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Abstract

Background: Sample size calculation and power estimation are essential components of experimental designs in

biomedical research. It is very challenging to estimate power for RNA-Seq differential expression under complex

experimental designs. Moreover, the dependency among genes should be taken into account in order to obtain

accurate results.

Results: In this paper, we propose a simulation based procedure for power estimation using the negative binomial

distribution and assuming a generalized linear model (at the gene level) that considers the dependence between

gene expression level and its variance (dispersion) and also allows equal or unequal dispersion across conditions. We

compared the performance of both Wald test and likelihood ratio test under different scenarios. The null distribution

of the test statistics was simulated for the desired false positive control to avoid excess false positives with the usage

of an asymptotic chi-square distribution. We applied this method to the TCGA breast cancer data set.

Conclusions: We provide a framework for power estimation of RNA-Seq data. The proposed procedure is able to

properly control the false positive error rate at the nominal level.
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Background
Discovering differential expression has been the main

focus of many biological experiments and many patient

cohort studies for several decades. Since the invention

of microarray chips twenty years ago, a huge amount of

data has been generated by profiling thousands of genes in

various cell lines, model organisms, and human samples.

Recently, RNA-Seq technology became the replacement

of array technology because of its ability to not only quan-

tify the transcriptome but also detect gene isoforms, novel

transcripts, and gene fusion [1–3]. Similar to microarray

studies, sample size calculations and power estimation are

still some of the key issues in designing RNA-Seq experi-

ments, but face some new challenges given the nature of

RNA-Seq data.

RNA-Seq studies generate count based data. Several

earlier published papers used Poisson distribution to

model the count data [4–6]. Due to the restraint of the

mean equal to the variance under the Poisson distribution,
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the negative binomial (NB) distribution is a natural choice

to provide a better fit for RNA-Seq data by allowing

an over-dispersion parameter to capture extra variability

over the mean. Thus, several specialized software pack-

ages have been developed to model RNA-Seq data based

on the negative binominal distribution. Robinson et al.

[7] developed the R package edgeR, which provides an

exact test for two group comparisons initially and then

was expanded to allow multifactor designs by a general-

ized linear model. Additionally, Love et al. [8] developed

the R package DESeq2 for differential expression analy-

sis, which provides shrinkage estimators for both log fold

change and dispersion by imposing a hierarchical model

on them.

For testing differential expression with RNA-Seq exper-

iments, several studies have attempted to provide sample

size calculation and power estimation at a single gene level

in the recent literature. Fang and Cui [6] introduced a sim-

ulation based power estimation approach using Wald test

and likelihood ratio test (LRT). Li et al. [9] proposed an

exact test method for calculating sample size at a single

gene level or the marginal level, which is implemented in

a web tool called RNAseqPS [10] and an R package called
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RnaSeqSampleSize. Other studies have been published for

sample size calculation and power estimation at a data

set level by evaluating the proportion of true discover-

ies. Shyr and Li [11] proposed a sample size calculation

method using TCGA data. Ching et al. [12] simulated

data from six public data sets and compared power in the

paired and unpaired designs. The PROPERmethod byWu

et al. [13] is a prospective power assessment approach,

which simulated data based on an actual RNA-Seq data

set, assessed several empirical error rates and empirical

power levels, and stratified them by mean expression and

dispersion. However thesemethods require simulations of

all genes based on pilot data or data with similar biologi-

cal context, and the specification of effect sizes of all genes

simultaneously is a big challenge.

The above-mentioned literature on RNA-Seq sample

size calculation and power estimation employed com-

mon analysis approaches, such as edgeR or DESeq2, that

assume the negative binomial distribution. However, all

these NB-based approaches have resulted in an inflated

type I error rate as reported in several papers [14–17].

