
VLSI DESIGN
1998, Vol. 7, No. 3, pp. 225-z242
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1997 OPA (Overseas Publishers Association)
Amsterdam B.V. Published under license

under the Gordon and Breach Science
Publishers imprint.

Printed in India.

Power Analysis of a 32-bit Embedded Microcontroller

VIVEK TIWARIa’* and MIKE TIEN-CHIEN LEEb

aDept, of Electrical Engineering, Princeton University, Princeton, NJ 08544;
Fujitsu Laboratories of America, 77 Rio Robles, San Jose, CA 95134

A new approach for power analysis of microprocessors has recently been proposed [14].
The idea is to look at the power consumption in a microprocessor from the point of view
of the actual software executing on the processor. The basic component of this approach
is a measurement based, instruction-level power analysis technique. The technique
allows for the development of an instruction-level power model for the given processor,
which can be used to evaluate software in terms of the power consumption, and for
exploring the optimization of software for lower power. This paper describes the
application of this technique for a comprehensive instruction-level power analysis of a
commercial 32-bit RISC-based embedded microcontroller. The salient results of the
analysis and the basic instruction-level power model are described. Interesting
observations and insights based on the results are also presented. Such an
instruction-level power analysis can provide cues as to what optimizations in the
micro-architecture design of the processor would lead to the most effective power
savings in actual software applications. Wherever the results indicate such optimiza-
tions, they have been discussed. Furthermore, ideas for low power software design, as
suggested by the results, are described in this paper as well.

Keywords: Embedded software, embedded systems, low power design, low power software, power
estimation, power optimization

1. INTRODUCTION

A very large fraction of the applications in all
segments of the electronics industry are being
implemented as embedded computer systems. The
basic characteristic of these systems is the presence
of both a hardware and a software component.
The hardware component consists of application-
specific circuits, while the software component
consists of application-specific software running
on dedicated microprocessors. The role of the

*Corresponding author.

software component is actually projected to grow
in the future. A large number of embedded
computing applications are power critical, i.e.,
power constraints form, an important part of the
design specification. In light of the growing role of
the software component, it is imperative to
consider the power consumption of this compo-
nent when analyzing the total system power
consumption.

In spite of its importance, very little previous
work exists for analyzing power consumption

225

226 V. TIWARI AND M. TIEN-CHIEN LEE

from the point of view of software. Some attempts
in this direction are based on architectural level
analysis of microprocessors. The underlying idea is
to assign power costs to architectural modules
such as datapath execution units, control units,
and memory elements. In [10, 15] the power cost of
a module is given by the estimated average
capacitance that would switch when the given
module is activated. More sophisticated statistical
power models are used in [5, 6]. Activity factors for
the modules are then obtained from functional
simulation over typical input streams. Power costs
are assigned to individual modules, in isolation
from one another. Thus, these methods ignore the
correlations between the activities of different
modules during execution of real programs.

Since the above .techniques work at higher levels
of abstraction, the power estimates they provide
are not very accurate. For greater accuracy, one
has to use power analysis tools that work at lower
levels of the design physical, circuit, or switch
level [8, 9, 4]. However, these tools are slow and
impractical for analyzing the total power con-
sumption of a microprocessor as it executes entire
programs. These tools also require the availability
of lower level circuit details of microprocessors,
something that most embedded system designers
do not have access too. This is also the reason why
the power contribution of software and the
potential for power reduction through software
modification has either been overlooked or is not
fully understood.
A recent work [14] overcomes these deficiencies

by developing a methodology that provides a
means for analyzing the power consumption ofa
given microprocessor as it executes a given
program. The idea is to use a measurement based
analysis technique for developing and validating
an instruction level power model for any given
processor. Such a model can then be provided by
the processor vendors for both off-the-shelf
processors, as well as embedded cores. This can
then be used to evaluate embedded software, much
as gate level power models have been used to
evaluate logic designs. The ability to evaluate

software in terms of the power metric helps in
verifying if a design meets its specified power
constraints. In addition, it can also be used to
search the design space in software power optimi-
zation [13].
The initial work in this direction has been in the

context of the Intel 486DX2, a general-purpose
CISC architecture. This paper describes the
application of this power analysis methodology
for the Fujitsu SPARClite MB86934, a 32-bit
RISC microcontroller [1-3] targeted for em-
bedded applications. A comprehensive power
analysis of this processor has been performed
and an instruction level power model has been
developed. The salient results of the analysis are
described here. Interesting observations and in-
sights based on the results are also presented. The
successful application of the analysis methodology
for two different processors provides validation for
the general applicability of this methodology. This
is reinforced by a recent work based on the
application of this analysis technique for a
specialized embedded DSP processor [7].

2. PROCESSOR OVERVIEW

The. SPARClite MB86934 is a SPARC-based
microprocessor optimized for use in embedded
applications. A full description of the SPARClite
family and of MB86934 (referred to as the ’934
from here on) is available from other references
[1-3]. However, some of the features that are
relevant for the remainder of this paper are briefly
mentioned below:

Technology: 0.5 micron, 3 level metal CMOS
technology. There are three separate power pins
for the on-chip phase locked loop (PLL),
internal logic, and I/0, respectively. All power
supply connections can be at 3.3 V.
On-chip floating point unit (FPU): A high-
performance on-chip FPU executes single/dou-
ble precision operations.
On-chip FIFOs: FPU instructions can get their
operarlds from a 32-bit FPU register file, or 6

POWER ANALYSIS 227

on-chip FIFOs, which are fed directly from
main memory through DMA.
On-chip caches: A 8 K, 32-byte line, instruction
cache, and a 2 K, 16-byte line, data cache. Both
caches are 2-way set associative and employ a
write-through policy and a LRU replacement
algorithm. Cache entries can be locked and the
caches can also be disabled.
Large integer register file: The integer register
file consists of 136, 32-bit registers, which are
organized into 8 overlapping windows.
Software controlled power management: A soft-
ware mechanism is provided to disable the
clocks to various functional units in order to
conserve power.

