in the number of covariates P and with decrease in the effect size δ2

when all other configurations are held constant. Likewise, the total sample size produced by the

approximate procedure also increases with decrease in the effect size δ2. However, the reported

sample sizes in Tables 1 and 2 do not vary with P , and the computed sample sizes marginally

increase with larger P for the other cases in Tables 3, 4, 5 and 6. More importantly, the total

sample sizes NT O , NT A, and NT E associated with the ANOVA, approximate ANCOVA, and

exact ANCOVA procedures have a consistent order of NT A ≤ NT O ≤ NT E for all the cases in

Tables 1 and 4 with ρ = 0.1. The order between the two sample sizes NT O and NT E is reversed for

large magnitudes of ρ = 0.5 and 0.9 with NT A ≤ NT E ≤ NT O for the situations in Tables 2, 3, 5

and 6. For ease of explication, the estimated powers for the three different sample size procedures

are also listed in Tables 1, 2, 3, 4, 5 and 6.

To justify the accuracy of sample size determination, Monte Carlo simulation studies were

performed for the prescribed 60 design settings. With the computed sample sizes, parameter

configurations, and nominal power, estimates of the true power were computed via Monte Carlo

simulation of 10,000 independent data sets. For each replicate, NT O , NT A, and NT E normal

outcomes are generated with the ANCOVA models. Because the power function �E is irrelevant

to the mean vector θ and variance–covariance matrix � of the designated covariate distribution, the

covariates are assumed to have independent and identical multinormal distribution NP (0P , IP )

where 0P is a P × 1 null column vector and IP is an identity matrix of dimension P . The

regression coefficients are chosen as β1 = . . . = βP = β∗ and β∗ is a designated value so that the

resulting correlation ρ = 0.1, 0.5, and 0.9. Next, the Wald test statistic W ∗ was computed and

the simulated power was the proportion of the 10,000 replicates whose test statistics W ∗ exceed

the corresponding critical value F2, ν, 0.05. The simulated power and error are also summarized in

Tables 1, 2, 3, 4, 5 and 6 for all the ANCOVA designs. To illustrate the contrasting behavior of

the three contending techniques, the induced errors for ρ = 0.1, 0.5, 0.9 in Tables 1, 2 and 3 are

also plotted in Figs. 1, 2, and 3, respectively.
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GWOWEN SHIEH

According to the power comparisons, the ANOVA method generally does not provide accurate

sample size calculations for an ANCOVA design. Unsurprisingly, the only exceptions occurred

when the number of covariates is small and the correlation between the covariates and the response

variable is close to zero as in Tables 1 and 4. The approximate ANCOVA method consistently gives

larger power estimate than the simulated power for all cases considered here. The discrepancy

noticeably increases with the number of covariates and the magnitude of effect size. The resulting

errors can be as large as 0.0845, 0.1105, and 0.3049 associated with the scenarios of P = 10

in Tables 1, 2 and 3, respectively. For the relative smaller effect sizes in Tables 4, 5 and 6, the

performance of the approximate ANCOVA formula has improved with the errors of 0.0506,

0.0628, and 0.2710 for the cases of P = 10. Consequently, the overestimation problem of the

power function �A suggests that the computed sample sizes are generally inadequate to achieve

the designated power level.

Regarding the accuracy of the proposed exact ANCOVA approach, the corresponding results

in Tables 1, 2, 3, 4, 5 and 6 show that the differences between the estimated and simulated powers

are fairly small. The largest absolute error is 0.0106 for the two cases of P = 8 and 5 in Tables 2

and 5, respectively. All the other 58 cases in Tables 1, 2, 3, 4, 5 and 6 have an absolute error less than

0.01. These numerical results imply that the proposed exact approach outperforms the ANOVA

method and the approximate ANCOVA procedure for all design configurations considered here.

Therefore, the suggested power and sample size calculations can be recommended for general

use.

6. An Example

A documented example of Maxwell and Delaney (2004) is presented and extended next to

demonstrate the usefulness of the suggested power and sample size procedures and accompanying

software programs for the omnibus test of treatment effects in ANCOVA designs.