Accurate sample size calculation and power estimation

should rely on an appropritate control of false positive

error rate. Thus the major contribution of our study is that

we addressed this issue by using a simulation based empir-

ical approach. This approach properly controls the false

positive error rate at the desired level. The idea of using

the simulation based approachwas originally proposed for

modeling brain lesion counts in a multiple slerosis clini-

cal trial by Rettiganti and Nagaraja [18]. But in their study,

a simulation based method, called an exact parametric

test, was developed for determining the critical values for

testing treatment effect. The authors showed that the chi-

square test used forWald, Score, and LRT fails tomaintain

the nominal significance level, especially for small sam-

ple size studies. To overcome this deficiency in sample

size calculation and power estimation approaches and to

accommodate designs with multiple groups or multiple

factors, we provide a framework that can be implemented

for power estimation. The proposed simulation based pro-

cedure at a single gene level or marginal level uses the

exact parametric test for power estimation to ensure the

false positive error rate is properly controlled at the nom-

inal level. In addition, we extended this procedure to

unequal dispersion parameter cases for RNA-Seq sam-

ple size calculation and power estimation, which has not

been proposed before. Simulations were conducted for the

proposed procedure under both scenarios.

Methods

Negative binomial model

A negative binomial random variable X with mean μ and

dispersion φ is denoted as NB(μ,φ). It has variance μ +

μ2φ and probability mass function as follows:

P(X = x) =
Ŵ(x + φ−1)

Ŵ(φ−1)Ŵ(x + 1)

( 1

1 + μφ

)φ−1( μ

φ−1 + μ

)x
,

(1)

x = 0, 1, 2, · · · ;μ > 0;φ > 0.

Dispersion as a function of mean expression

Love et al. [8] assume that the dispersion φ follows a log-

Normal prior distribution with mean as a function of μ.

The dispersion’s functional trend is modeled as

φtr(μ) =
a1

μ
+ a0. (2)

To estimate this functional form, gene-wise dispersion

estimators were regressed against the means of the nor-

malized counts. This approach provides gene-wise shrink-

age estimators of the dispersion parameter by assuming

the mean-dispersion dependence for all genes and shows

adequate power for detecting differential expression espe-

cially in small sample size experiments.

Likelihood ratio test

Without loss of generality, we use γ to denote the fold

ratio of a gene between two biological conditions. We are

interested in testing the hypothesisH0 : γ = 1 vs. hypoth-

esis H1 : γ �= 1. Let x1, x2, · · · , xn1 and y1, y2, · · · , yn2
represent the gene expression counts from each condition.

The LRT statistic is given by

L = −2log

(

sup�0L(μ, γ ,φ)

sup�L(μ, γ ,φ)

)

. (3)

According to Rettiganti and Nagaraja [18], the maxi-

mum likelihood estimate (MLE) of μ under �0 is

μ̃ =
n1x̄ + n2ȳ

n1 + n2
. (4)

While under �, the MLE of μ is x̄1, and the MLE of γ is

ȳ/x̄. Dispersion φ is estimated by numerically maximizing

the likelihood.

Wald test

A Wald test for testing log transformed γ with H0 :

log(γ ) = 0 vs. H1 : log(γ ) �= 0 is given by

W (log(γ )) =

(

log(γ̂ )

σ̂γ /γ̂

)2

. (5)

False positive error rate control

With thousands of genes tested in an RNA-Seq study,

multiple comparison adjustment is necessary. While the

Bonferroni method for controlling the family-wise error

rate (probability of one or more false rejections among

all comparisons) is very conservative, a less conservative

procedure, named the extended interpretation of the Bon-

ferroni method, for controlling the mean number of false

positives can be used for multiplicity adjustment [19]. In
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other words, the procedure controls the per family error

rate (PFER) or per comparison error rate (PCER). It can be

made as powerful as the Benjamimi-Hochberg FDR con-

trol procedure, and shows greater stability than the FDR.

In our simulations, the nominal false positive error rate α

will be the PCER for a single gene or at the marginal level.