3. EXPERIMENTAL METHOD

The instruction level power analysis technique
relies on the ability to measure the average current
drawn by the processor. This is motivated by the
formulas for the power and energy cost of a
program. The average power, P, consumed by a
microprocessor while running a certain program is
given by: P=Ix Vcc, where I is the average
current, and Vcc is the supply voltage. Since
power is the rate at which energy is consumed, the
energy, E, consumed by a program is given by:
E= Px T, where T is the execution time of the
program. This in turn is given by: T=Nx -, where
N is the number of clock cycles taken by the
program, and - is the clock period.
For the experimental setup used in this study,

Vcc was 3.3 V and -was 50 ns, corresponding to
the 20 MHz systems clock. Thus, if the average
current for an instruction sequence is I Amperes,
and the number ofcycles it takes to execute is N, the
energy cost of the sequence is given by: E 1 x
N x-, which equal: (16.5x10-8IxN) Joules.
Throughout the rest of the paper, in order to
specify the energy cost of an instruction (instruc-
tion sequence), the average current will be specified.
The number of cycles will either be explicitly
specified, or will be clear from the context.

3.1. Current Measurement

From the above discussion it is evident that to
measure the energy cost of a program, the average
current drawn by the CPU during the execution of
the program has to be measured. The measure-
ment method employed was based on the test and
measurement capabilities of a commercial IC
tester. The program under consideration was first
simulated on a VERILOG model of the CPU. This
produces a trace file consisting of vectors that
specify the exact logic values that would appear on
the pins of the CPU for each half-cycle during the
execution of the program. The tester then applies
the voltage levels specified by the vectors on each
input pin of the CPU. This recreates the same
electrical environment that the CPU would see on
a real board. The current drawn by the CPU is
monitored by the tester using an internal digital
ammeter. Now, the current drawn by the CPU
varies over the execution of a program, and so the
ammeter may not yield a steady visual reading. To
overcome this, the method used in the case of the
486DX2 is applied [14]. The programs being
considered are put in infinite loops. Thus, the
resulting current waveforms are now periodic. The
ammeter averages current over a window of time

(about 100 ms) for the purpose of analog to digital
coversion. If the period of the current waveform is
much smaller than this window, a stable reading is
obtained.

3.2. Instruction Level Power Analysis

The above method makes it feasible to measure the
power cost of a given program. By designing
special programs and measuring their power cost,
it is possible to obtain the basic information
needed for an instruction level power analysis of
the processor, based on the following hypothesis.
Consider a program consisting of several instances
of a certain instruction. Since the CPU is executing
the same instruction over and over again, it seems
intuitive that the entire activity in the CPU can be
attributed to that instruction. The power cost of

228 V. TIWARI AND M. TIEN-CHIEN LEE

the CPU for the program can be considered as the
basic power cost of the given instruction. In real
programs there may be other effects involving more
than one instruction that can impact the power
cost, e.g., the effect of circuit state, pipeline stalls,
and cache misses. By designing programs where
these effects occur repeatedly, can similarly provide
a way for assigning power Costs to these effects too.

This hypothesis has been validated for the Intel
486DX2. It has also been found to be applicable for
the ’934, as the subsequent sections will show. The
instruction level power model that has been
developed for the two processors has the same
basic components. The first ofthese is the set ofbase
costs of instructions. The base cost of a given
instruction is obtained by creating a program
consisting of several instances of the instruction
executing in a loop. The other component of the
power model is the power cost of inter-instruction

effects. The first of these is the effect of change of
circuit state between consecutive instructions. Dur-
ing determination of the base costs, the same
instruction is executed again and again. It can be
expected that the change in circuit state between
consecutive instructions will be less here, than for
the case in which consecutive instructions differ.
The quantity circuit state overhead is introduced to
account for this effect. This effect is illustrated in
some of the later sections and is discussed in detail
in Section 10. The overall instruction-level power
model and its use in estimating the power .con-
sumption of programs is described in Section 11.

4. POWER ANALYSIS OF THE ’934

In the subsequent sections, the specifics of the
instruction level power model for the ’934 are
presented. Other results that highlight the char-
acteristics of the power consumption, as it relates
to instructions and software, are also reported.
For the sake of clarity, the experiments are divided
into several categories, each of which is treated in a
separate section. The results include the power
costs of the important instructions, and examples

that illustrate the power model that is used for the
estimation of power consumption of instruction
sequences. The power costs of external memory
accesses, and the effect of the caches on the overall
power cost is also explored. Results are also
provided for the impact of software controlled
power management on the power cost of instruc-
tions. The salient observations and interesting
insights based on the results of each section are
also briefly discussed following the results. One of
the benefits of an instruction-level analysis is that
it provides cues as to what optimizations in the
micro-architecture design would lead to the most
effective power savings in actual software applica-
tions. Wherever the results indicate such optimiza-
tions, they have been discussed. Furthermore,
ideas for low power software design, as suggested
by the results, are also described.
The following observations are valid for all

experiments reported in this paper. Repeated runs
ofan experiment at different times resulted in only a
very small variation in the observed average current
values. The variation was in the rage 4-1-mA. The
current drawn by the power pin connected to the on-
chip PLL was very small and below the measuring
range of the tester. The current drawn by the power
pins connected to the internal logic and I/0 circuitry
is denoted by I1 and I2, respectively. The symbol ’&’
used in the tables below for an instruction pair ’i&j’
denotes an instruction sequence where instructions
and j are executed alternately. Instructions are
specified using the standared SPARC assembly
language syntax [2]. In particular, % xi refers to the
th register of type x, [% xi] refers to the contents of

the memory location that is addressed through
register % xi, and the destination operand is always
specified as the rightmost operand in an instruction.

5. INTEGER ALU INSTRUCTIONS:
CACHES ENABLED

Table I shows the base costs for some integer
instructions. The caches, prefetch, and write
buffers are enabled. These modules can be enabled

No. Instruction

TABLE

POWER ANALYSIS 229

Sample integer ALU instructions: caches enabled

Register contents I1 (mA) 12 (mA)

or %g0, 0, %10
2 or %g0, 0xfff, %10
3 or %g0, %i0, %10
4 or %g0, %i0, %10
5 add %i0, %00, %10
6 add %i0, %00, %10
7 add %i0, %00, %10
8 add %i0, %00, %10
9 add %00, %il, %12
10 srl %i0, %00, %10
11 srl %i0, 1, %10
12 srl %il, %05, %g3
13 or %g0, %r16, %i0
14 orcc %il, %00, %11
15 subx %g0, %r16, %i0
16 xor %g0, %r16, %i0
17 xor %g0, %r17, %i0
18 andcc %gl, 0xaaa, %10
19 sl 1%04, 0xT, %06
20 umul %i0, 0x2, %03
21 mul %g0, %r29, %r27

177 21
174.5 21

(%i0=0) 177.5 21
(%i0 =0xfff) 173.5 21
(%i0 0, %00=0) 178 21
(%i0 0, %o0 0xfff) 174 21
(%i0 0xfff, %00=0) 174 21
(%i0 0xfff, %o0 0xfff) 173 21
(%00=0, %il =0x555) 174.5 21
(%i0 0xfff, %o0=0xl) 179 21
(%i0 0xfff) 176 21
(%i0=0x555, %05= 1) 174.5 21
(%r16=0) 178 21
(%il 0x555, %00 0xaaa) 173 21
(%r16=0) 172 21
(%r16---0) 177.5 21
(%r17=0) 176 21
(%gl 0x555) 179 21
(%04 0xf0) 173.5 21
(%i0 0xaaa) 174.5 21
(%r29=0) 177 21

or disabled by writing into a specific system
control register. The base costs are shown in terms
of the I1 and 12 current. All the instructions
shown execute in one cycle, except entry 20, which
executes in 2 cycles.