Specifically, Maxwell and Delaney (2004, Table 9.7, p. 429) provided the data for assessing

the effectiveness of different interventions for depression. There are 10 participants with random

assignment in each of the three intervention groups of (1) selective serotonin reuptake inhibitor

(SSRI) antidepressant medication, (2) placebo, or (3) wait list control. The measurements are

the pretest and posttest Beck Depression Inventory (BDI) scores of depressive individuals. The

primary interest of the ANCOVA study is on the group differences of posttest BDI measurements

using the pretest BDI scores as covariates. The results show that the estimates of adjusted group

means and error variance are {µ̂∗
1, µ̂

∗
2, µ̂

∗
3} = {7.5366, 11.9849, 13.9785} and σ̂2 = 29.0898,

respectively. The omnibus F test statistic of treatment differences is W ∗ = 3.73, which yields a

p-value of 0.0376. Therefore, the test result suggests that the intervention effects are significantly

different at α = 0.05. Although this is not the focus in the illustration of Maxwell and Delaney

(2004), it can be computed from an ANOVA of posttest scores that the variance estimate is

σ̂2
Y = 39.6185. Hence, the sample squared correlation between the posttest and pretest BDI

scores is ρ̂2 = 1 − σ̂2σ̂2
Y = 1 − 29.0898/39.6185 = 0.2658. The observed value of the ANOVA

F test of group differences is F∗ = 3.03 with a p-value of 0.0647. At the significance level 0.05,

the omnibus test of no intervention group difference on the posttest BDI scores cannot be rejected.

Although null hypothesis significance testing is useful in various applications, it is important to

consult the recent articles of Wasserstein and Lazar (2016) and Wasserstein et al. (2019) for the

recommended principles underlying proper use and interpretation of statistical significance and

p-values.

In view of the prospective nature of advance research planning, the general guidelines suggest

published findings or expert opinions can offer reliable information for the vital characteristics

of future study. Accordingly, it is prudent to adopt a minimal meaningful effect size in order
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to enhance the generalizability of the result and the accumulation of scientific knowledge. For

illustration, the prescribed summary statistics of the three-group depression intervention study

are employed as population adjusted mean effects and variance component. The suggested power

procedure shows that the resulting power for the omnibus test of group differences is �E = 0.6145

when the significance level α equals to 0.05. Because the computed power is substantially smaller

than the common levels of 0.80 or 0.90, this implies that the group sample size N = 10 does

not provide a decent chance of detecting the potential differences between treatment groups.

To determine the proper sample size, the proposed sample size computations showed that the

balanced group sample sizes of 15 and 19 are required to attain the nominal power of 0.8 and

0.9, respectively. The total sample sizes NT = 45 and 57 are substantially larger than 30 of the

exemplifying design. Essentially, it requires 50% and 90% increases of the sample size to meet the

common power levels of 0.80 and 0.90, respectively. These design configurations are presented in

the user specifications of the SAS/IML and R programs presented in the supplemental programs.

Researchers can easily identify these statements and then modify the input values in the computer

code to incorporate their own model characteristics.

7. Conclusions

ANCOVA provides a useful approach for combining the advantages of two widely established

procedures of ANOVA and multiple linear regression. Despite the close resemblance among the

three types of statistical analyses, their power computation and sample size determination are

still theoretically distinct when the stochastic properties of the continuous covariates or predictors

are taken into account. It is generally recognized that the use of ANCOVA may considerably

reduce the number of subjects required than an ANOVA design to attain the required precision

and power. For planning and evaluating randomized ANCOVA designs, an ANOVA-based sample

size formula has been proposed in Cohen (1988) to accommodate the reduced error variance and

degrees of freedom because of the use of effective and influential covariates. The procedure is

very appealing from a computational standpoint and has been implemented in some statistical

packages. However, no further analytical discussion and numerical evaluation are available to

validate the appropriateness and implications of Cohen’s (1988) method in the literature.

This article aims to address the potential limitation and approximate nature of the prevailing

method and to describe an alternative and exact approach for power and sample size calculations

in ANCOVA designs. It is demonstrated both theoretically and empirically that the seemly exact

technique of Cohen (1988) does not involve all of the covariate properties in ANCOVA. Exact

power and sample size procedures are described for the general linear hypothesis tests of treatment

effects under the assumption that the covariate variables have a joint multinormal distribution.

The simulation results reveal that the proposed technique is superior to the current method under a

wide range of ANCOVA designs. More importantly, additional numerical assessments show that

the suggested power function and sample size procedure preserve reasonably good performance

under various non-normal situations, such as exponential, Gamma, Laplace, Log normal, uni-

form, and discrete uniform distributions. Hence, the proposed two-stage distribution and power

function of the Wald statistic for the general linear hypothesis tests possess desirable robust prop-

erties and are also applicable to other continuous covariate distributions in various ANCOVA

designs. Consequently, the presented methodology expands the power assessment and sample

size determination of Shieh (2017) for contrast analysis in ANCOVA. To enhance the practical

values, computer algorithms are also provided to facilitate the recommended power calculations

and sample size determinations. With respect to the importance and implementation of random

sampling, the fundamental and standard sampling designs and estimation methods can be found in

Thompson (2012). Heterogeneity of variance is one of the unique and problematic factors known
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as detrimental to the statistical inferences in ANCOVA (Harwell 2003; Rheinheimer and Penfield

2011). A potential topic for future study is to develop proper power and sample size procedures

within the variance heterogeneity framework.
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