Empirical parametric test

Inferences on the Wald test and the LRT typically rely

on the chi-square distribution by asymptotic theory for

large sample sizes. But this may lead to liberal results for

small sample sizes since asymptotic theory may not work

as expected. To address this issue for small sample sizes,

the simulation based test by Rettiganti and Nagaraja [18]

is used to provide a proper false positive error rate con-

trol. In summary, the empirical null distribution of the test

statistics (Wald or LRT) is obtained from simulated exper-

imental data under the null hypothesis for a large number

of iterations (e.g., 100,000). The 100(1 − α)th percentile

from the null test statistics will be used as a signifi-

cance cutoff for testing under the alternative hypothesis

by comparing the test statistics with this percentile cutoff

value.

Power estimation procedure

1. Specify all input parameters: sample size per

condition n ; mean expression μ; fold ratio between

conditions γ , nominal false positive error rate α,

number of simulations T.
2. Estimate the mean-dispersion functional form using

pilot data set or specify an assumed functional form.

3. Calculate dispersion φ using Eq. 2 with mean

expression μ.

4. Simulate count data from NB(μ,φ) T times under

both null and alternative hypotheses using the input

parameters.

5. Fit NB model and obtain the test statistics (Wald or

LRT) under the null hypothesis.

6. Calculate 100(1 − α)th percentile as the significance

cutoff.

7. Fit NB model and obtain test statistics (Wald or

LRT) under the alternative hypothesis.

8. Calculate power for the specified input parameters.

Results

Simulations

Parameter settings

Count data were simulated from a negative binomial

distribution under two experimental conditions (e.g.

control vs. treatment) with equal dispersion parame-

ters or unequal dispersion parameters (ratio of 1.5)

between conditions. The parameters needed to cal-

culate power of a single gene or marginal level are

sample size per condition n, mean expression μ of

control group, treatment-to-control fold ratio γ , and

nominal false positive error rate α. Simulation settings

were n = 5, 10, 20, 30, 40;μ = 4, 20, 100, 500; γ =
1
3 ,

1
2 ,

1
1.5 , 1, 1.5, 2, 3;α = 0.01, 0.005, 0.001, 0.0005. The dis-

persion parameter φ was calculated for each μ from the

mean-dispersion functional form φ = 0.26 + 3.65/μ esti-

mated from an unpublished canine thyroid RNA-Seq data

set (Fig. 1). To explore the effect of the mean-dispersion

functional form, a low-dependency (φ = 1.56 + 3.65/μ)

and a high-dependency (φ = 0.032 + 3.65/μ) were

also considered in the simulations as shown in Fig. 1. At

each setting, 100,000 simulations were run under the null

hypothesis and 10,000 simulations were run under the

alternative hypothesis. The critical value was estimated by

the empirical 100(1 − α)th percentile from the null Wald

and LRT statistics.

Equal dispersion

Figures 2 and 3 show the QQ plots for the Wald statistics

and the LRT statistics under the null hypothesis at sample

size n = 5, 10, 20, 40 with mean expression μ = 20. When

sample size increases, the distribution of either Wald or

LRT statistics converges toward the chi-square distribu-

tion with 1 degree of freedom with a faster convergence

for the LRT. The discrepancy is quite large when the sam-

ple size is small. Figure 4 shows the critical values using

Fig. 1Mean-dispersion functional form for simulations. DESeq2

method was applied on a pilot data of unpublished canine thyroid

RNA-Seq data set for setting up simulation parameters. The plot

shows the estimated mean-dispersion function form (red dots)

relative to the mean of the normalized counts. Black dots represent

per-gene estimates of the dispersion while blue dots represent

moderated estimates calculated by DESeq2. The fitted functional form

and a lower and higher dependency functional forms were used in

the simulation studies
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Fig. 2QQ plot of null Wald statistics with equal dispersion parameters.

Data were simulated 100,000 times with μ = 20 under the null

hypothesis. Sample sizes were set at n = 5, 10, 20,and 40. Wald test

was used for testing mean difference between two conditions. The

discrepancy of the null Wald statistics from chi-square distribution

with 1 degree of freedom gets smaller when sample size increases

the empirical parametric test and the chi-square distri-

bution at 8 different sample sizes and 5 different mean

expression levels for both Wald test and LRT. The critical

values get smaller with larger sample sizes. The empiri-

cal parametric approach for both Wald test and LRT has

Fig. 3 QQ plot of null LRT statistics with equal dispersion parameters.