Observations and Comments

Integer ALU instructions tend to have very similar
costs, as shown in the above table. They vary in
the range of 170-180 mA, in terms of ! current.
12 current is mostly stable around 21 mA. The
reason for the low 12 current is that the caches are
enabled, and thus, after one iteration of the loop,
the instructions are always available in the instruc-
tion cache, and there is no traffic on the I/0 pins.
The I1 current shows a limited variation

depending upon the actual value of the data
operands used. Variation due to the use of
different registers is not significant. Entries and
2 show the cost for an OR instruction for two
different immediate operand values. Entries 3 and
4 show the costs for the OR instruction when only
register operands are used, but the content of
one of the registers is different. Entries 5 to 9 show
the costs for an ADD instruction for different

combinations of the operands. There seems to be a
correlation between the number of l’s in the
binary representation of operands and the base
cost-more the l’s, lesser the cost. The reason for
the correlation has to do with the underlying
circuit style used for implementing the datapath
modules and busses. In any case, the overall range
of variation is very limited, and thus the use of
average base costs for instructions should suffice
for program energy estimation purposes. This in
fact is the only option in cases where the exact
value of operands cannot be determined until
runtime.

An interesting observation leading from the
above results is that the cost of the ALU
instructions doesn’t seem depend much on the
ALU operation that is being performed. The
cost of an OR, SHIFT, ADD, or MULTIPLY
all seems to be about the same. It may well be
the case that the differences in the circuit activity
for these instructions are much less relative to
the circuit activity common to all instructions.
Thus, these differences are not reflected in the
comparisons of the overall current cost. Never-
theless, the almost complete lack of variation is

230 V. TIWARI AND M. TIEN-CHIEN LEE

somewhat counter-intuitive. For instance, it is
expected that the logic for an OR should be
much less than that for an ADD, thus leading to
some variation in the overall current drawn for
these instructions.

The reason for the similarity of the costs most
likely has to do with the way ALUs are
traditionally designed. All the different ALU sub-
functions are fed by a common bank of inputs,
and the outputs of the appropriate sub-function
are selected by a multiplexor structure. Now, in
any given cycle, the results of only one sub-
function are needed. Thus, the circuit activity in
the other sub-functions is a waste of power. The
design can be modified for low power by extending
the principles of automatic power management. If
the inputs of the sub-functions that are not needed
are prevented from switching, the power consumed
in these sub-functions can be saved. This observa-
tion motivates the concept of guarded evaluation,
which has been explored in detail in another
reference [12].

6. INTEGER ALU INSTRUCTIONS:
CACHES DISABLED

Table. II shows some of the same instructions as
the previous table. However, in this case, the on-
chip caches have been disabled. Prefetch and write
buffers are also disabled. The number of memory
wait states is zero. Column 4 shows 11 current in
this case. The 12 current was 134 mA for all

entries. Column 5 shows the I current for the case
when the caches are enabled. The I2 current in this
case was 21 mA.

Observation and Comments

Since the instruction cache is disabled, every
instruction access goes to the external I/0 pins.
The 12 current is therefore higher than when
caches are enabled. The I current (internal logic
current) is also about 10 mA higher. Entries 3 and
6 show what happens when different instructions
are executed together. This will be discussed in
greater detail in Section 10.

In terms of overall current, disabling the
instruction cache leads to a total CPU current
increase of about 123 (= 10+(134-21)) mA, i.e.,
about 62%. However, when the cache is disabled
in the ’934, every instruction fetch takes two cycles,
even for a zero wait state system. Thus, in terms of
energy, disabling the instruction cache leads to at
least about a 124% (=2x62%) increase in the
energy consumption. This points to two things:

Accessing the cache is much more energy
efficient than accessing external memory. Thus,
attempts to increase the cache hit rate through
software modifications will be very beneficial. It
is further indicated that attempts to increase the
hit rate through architectural transformations
may also help reduce the overall energy con-

sumption.
In certain embedded applications, the designer
may choose to disable the caches. This is usually

TABLE II Integer ALU instructions: caches disabled vs. enabled

Instruction Register contents disabled enabled
I1 (mA) I1 (mA)

or %gO, O, %10
or %gO, Oxfff, %10
l&2
or %gO, %i0, %10
or %gO, %i0, %10
4&5
srl %i0, %o0, %10
srl%iO, 1, %10

(%i0=0)
(%i0 0xfff)

(%i0 Oxfff, %o0 =Oxl)
(%i0 Oxfff)

187.5 177
184 174.5
196 192
188 177.5
184 173.5
192 187.5
188.5 179
184 176

POWER ANALYSIS 231

done to improve the performance predictability
for real-time systems. However, this will lead to
a penalty in terms of the system energy
consumption, and thus, the battery life. This
fact has to be understood and weighed in, when
deciding on whether the caches should be
disabled.

7. LOAD AND STORE INSTRUCTIONS:
CACHES ENABLED AND LOCKED

Table III shows the cost of some instructions that
reference memory. Since the ’934 is a RISC, load-
store machine, the only instructions that explicitly
reference memory are the loads and the stores. The
above results are for the specific case when the
caches are active and the entries in the data cache
are locked. This implies that every data access is a
cache hit. In addition, since the cache entries are
locked, the store (write) instructions also don’t go
out to external memory. Note that the ’934 has a
write-through cache, and thus in the normal case,
each data write also goes out to the external bus.

Since there is no traffic on the I/0 pins, the 12
current is low. Each instruction also executes in
one cycle in this case.

Observations and Comments

Entries and 2 are direct loads and entries 10 and
11 are direct stores. The rest of the instructions
utilize the indirect addressing modes. The results
indicate that there is not much difference between
these two addressing modes, in terms of base
current. Entries 3 to 6 show the variation in the
cost of a load for a fixed address but differeing
data operands. Entries 3, 7, 8, and 9 show the
variation for a fixed data operand but differing
addresses. Entries 12, 13, and 12, 14, show the
corresponding variation in the case of stores. The
general trend points to a correlation between base
cost and the number of l’s in the binary
representation of the data operand and the
memory address. This is similar to what was seen
in Section 5 more the l’s, lower the cost. The
variation in the costs, though, is again limited.
Entries 16 to 23 show what happens when different

TABLE III Load and store instructions: caches enabled and locked

No. Instruction Register contents I (mA) 12 (mA)

ld [OxO], %i0
2 ld [Oxffc], %i0
3 ld[% 10], i0
4 ld [%10], %i0
5 ld [% 10], %i0
6 ld [% 10], %i0
7 ld[% 10],%i0
8 ld [%10], iO
9 ld[% 10],%i0
10 st %i0, [OxO]
11 st %i0, [Oxffe]
12 st %i0, [%10]
13 st %i0, [% 10]
14 st %i0, [% 10]
15 ldub [%10], %i5
16 3&4
17 3&5
18 3&6
19 3&7
20 3&8
21 3&9
22 12& 13
23 12& 14

(% iO=O)
(%i0=0)
(%i0 0, %10-0)
(%i0 Oxfff, %10 =0)
(%i0 Oxffffff, %10=0)
(%i0 Oxffffffff, %10 O)
(%i0 0, %10 0xffc)
(%i0 O, %10 Oxfffffc)
(%i0 O, %10 Oxfffffffc)
(%io=o)
(%io=o)
(%i0 O, %10=0)
(%i0 Oxfff, %10=0)
(%i0 0, %10 0xffc)
(%i5 0xaaa, %10=0)

191.5 21
187 21
192 21
189.5 21
187.5 21
185 21
191 21
188 21
185 21
173 21
169 21
175 21
173.5 21
172 21
192.5 21
206 21
213 21
216 21
202.5 21
207 21
211 21
185 21
183 21

232 V. TIWARI AND M. TIEN-CHIEN LEE

instructions execute together. The data and
address registers used for each instruction in the
pair were different, but the register contents were
the same as shown in the individual instruction
entries. Entry 16 is for the case when the
instructions in entry 3 and 4 execute alternately.
The current is higher than the average of the two
base costs. This is due to the effect of circuit state
overhead. 12 data operand bits flip between entries
3 and 4. The entries 17 and 18 show the results for
greater data flips. Entries 19 to 20 show the results
when the address bits flip between adjacent
instructions. The results indicate a positive corre-
lation between the number of bit flips, and the
increased effect of circuit state.
The results also lead to the following interesting

observations:

A comparison between Tables II and IV shows
that cache accesses aren’t much more costly
than register accesses. Cache reads are bout 10
mA more costly, and cache writes are about the
same cost as register accesses. Since both cache
and register accesses take one cycle, the energy
comparison shows the same relation. This
observation is in stark contrast to what was
observed in the case of the Intel 486DX2, where
cache accesses were much more costly than
register accesses. The reason for the similarity in
the cost of cache accesses and register accesses in
’934 is most likely due to the large size of its

register file. The ’934 is a RISC, load-store
architecture, and it is characteristic for this
architectural style to use a large number of
registers. The register file has 136 registers. In
addition, it is multiported, and is windowed. In
constrast the 486DX2 has a simple register file
with only 8 registers.

This observation illustrates an interesting
CISC vs. RISC trade-off with regards to power.
On one hand, the availability of a larger number
of registers can help reduce the use of memory
operands, leading to power reductions. But on
the other hand, the larger register file causes
each register access itself to be costlier.
The data also points to the fact that micro-
architectural or circuit transformations to opti-
mize the register file for low power will be very
beneficial in terms of overall power reductions.
The load-store design of ther ’934 involves very
heavy usage of the registers, and a lower power
cost of accessing registers will translate into
power reductions for all programs.
It should be noted that the use of memory
operands does have a high cost even in the ’934,
due to the possibility of cache misses. Also, if
the cache is unlocked, stores will incur addi-
tional cost in terms of 12 current (as. shown in
the next section), and memory system current.
Thus, the use of memory operands should
certainly be avoided. This also points out that
the cache locking feature should be exploited as

No.

TABLE IV Store instructions: caches enabled and unlocked

Instruction Register eontents I (mA) 12 (mA)

2

4
5
6
7
8
9
10
11
12
13

st %i0, [%10]
st %i0, [%10]
st %i0, [%10]
st %i0, [%10]
l&2
l&3
l&4
st %i0, [%10]
st %i0, [%10]
st %i0, [%10]
l&8
l&9
l&lO

(%i0 0, %10=0) 198
(%i0 0, %10 0xffc) 191
(%i0 0, %10 0xfffffc) 185
(%i0 0, %10 0xfffffffc) 181.5

198
199
200

(%i0 0xfff, %10=0) 193
(%i0 0xffffff, %10=0) 191
(%i0 Oxffffffff, %10 O) 189

203
207
211

148
115
71
46
137
116
106
148
150
150
173
193
206.5

POWER ANALYSIS 233

far as possible, for applications where energy
consumption is a design constraint.

8. STORE INSTRUCTIONS: CACHES
ENABLED AND UNLOCKED

Table IV shows the costs of some store instruc-
tions when the caches are enabled but are
unlocked. Since the data cache is write-through,
all the stores also reference the external main
memory. The number of memory wait states is
zero. However, the design of the ’934 imposes an
extra cycle for every bus transaction. During this
cycle the bus is idle.

Observations and Comments

Most typical applications do not lock the data
cache. Thus, the stores in these applications will go
out to the external bus, leading to higher 12
current, as shown in table. This table, therefore,
reflects the more typical cost of memory writes.
Note that there will also be an additional system
energy penalty due to the current being drawn by
the external memory.

Entries 1, 8, 9 and 10 show the variation in the
cost of the stores for a fixed address but varying
data. There is a minor decrease in both I and 12
current for increasing number of l’s. Entries 11 to
13 consider instruction sequences where different
stores alternate. For example, entry 11 shows the
cost for a sequence consisting of the instructions in
entry 1 and 2 appearing in succession. The I 1 and
12 currents are greater than the average of the
current costs for the individual instructions. This is
another illustration of the effect of circuit state
overhead. The I overhead represents the effect of
the circuit state in the internal logic circuits, while
the 12 overhead represents the effect of switching
on the data pins. Entry 11 involves 12 bit flips at
the data lines, while entries 12 and 13 involve 24
and 32 bit flips respectively. As expected, greater
number of bit flips, result in greater current. The

increase in current is greater in the case of 12
current. This too is expected, since the I/0 pads
typically involve larger capacitive loads.