Data were simulated 100,000 times with μ = 20 under the null

hypothesis. Sample sizes were set at n = 5, 10, 20,and 40. The LRT

was used for testing mean difference between two conditions. The

discrepancy of the null LRT statistics from chi-square distribution with

1 degree of freedom gets smaller when sample size increases
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Fig. 4 Critival values plot for both Wald test and LRT with equal

dispersion parameters. Critical values were calculated at the nominal

false positive error rate of 0.001 from empirical percentile of null

statisitics at 5 different mean expression levels for both Wald test

(solid line) and LRT (dashed line), and for the chi-square distribution

with 1 degree of freedom (purple line). Both Wald test and LRT with

the empirical distribution have larger critical values than both Wald

test and LRT with the chi-square distribution, and the Wald test has

much larger values than the LRT with the empirical distribution

much higher critical values than the chi-square distribu-

tion at smaller sample sizes, and the differences decrease

when the sample size gets larger. The Wald test has larger

critical values than the LRT in general. At each sample

size and each mean expression level, the false positive

error rate is controlled at the nominal level by the empir-

ical parametric test. However, the estimated false positive

error rate of either Wald test or LRT (Fig. 5) following the

asymptotic chi-square distribution with 1 degree of free-

dom is much larger than the nominal false positive error

rate, especially for small sample sizes.

Figure 6 and Additional file 1: Figure S1 show power at

8 different sample sizes and 6 different fold changes with

mean expression μ = 100 for the Wald test and the LRT

at α = 0.001. In both plots, power increases with larger

sample sizes and larger absolute fold changes. Figure 7

and Additional file 1: Figure S2 show power at 8 different

sample sizes and 5 different mean expression level with

fold change γ = 2 under the alternative hypothesis and

α = 0.001. In both plots, power increases with larger

sample sizes and larger mean expression levels. The Wald

test and the LRT have similar power at different param-

eter values. Compared to the results for the medium-

dependency functional form, both low-dependency and

high-dependency functional forms have similar critical

values and false positive error rates, but power esti-

mation is lower(higher) for low(high)-dependency. (See

Additional file 1: Figures S3–S8 for results using α = 0.01
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Fig. 5 False positive error rate plot for both Wald test and LRT with

equal dispersion parameters. False positive error rate was calculated

for both Wald test (solid line) and LRT (dashed line) following a

chi-square distribution with 1 degree of freedom at 5 different mean

expression levels. The nominal false positive error rate for both Wald

and LRT with the empirical distribution is shown in purple line

(α = 0.001). Both tests with the chi-square distribution have the

inflated false positive error rates

and Additional file 1: Figures S9–S20 for results with

low(high)-dependency functional form).

Unequal dispersion

The QQ plot of the Wald test under the unequal dis-

persion setting (Additional file 1: Figure S21) is similar
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Fig. 6 Power plot at μ = 100 for the Wald test with equal dispersion

parameters. Power was calculated at 8 different sample sizes and 6

different fold changes under the alternative hypothesis with μ = 100

and α = 0.001. Power is higher for larger sample sizes and higher

absolute fold changes
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Fig. 7 Power plot at γ = 2 for the Wald test with equal dispersion

parameters. Power was calculated at 8 different sample sizes and 5

different expression levels with γ = 2 under the alternative

hypothesis and α = 0.001. Power is higher for larger sample sizes

and higher expression levels

to the QQ plot of the equal dispersion setting, but the

LRT (Additional file 1: Figure S22) has minor differences

between QQ plots of different sample sizes. Figure 8

shows the critical values of the empirical parametric dis-

tribution and the chi-square distribution at 4 different
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Fig. 8 Critival values plot for both Wald test and LRT with unequal

dispersion parameters. Critical values were calculated at the nominal

false positive error control level of 0.001 from empirical percentile of

null statisitics at 3 different mean expression levels for both Wald test

(solid line) and LRT (dashed line), and for a chi-square distribution with

1 degree of freedom (purple line). Both Wald test and LRT have larger

critical values than the chi-square distribution, and the Wald test has

much larger values than the LRT
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sample sizes and 3 different mean expression levels for