Entries to 4 show the variation in the cost of
stores for a fixed data value but varying addresses.
The I current decreases with an increase in the
number of l’s in the binary representation of
the address. The I2 current also decreases, but the
decrease is very drastic. For example, consider
entries and 4. Entry has no l’s in the address,
and entry 4 has 30 l’s. The difference in the 12
current is 102 mA. This translates into about 3.3
mA per each occurrence of "0" in the binary
representation of the address. Comparisons be-
tween the other entries also yield the same result.
This observation seems strange, since if the same
address is being put on the bus for every
instruction, the address pins should not switch.
However, the address pins do switch due to the
following reason. Every memory transaction
involves an extra cycle during which the bus is
idle. During these bus idle cycles, the ’934 pulls up
the address pins, i.e., the pins go to the logical
value 1. Thus, even if back to back store
instructions use the same address, there is an
intervening cycle when the address pins are all l’s.
This means that the pins corresponding to the
address bits that are 0 will switch each time. More
l’s in the address value means less switching, and
thus lower 12 current.

Entries 5 to 7 show another illustration of this
effect. The 12 value for a pair of stores is about the
same as the average of the 12 values of the
individual stores. There is no circuit state over-
head. The reason being that the intervening bus
idle cycle, in which the address pins are pulled up,
isolated the stores from each other.
The above results lead to the following observa-

tions:

The above results show that occurrence of O’s in
the address values means greater current cost,
on the order 3.3 mA of 12 current for each
occurrence of a 0. This suggests that if data and
instructions are stored at the higher end of

234 V. TIWARI AND M. TIEN-CHIEN LEE

memory, the program energy cost may be
reduced. The reason for this is that, on the
average, addresses then will have lesser O’s in
them. The power reduction can potentially be
very significant.
It should be noted that the higher current cost of
O’s in the address is a manifestation of the effect
of circuit state (in other words, switching) on the
address pins. Now, most real systems utilize wait
states, since memory access times are usually
slower than the CPU clock period. If the
number of wait states increases, there will be a
greater number of bus idle cycles. We know that
during the bus idle cycles, the address pins are at
a constant 1. Thus, more wait states means that
on the average, the address pins will switch less
often, leading to a lesser impact on the overall
system energy cost. This is in line with the
observation in the case of the 486DX2, where it
was noted that for real systems, switching on the
external pins had limited impact on the overall
energy cost of programs.
Switching on the data pins also leads to an
increase in the current cost, though this increase
is limited. While attempts to reduce this cost
through software modifications may be bene-
ficial, the benefits are likely to be very modest.
This is because of the difficulty in applying these
methods in general, and also because the energy
impact of the switching itself is limited. This will
be more so in case of real systems that have slow
buses and utilize wait-states.
A sequence of back to back stores causes the
write buffer to fill up, and leads to extra cycle
penalties, referred to as write buffer stalls. The
cycles penalties translate into energy penalties. If
the memory system is slow, and requires wait
states, the number of write buffer stalls will
increase. Software modifications to decrease
these stalls will result in lower power. This can
be done by scheduling instructions that don’t
require memory transactions to occur between
consecutive store instructions. Specific experi-
ments can also assign energy costs to the write

buffer stall cycles, as has been done in the case of
the 486DX2 [14].

9. FLOATING POINT INSTRUCTIONS

Table V shows the costs for some typical floating
point instructions. The caches were enabled and
unlocked in all experiments. The FPU is pipelined
and Column 4 shows the throughput for each
instruction. Column 5 shows the I current. The
12 current was 21 mA for all cases. The energy
cost of an instruction is proportional to the
product of the total current and the number
shown in Column 4.

Observation and Comments

The results indicate that most instructions that
involve the FPU have similar cost. For example,
consider entries 1 to 14, and 21 to 23, all of which
take one cycle, and don’t cause any FPU pipeline
interlocks. The dependence of current on the value
of operands is almost negligible, and this may have
to do with the circuit design of the FPU. In
addition, dependence of current on the type of
FPU operation is also not exhibited. This may be
due to the same reasons as discussed in Section 5.
Instructions for loading values into floating point
registers (entries 15 to 20) result in costs that are
similar to those seen in the case of integer registers.
The trend with respect to the current cost and the
number of l’s in the data operands is also similar.

Entries 24 to 26 show floating point divide
instructions, and entries 32 to 34 show square root
instructions. The current variation for different
operand values is negligible. These instructions
take 13 cycles in a particular FPU pipeline stage.
This leads to 12 pipeline interlocks. This means
that an FPU instruction that immediately follows
one of these instructions will have to wait for 12
cycles. However, the integer pipeline may not be
held up in most cases, and can continue to execute.
Entry 27 shows what happens when a NOP

POWER ANALYSIS 235

TABLE V Floating point instructions: caches enabled

Instruction Register contents n I1 (mA)

fitos %f4, %f0
2 fitos %f4, %f0
3 fmovs %f4, %f0
4 fmovs %f4, %f0
5 fmovs %f4, %f0
6 fmovs %f4, %f0
7 fitod %f4, %f0
8 fadds %f8, %f4, %f0
9 fadds %f8, %f4, %f0
10 fadds %f8, %f4, %f0
11 fadds %f8, %f4, %f0
12 faddd %f8, %f4, %f0
13 faddd %f8, %f4, %f0
14 faddd %f8, %f4, %f0
15 ld [OxO], %f8
16 ld [OxO], %f8
17 ld [OxO], %f8
18 ldd [OxO], %f8
19 ldd [OxO], %f8
20 ldd [OxO], %f8
21 fmuls %f8, %f4, %fO
22 fmuls %f8, %f4, %fO
23 fmuls %f8, %f4, %fO
24 fdivs %f8,%f4, %fO
25 fdivs %f8,%f4, %fO
26 fdivs %f8,%f4, %fO
27 26 & nop
28 26 & 4 nop’s
29 26 & 12 nop’s
30 26 & add
31 26 & 12 add’s
32 fsqrts %f4, %fO
33 fsqrts %f4, %fO
34 fsqrts %f4, %fO
35 34 & nop
36 34 & 4 nop’s
37 34 & 12 nop’s
38 34 & add
39 34 & 12 add’s

(%f4=0) 177.5
(%f4 0xfff) 177.5
(%f4=0) 175
(%f4=0xff) 175
(%f4=0xffff) 174
(%f4 0xfffff) 175
(%f4=0). 178
(%f8 =0, %f4=0) 175.5
(%f8 Oxffff, %f4= Oxffff) 176
(%f8 0X555555, %f4 Oxaaaaaa) 177
(%f8 Oxffffff, %f4 Oxffffff) 178
(%f8 =0, %f4=0) 177
(%f8 Oxffff, %f4 Oxffff) 177.5
(%f8 =0x555555, %f4 Oxaaaaaa) 177.5
(%f8 =0) 205
(%f8 0x4b7ff) 198
(%f8 0x4b7fffff) 193
(% f8=0,0) 214
(%f8 0x416fffff, e0000000) 200
(%f8 0x4b7fffff, 4b7fffff) 192
(%f8 =0, %f4=0) 174
(%f8 0xfff, %f4 0xfff) 175
(%f8 0x555555, %f4 0xaaaaaa) 175
(%f8 0xaaaaaa, %f4=0x555555) 13 167.5
(%f8 0xffff, %f4 0xffff) 13 168
(%f8=0, %f4= 1) 13 167.5

13 181.5
13 181.5
13 182
13 179
13 177.5

(%f4 0xfe01) 13 173
(%f4 0xaaaaaa) 13 173.5
(%f4=0) 13 174

13 184
13 184.5
13 185
13 181
13 180.5

instruction (internally treated as an integer in-
struction) appears after a divide instruction, the
execution of this instruction is hidden within the
12 interlock cycles of the divide. Entries 28 to 31
show other examples when integer instructions
follow a divide instruction, and entries 35 to 39
show the same for the square root instruction.
These entries show that the current cost in this case
isn’t much more than when no integer instructions
are executed in the FPU interlock cycles. This
leads to the following insights:

When integer instructions are executed during
the FPU interlock cycles, the current doesn’t

increase much beyond what it is when the
interlock cycles are completely idle. This sug-
gests that during the FPU interlock cycles,
switching activity doesn’t completely stop in
the other parts of the CPU. If this activity is
useless, then eliminating it can result in power
reduction during .the interlock cycles. This
represents another opportunity where automatic
power management of guarded evaluation may
be useful.
The results also show that for the current
implementation of the ’934, it is beneficial to
execute integer instructions during the FPU
interlock cycles. The current cost is not much

236 V. TIWARI AND M. TIEN-CHIEN LEE

higher than when the integer instructions are
executed independently. Therefore, the decrease
in the number of execution cycles translated into
actual energy reduction. Execution cycles are
reduced, since the cycles required to execute the
integer instructions are overlapped with, and
thus hidden, in the FPU interlock cycles. Soft-
ware optimizations to achieve this can therfore
be considered as both performance as well as
energy optimizations.

10. INTER-INSTRUCTION EFFECTS

The previous sections mainly focussed on the base
costs of instructions. The base cost of a given
instruction is obtained in isolation from other
instructions by repeatedly executing the same
instruction. However, real programs consist of a
sequence of different instructions. Several inter-
instruction effects can occur in these mixed
sequences. Base costs themselves are not adequate
to model the energy cost of these effects. These
inter-instruction effects are discussed below.

10.1. Effect of Circuit State Overhead
and Instruction Reordering

The effect of circuit state is an inter-instruction
effect that has been alluded to in the previous
sections. The purpose ofTable VI is to illustrate and
quantify this effect. Base costs of several instruc-
tions as well as the costs for pairs of instructions are
shown in the table. Only the I current is shown.
The 12 current was 21 mA in all cases. For entries
with pairs of instructions, Column 4 shows the
current for the combined sequence, and Column 5
shows the circuit state overhead. This value is the
difference between the actual current cost of an
instruction, and the average of the base costs of the
individual instructions.

Observations and Comments

The existence of circuit state overhead can be
attributed to the fact that each instruction executes

in the context of the circuit state set by the
previous instruction. The greater the change in the
circuit state between instructions, greater should
be this overhead. While the change in the circuit
state can result from any part of the processor, the
common notion is that it is basically due to the
change in the opcodes of adjacent instructions.
Entries 6 to 9 in Table VI show this quantitatively
with an example. With increasing number of bit
flips in the opcodes of adjacent instructions, the
overhead increases. However, Table VI also shows
that switching of the opcodes is not the only source
of circuit state overhead. For example, entries 18,
19, and 23, 24 involve almost the same number of
opcode flips. However, entries 23, 24 have a much
higher overhead cost.

Table VI, and some of the examples presented in
Section 7, as well as in the next section, quantify
several instances of circuit state overhead. These
and several other examples indicate that the
overhead varies between 0 and about 34 mA.
The overhead between integer instructions is
typically below 20 mA. The overhead between
floating point and integer instructions is higher,
typically in the range 25-34 mA. The most
important aspect of this observation is that the
range of variation in this overhead is small,
compared to the overall CPU current cost.
A recent idea in the area of software design for

low power is to reorder instructions to reduce the
power cost of a program [11]. This can be seen as
an attempt to reduce the average current cost of a
program by minimizing the circuit state overhead.
Our experiments based on actual energy measure-
ments on the ’934, however, reveal that this
technique does not translate into significant over-
all energy reduction. The reason is that the circuit
state overhead is bounded in a small range and
does not show very significant variation. Thus,
different instruction schedules will not vary signi-
ficantly in their current costs.