both Wald test and LRT. Similar to the equal dispersion

setting, the empirical parametric test of the Wald test has

much higher critical values than the chi-square distribu-

tion at small sample sizes, and the differences get smaller

when sample size gets larger. However, the LRT has

slightly higher critical values than the chi-square distri-

bution. For false positive error rate (Fig. 9), the Wald test

with the chi-square distribution has much higher values

than the nominal level, while the LRT with the chi-square

distribution has slightly higher values. Similar to the equal

dispersion setting, the power of the Wald test (Figs. 10

and 11) and the LRT (Additional file 1: Figures S23 and

S24) at α = 0.001 is increased with larger sample sizes,

larger mean expression levels, and larger absolute fold

changes. (See Additional file 1: Figures S25–S30 for results

using α = 0.01 and Additional file 1: Figures S31–S42 for

results with low(high)-dependency functional form).

Applications

TCGA data set

To study and demonstrate the proposed power estima-

tion procedure in a real data application, we used the

TCGA breast cancer data set as a pilot data for design-

ing a new study for detecting differential expression. The

TCGA breast cancer data set, acquired in Sep. 2015 from

cBioPortal for Cancer Genomics, contains 1003 tumor

samples with clinical information and 17866 gene features

with non-zero counts. We chose the comparison between
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Fig. 9 False positive error rate plot for both Wald test and LRT with

unequal dispersion parameters. False positive error rate was

calculated for both Wald test (solid line) and LRT (dashed line)

following a chi-square distribution with 1 degree of freedom at 3

different mean expression levels. The nominal false positive error rate

control level for the empirical parametric test is shown in purple line

(α = 0.001). Both tests have inflated false positive error rates
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Fig. 10 Power plot at μ = 20 for the Wald test with unequal

dispersion parameters. Power was calculated at 4 different sample

sizes and 6 different fold changes under the alternative hypothesis

with μ = 20 and α = 0.001. Power is higher for larger sample sizes

and higher absolute fold changes

two tumor stage categories I-II (746 samples) vs. III-IV

(238 samples) when fitting the DESeq2 package for esti-

mating the mean-dispersion functional form (Additional

file 1: Figure S43). The estimated mean expression levels

were 27, 496, 2501 at the 10th, 50th, 90th percentiles for

all gene features, respectively. Figure 12 shows the power

as a function of sample sizes (range 3-100) at these mean
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Fig. 11 Power plot at γ = 2 for the Wald test with unequal

dispersion parameters. Power was calculated at 4 different sample

sizes and 3 different expression levels with γ = 2 under the

alternative hypothesis and α = 0.001. Power is higher for larger

sample sizes and higher expression levels
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Fig. 12 Power plot for the Wald test with equal dispersion parameters

for TCGA breast cancer data set. Power was calculated for the Wald

test with the empirical distribution (solid line) or with a chi-square

distribution with 1 degree of freedom (dotted line) at 3 different mean

expression levels, 19 different sample sizes (range 3-100), and a fold

change of 2 under the alternative hypothesis with α = 0.001

expression percentiles for a 2-fold difference between two

patient subgroups. Wald test for the proposed empirical

distribution and for the chi-square distribution were used

at α = 0.001. Figure 13 shows the false positive error rate

at α = 0.001. Even though theWald test for the chi-square

distribution has a little higher power at smaller sample

sizes, this is mainly due to the failure to properly control

false positive rate. To design a new study with 80% power,

we will need n = 33 samples per group to detect a 2-fold

difference for genes at the mean expression level of 496.

The computation time for this power estimation is about

8 hours on a standard windows laptop with Intel Core

i7-6820HQ CPU at 2.70GHz and 32GB RAM.

Discussion
Many published methods on identifying differentially

expressed genes are based on the negative binomial distri-

bution, and the inference mainly relies on asymptotic the-

ory which is biased for small sample sizes. Several studies

by Leng et al. [14], Lund et al. [15], Reeb and Steibel [16],

and Rocke et al. [17] have reported the excess false pos-

itives by using these methods for differential expression

detection with RNA-Seq data. The main reason is that

the use of the significance cutoff from biased asymptotic

distribution leads to the inflated false positive error rate

especially for small sample sizes. Our simulation results

confirm the great downward bias in the significance cut-

off values when an asymptotic chi-square distribution is

applied for both Wald test and LRT. Using the empirical
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Fig. 13 False positive error rate plot for the Wald test with equal

dispersion parameters for TCGA breast cancer data set. False

positive error rate was calculated for the Wald test with the empirical

distribution (solid line) or with a chi-square distribution with 1 degree

of freedom (dotted line) at 3 different mean expression levels and 19

different sample sizes (range 3-100). The nominal false positive error

rate for the Wald test with the empirical distribution is shown in

purple line (α = 0.001). Wald test with the chi-square distribution has

the inflated false positive error rates

parametric test for estimating the critical values, we

are able to control the false positive error rate at the

desired nominal level for both tests (Additional file 1:

Figures S44–S45).

In all current published methods on differential expres-

sion detection and power estimation, the dispersion

parameter is assumed equal across conditions. Under this

assumption, the power will be misestimated if dispersion

values are very different across conditions. Therefore in

the simulations we allowed the dispersion parameter to

be equal or unequal across conditions to achieve accurate

power. When the dispersion parameter is assumed equal,

the exact test method by Li et al. [9] can be used for power

estimation. However this exact test method only works for

two group comparisons and it can not be adapted to allow

for unequal dispersion across conditions.

The proposed work not only can be applied to multiple

groups and multiple factor designs through generalized

linear models, it can also be extended to the data set level.

In this case, the null distribution of the test statistics could

be simulated for each gene or for a group of genes with

similar expression profile for a proper control of the false

positive error rate.

Conclusions
With the emergence of RNA-Seq technology in recent

years, RNA-Seq experiments have been widely used as an
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alternative to microarrays in biomedical research. Due to

different data types, data analysis and power estimation

are also different. New methods on sample size calcula-

tions and power estimation using the negative binomial

distribution have already been proposed for this new tech-

nology. To overcome some of the limitations in current

methods, we provide a framework for power estimation

of RNA-Seq experiments by proposing a simulation based

procedure, which provides a proper false positive control

and can be applied in generalized linear model settings.

Additional file

Additional file 1: This file provides all supplementary figures referenced

in results section. Figure S1. Power plot at μ = 100 for the LRT with equal

dispersion parameters. Figure S2. Power plot at γ = 2 for the LRT with

equal dispersion parameters. Figure S3. Critival values plot for both Wald

test and LRT with equal dispersion parameters at α = 0.01. Figure S4.

False positive error rate plot for both Wald test and LRT with equal

dispersion parameters at α = 0.01. Figure S5. Power plot at μ = 100 for

the Wald test with equal dispersion parameters at α = 0.01. Figure S6.

Power plot at μ = 100 for the LRT with equal dispersion parameters at

α = 0.01. Figure S7. Power plot at γ = 2 for the Wald test with equal

dispersion parameters at α = 0.01. Figure S8. Power plot at γ = 2 for the

LRT with equal dispersion parameters at α = 0.01. Figure S9. Critival

values plot for both Wald test and LRT with equal dispersion parameters

assuming the high dependency functional form. Figure S10. False

positive error rate plot for both Wald test and LRT with equal dispersion

parameters assuming the high dependency functional form. Figure S11.

Power plot at μ = 100 for the Wald test with equal dispersion parameters

assuming the high dependency functional form. Figure S12. Power plot

at μ = 100 for the LRT with equal dispersion parameters assuming the

high dependency functional form. Figure S13. Power plot at γ = 2 for

the Wald test with equal dispersion parameters assuming the high

dependency functional form. Figure S14. Power plot at γ = 2 for the LRT

with equal dispersion parameters assuming the high dependency

functional form. Figure S15. Critival values plot for both Wald test and LRT

with equal dispersion parameters assuming the low dependency

functional form. Figure S16. False positive error rate plot for both Wald

test and LRT with equal dispersion parameters assuming the low

dependency functional form. Figure S17. Power plot at μ = 100 for the

Wald test with equal dispersion parameters assuming the low dependency

functional form. Figure S18. Power plot at μ = 100 for the LRT with equal

dispersion parameters assuming the low dependency functional form.

Figure S19. Power plot at γ = 2 for the Wald test with equal dispersion

parameters assuming the low dependency functional form. Figure S20.

Power plot at γ = 2 for the LRT with equal dispersion parameters

assuming the low dependency functional form. Figure S21. QQ plot of

null Wald statistics with unequal dispersion parameters. Figure S22. QQ

plot of null LRT statistics with unequal dispersion parameters. Figure S23.

Power plot at μ = 20 for the LRT with unequal dispersion parameters.

Figure S24. Power plot at γ = 2 for the LRT with unequal dispersion

parameters. Figure S25. Critival values plot for both Wald test and LRT

with unequal dispersion parameters at α = 0.01. Figure S26. False

positive error rate plot for both Wald test and LRT with unequal dispersion

parameters at α = 0.01. Figure S27. Power plot at μ = 20 for the Wald

test with unequal dispersion parameters at α = 0.01. Figure S28. Power

plot at μ = 20 for the LRT with unequal dispersion parameters at α = 0.01.

Figure S29. Power plot at γ = 2 for the Wald test with unequal dispersion

parameters at α = 0.01. Figure S30. Power plot at γ = 2 for the LRT with

unequal dispersion parameters at α = 0.01. Figure S31. Critival values

plot for both Wald test and LRT with unequal dispersion parameters

assuming the high dependency functional form. Figure S32. False

positive error rate plot for both Wald test and LRT with unequal dispersion

parameters assuming the high dependency functional form.

Figure S33. Power plot at μ = 20 for the Wald test with unequal

dispersion parameters assuming the high dependency functional form.

Figure S34. Power plot at μ = 20 for the LRT with unequal dispersion

parameters assuming the high dependency functional form. Figure S35.

Power plot at γ = 2 for the Wald test with unequal dispersion parameters

assuming the high dependency functional form. Figure S36. Power plot

at γ = 2 for the LRT with unequal dispersion parameters assuming the

high dependency functional form. Figure S37. Critival values plot for both

Wald test and LRT with unequal dispersion parameters assuming the low

dependency functional form. Figure S38: False positive error rate plot for

both Wald test and LRT with unequal dispersion parameters assuming the

low dependency functional form. Figure S39. Power plot at μ = 20 for

the Wald test with unequal dispersion parameters assuming the low

dependency functional form. Figure S40. Power plot at μ = 20 for the

LRT with unequal dispersion parameters assuming the low dependency

functional form. Figure S41. Power plot at γ = 2 for the Wald test with

unequal dispersion parameters assuming the low dependency functional

form. Figure S42. Power plot at γ = 2 for the LRT with unequal dispersion

parameters assuming the low dependency functional form. Figure S43.

Mean-dispersion functional form of TCGA breast cancer data set. Figure

S44. False positive error rate plot for both Wald test and LRT with equal

dispersion parameters. Figure S45. False positive error rate plot for both

Wald test and LRT with unequal dispersion parameters. (PDF 355 kb)

Abbreviations

LRT: Likelihood ratio test; MLE: Maximum likelihood estimation; NB: Negative

binomial; PCER: Per comparison error rate; PFER: Per family error rate; TCGA:

The cancer genome atlas

Acknowledgements

The authors wish to acknowledge the anonymous reviewers for their

comments and suggestions which helped improve the manuscript.

Funding

This research was partially supported by NIH grants 2P30CA016058-40 and

UL1TR001070. The funding body played no role in the design or conclusions

of this study.

Availability of data andmaterials

The breast cancer TCGA data set used in the application section is from publicly

available repositories. R code is available from the corresponding author.

Authors’ contributions

All authors were involved in method development. LY and SF generated the

original idea. LY performed the simulations and wrote the manuscript. GB and

SF guided the research and revised the manuscript. All authors read and

approved the final version of this manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Received: 9 November 2016 Accepted: 25 April 2017

References

1. Shendure J. The beginning of the end for microarrays?. Nat Methods.

2008;5(7):585–7.

2. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for

transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

3. Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD,

Corbett R, Tang MJ, Hou YC, Pugh TJ, Robertson G, Chittaranjan S, Ally

http://dx.doi.org/10.1186/s12859-017-1648-2


Yu et al. BMC Bioinformatics  (2017) 18:234 Page 9 of 9

A, Asano JK, Chan SY, Li HI, McDonald H, Teague K, Zhao Y, Zeng T,

Delaney A, Hirst M, Morin GB, Jones SJ, Tai IT, Marra MA. Alternative

expression analysis by RNA sequencing. Nat Methods. 2010;7(10):843–7.

4. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an

assessment of technical reproducibility and comparison with gene

expression arrays. Genome Res. 2008;18(9):1509–17.

5. Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for

identifying differentially expressed genes from RNA-seq data.

Bioinformatics. 2010;26(1):136–8.

6. Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief

Bioinform. 2011;12(3):280–7.

7. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package

for differential expression analysis of digital gene expression data.

Bioinformatics. 2010;26(1):139–40.

8. Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

9. Li CI, Su PF, Shyr Y. Sample size calculation based on exact test for

assessing differential expression analysis in RNA-seq data. BMC

Bioinforma. 2013;14:357.

10. Guo Y, Zhao S, Li CI, Sheng Q, Shyr Y. RNAseqPS: A Web Tool for

Estimating Sample Size and Power for RNAseq Experiment. Cancer

Inform. 2014;13(Suppl 6):1–5.

11. Shyr D, Liu Q. Next generation sequencing in cancer research and clinical

application. Biol Proced Online. 2013;15(1):4.

12. Ching T, Huang S, Garmire LX. Power analysis and sample size estimation

for RNA-Seq differential expression. RNA. 2014;20(11):1684–96.

13. Wu H, Wang C, Wu Z. PROPER: comprehensive power evaluation for

differential expression using RNA-seq. Bioinformatics. 2015;31(2):233–41.

14. Leng N, Dawson J, Thomson J, Ruotti V, Rissman A, Smits B, Haag J,

Gould M, Stewart R, Kendziorski C. EBSeq: An empirical Bayes hierarchical

model for inference in RNA-Seq experiments. Technical report,

Department of Biostatistics and medical informatics: University of

Wisconsin; 2012.

15. Lund S, Nettleton D, McCarthy DJ, Smyth GK. Detecting differential

expression in RNA-sequencing data using quasi-likelihood with shrunken

dispersion estimates. Stat Appl Genet Mol Biol. 2012;11(5):article 8.

16. Reeb PD, Steibel JP. Evaluating statistical analysis models for RNA

sequencing experiments. Front Genet. 2013;4:178.

17. Rocke DM, Ruan L, Zhang Y, Gossett JJ, Durbin-Johnson B, Aviran S.

Excess false positive rates in methods for differential gene expression

analysis using RNA-Seq data. bioRxiv preprint. 2015. doi:http://dx.doi.org/

10.1101/020784.

18. Rettiganti M, Nagaraja HN. Power analyses for negative binomial models

with application to multiple sclerosis clinical trials. J Biopharm Stat.

2012;22(2):237–59.

19. Gordon A, Glazko G, Qiu X, Yakovlev A. Control of the mean number of

false discoveries, Bonferroni and stability of multiple testing. Ann Appl

Stat. 2007;1:179–190.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1101/020784
http://dx.doi.org/10.1101/020784

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Negative binomial model
	Dispersion as a function of mean expression
	Likelihood ratio test
	Wald test
	False positive error rate control
	Empirical parametric test
	Power estimation procedure

	Results
	Simulations
	Parameter settings
	Equal dispersion
	Unequal dispersion

	Applications
	TCGA data set


	Discussion
	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	References