Table VII illustrates this with an example.
Entries 1 to 7 show a set of instructions. Entries
a and e show the current cost of different sequen-
ces consisting of these instructions. The order of

POWER ANALYSIS 237

No. Instruction

TABLE VI Effect of circuit state overhead

Register contents I1 (mA) Ovh. (mA)

or %g0, 0, %10
2 or %g0, 0x001, %10
3 or %g0, 0x00f, %10
4 or %g0, 0xff, %10
5 or %g0, 0xfff, %10
6 & 2 opcode flip
7 & 3 4 opcode flips
8 & 4 8 opcode flips
9 & 5 12 opcode flips
10 or %g0, %i0, %10 (%i0-0)
11 or %g0, %i0, %10 (%io=0xfff)
12 10 & 11 12 data flips
13 or %g0, %r16, %i0 (%r16-0)
14 or %g0, %r17, %i0 (%r17-0)
15 or %g0, %r15, %i0 (%r15=0)
16 or %g0, %r23, %i0 (%r23-0)
17 13 & 14 opcode flip
18 13 & 16 3 opcode flips
19 13 & 15 5 opcode flips
20 subx %g0, %r16, %i0 (%r16-0)
21 xor %g0, %r16, %i0 (%r16-0)
22 xor %g0, %r17, %i0 (%r16=0)
23 20 & 21 4 opcode flips
24 20 & 22 4 opcode flips
25 or %il, %00, %11 (%il =0x555, %00=0)
26 add %00, %il, %12 (%il =0x555, %00=0)
27 or %05, 0x555, %14 (%05= 1)
28 srl %il, %05, %g3 (%il =0x555, %05= 1)
29 25 & 26
30 26 & 27
31 27 & 28
32 28 & 25
33 fmuls %f8, %f4, %f0 (%f8=0, %f4=0)
34 nop
35 33 & 34
36 andcc %gl, 0xaaa, %10 (%gl =0x555)
37 33 & 36
38 ld [0x555], %05
39 sll %04, 0x7, %06 (%o4=0x707)
40 38 & 39
41 or %g0, 0xff, %10
42 33 & 41
43 fadd %f10, %f12, %f14 (%f10=0x123456,

%f12 0xaaaaaa)
44 38 & 43

177
174
174
174.5
174.5
178 2.5
184.5 9
191 15
192 16
177.5
173.5
187.5 12
177.5
176
175.5
176
177.5
180 3
180.5 4
172
177.5
176
191.5 17
192 18
174.5
174.5
170
174.5
185 10.5
182 9.5
191 19
184.5 10.5
174
176
202 27
179
210 33.5
192.5
173.5
202.5 19.5
176
207 32
176

212 28

the instructions in the sequences is shown in
Column 2 and the I1 current cost is shown in
Column 3 (I2 current was 21 mA in all cases). The
maximum variation in the current is only 4 mA, or
about 1.9%. Since all the sequences take the same
number of cycles, the energy variation is also
1.9%.

Similar observations were also made in the case
of the Intel 486DX2 [13]. It appears that this is

characteristic of large, complex CPUs, where a
major part of the circuit activity is common to all
instructions, e.g., instruction fetch, pipeline con-
trol, clocks, etc. However, it may be the case that
instruction reordering can result in significant
variation in smaller processors (as seen in the case
of a DSP [7]), and processors with complex power
management features. This bears further investi-
gation.

238 V. T1WARI AND M. TIEN-CHIEN LEE

No.

TABLE VII Example of instruction reordering

Instruction Register contents

fmuls %f8, %f4, %f0 (%f8=0, %f4=0)
2 andcc %gl, 0xaaa, %10 (%gl =0x555)
3 faddd %10, %f12, %f14 (%f10=0x123456, %f12=0xaaaaaa)
4 ld [0x555], %05
5 sll %04, ox7,%o6 (%o4=0x707)
6 sub %i3, %i4, %i5 (%i3 =Ox7f, %i4--0x44)
7 or %gO, Oxff, %10

Sequence I (mA)

a 1, 2, 3, 4, 5, 6, 7 206.5
b 1, 3, 5, 7, 2, 4, 6 203
c 1, 4, 7, 2, 5, 3, 6 205
d 2, 3, 7, 6, 1, 5, 4 207
e 5, 3, 1, 4, 6, 7, 2 202.5

10.2. Pipeline Stalls and Cache Misses

The ’934 is a pipelined processor. Resource
constraints in the pipeline can lead to pipeline
stalls that affect the energy cost of/programs.
Examples are prefetch buffer stalls and write buffer
stalls. Base costs of instructions do not reflect the
impact of these stalls. Therefore, current measure-
ment experiments are conducted to isolate the
power cost of these stalls. The basic idea is to write
programs where these stalls occur repeatedly. This
is illustrated in greater detail in the context of the
Intel 486DX2 in [14]. The energy cost of each kind
of stall is proportional to the product of the
average current during the stall and the number of
cycles involved in the stall, as given-by the formula
in Section 3.
Another inter-instruction effect that is not

reflected in the base costs is the impact of cache
misses. Base costs are determined in the context of
cache hits in both the instruction and data caches.
Cache misses are modelled separately as an energy
overhead. This is analogous to what is done for
estimating execution time, where a performance
penalty is incurred for each cache miss. The results
in Section 6 give an idea of the power cost of a
cache miss. These costs can be further isolated by
conducting experiments with programs where
cache misses occur repeatedly. The energy penalty
for a cache miss is proportional to the product of

the average current during a cache miss and the
number of cycles for which the CPU is stalled.

11. INSTRUCTION LEVEL POWER MODEL

The results of the previous section quantify the
parameters of the instruction-level energy model of
the ’934. It consists of base energy costs of
individual instructions, and energy costs of effects
that involve more than one instruction, e.g., effects
of circuit state, pipeline, and write buffer stalls.
This model forms the basis for estimating the
energy cost of given programs. The following
simple example illustrates the validity of this
model.

11.1. Program Energy Estimation Example

Entries to 4 in Table VIII show a program
consisting of a sequence of four instructions. The
caches were enabled but the entries were locked in.
Columns 4 and 5 show the base current costs of
instructions. Instruction 4 takes 2 cycles to execute
while instructions to 3 take each. The measured
current for the full sequence is also shown. The
first step is to estimate the cost for the sequence
using just the base costs. Multiplying the I1
currents by the number of cycles for each
instruction, summing these up, and then dividing

POWER ANALYSIS 239

No. Instruction

TABLE VIII Program energy estimation example

Register contents I (mA) 12 (mA)

st %i0, [%10]
orcc %il, %00, %11
ldub [%10], %i5
umul %i0, 0x2, %03
l&2
2&3
3&4
4&l
Measured current
Estimate using base costs
Overhead estimate
Final estimate

(%i0 0xaaa, %10=0)
(%il =0x555, %00=0)
(%i5 0xaaa, %10=0)
(%i0 0xaaa)

176 21
173 21
192.5 21
174.5 21
203 21
196.5 21
192.5 21
187.5 21
196 21
178.1 21
16 0

194 21

by the total number of cycles, gives an estimate for
the I1 current for the sequence:

(176.0.1 + 173.0.1 + 192.5.1 + 174.5.2)/5
178.1 mA

The estimate for 12 is obviously 21 mA. The inter-
instruction effects should now be accounted for,
which in this example only include the effect of
circuit state. This effect is modeled by considering
the circuit state overhead between each pair of
consecutive instructions. The measured cost for
each pair is shown in entries 6 to 8. The circuit
state overhead between instructions 2 and 3 is
given by (196.5-(173.0+192.5)/2)=13.75 mA.
Between 3 and 4 it is given by (192.5-
(192.5 + 2. 174.5)/3) 3/2= 18.0 mA. The reason
for multiplying by 3/2 is that for an alternating
sequence of instructions 3&4, the overhead occurs
twice during 3 cycles. In a similar way, the
overheads between & 2 and 4& are seen to be
28.5 mA and 18.75 mA, respectively. The average
overhead is 16 mA for I1 and 0 mA for 12. When
these overheads are added to the base cost
estimates, we obtain 194 mA for I1 and 21 mA
for 12. A comparison of entries 9 and 12 shows the
close correspondence of the estimate predicted by
the instruction-level power model and the actual
estimate. Such a close correspondence was also
obtained for other experiments involving other
instruction sequences.

The overall instruction level power model for
the ’934 is summarized below. Given a program,
P, its overall energy cost, Ep is given by:

i,j k

(1)

where for each instruction i, Bi is the base cost, and
Ni is the number of times it will be executed, and
for each pair of consecutive instructions (i, j), O,j
is the circuit state overhead, and N,j is the number
of times the pair will be executed. Ek is the energy
contribution of the other inter instruction effects, k
(stalls and cache misses), that would occur during
the execution of the program.
The base cost values (Bi) are obtained as shown

in the previous sections. The circuit state overhead
values (Oi,j) for all possible instruction pairs are
also obtained as shown in Section 10. However,
given that the circuit state overhead varies in a
limited range in the case of the ’934, it suggests
that a constant value could be used for all
instruction pairs. This is a more efficient and yet
fairly accurate way of modelling this effect. A
value of 18 mA has been found to be suitable.
The other parameters in the above formula vary

from program to program. The execution counts

Ni and N,j depend on the execution path of the
program. This is dynamic, run-time information.
In certain cases it can be determined statically but
in general it is best obtained from a program

240 V. TIWARI AND M. TIEN-CHIEN LEE

profiler. For estimating Ek, the number of times
pipeline stalls and cache misses occur has to be
determined. This is again dynamic information
that can be statically predicted only in certain
cases. In general, this information is obtained from
a program profiler and cache simulator.
The basic energy model developed in the

previous sections and described above is remark-
ably similar to the model for the Intel 486DX2.
Therefore, the software power/energy estimation
framework that was developed for the 486DX2
[14] can be directly applied to the ’934.

12. SOFTWARE CONTROLLED PARTIAL
POWER DOWN

One of the unique features of the ’934 is a facility
for powering down certain CPU modules that are
not needed. This is achieved by setting the
appropriate bits in a system control register known
as the Power-Down Register. The modules that
can be powered down are the SDRAM interface
(SDI), the DMA module, the floating-point unit
(FPU) and the floating-point FIFOs. Bits in the
Power-Down Register that are set to cause the
clock input of the corresponding module to be
disabled. Clearing the bits re-enables the clock
input.

Table IX shows the results of experiments that
study the effect of powering down specific mod-
ules, or combinations of modules. The I currents

for two different instructions, an OR and a LD are
shown in Columns 3 and 5, respectively. The
percent reduction in current for each entry is
shown in Columns 4 and 6. Entry shows the
results when nothing is powered down. Powering
down different modules leads to different power
savings, the maximum being the case when all the
four modules, SDI, DMA, FIFO, and FPU are
powered down.

Observations and Comments

As can clearly be seen, powering down of
unneeded modules can lead to significant power
savings. However, powering down and later
powering up a module through software, in-
volves the execution of a certain number of
control instructions. These instruction them-
selves consume energy. Thus, powering down of
modules will lead to energy savings only if the
modules are powered down long enough to
compensate for the overhead involved in power-
ing them down and then up.
The previous observation also indicates that
automatic power management of modules will
be more effective in saving power. The over-
head of powering up and down will be
negligible if it is controlled by logic internal
to the CPU. Plus, the temporal resolution of
the power management strategy can then be
much finer it can even be performed on a
cycle by cycle basis.

3-6 No.

TABLE IX

Powered-down units

Software controlled partial power down

or %i0, 0, %10 ld [%10], %i0

I1 (mA). % saved /2 (mA) % saved

2
3
4
5
6
7
8
9
10

None 177 0.0 192.5 0.0
SDI 164 7.6 188.5 2.1
DMA 164 7.6 188 2.3
FPU 155.5 12.1 180 6,5
FIFO 155.5 12.1 180 6.5
DMA, FPU 151.5 14.4 174 9.6
DMA, FIFO 151.5 14.4 175 9.1
FIFO, FPU 142 19.8 166 13.8
DMA, FIFO, FPU 138 22.0 162.5 15.6
SDI, DMA, FIFO, FPU 133 25.0 157 18.4

POWER ANALYSIS 241

An interesting observation leading from the
above table is that the power saving achieved by
powering down a combination of modules
doesn’t necessarily equal the sum of the
individual power reductions. For example, for
the OR instruction, power savings in entry 0 are
not equal to the sum of the savings shown in
entries 2 to 5. This is because circuit activity in
different modules might be correlated for this
instruction. Powering down one module also
eliminates some activity in another module.
Thus, powering down these modules together
results in different savings than what is expected
from the savings achieved by powering then
down individually.

This actually illustrates the fact that power
estimation/analysis methods have to account for
correlations between the activities in various
modules for each instruction. A power estimation
method based on summing up typical power
consumptions of separate modules, while disre-
garding correlations, can be very inaccurate. Thus,
the exact correlations have to be known in order to
effectively use such a method. The alternative is to
use methods which estimate/analyze the power
consumption of the entire CPU as a whole. The
measurement based analysis method described in
this paper is such a method. It implicitly accounts
for all correlations between internal modules, since
it is based on measurements made at the bound-
aries of the processor.

13. CONCLUSIONS

This paper describes the application of a new
power analysis technique for analyzing the power
consumption of the Fujitsu SPARClite MB86934,
a RISC processor. This technique had earlier been
applied to the Intel 486DX2, a CISC processor.
The successful application of this technique for
both these processors points to its general applic-
ability for other processors. This study reveals that
the basic instruction-level power model of the ’934

is very similar to that of the 486DX2. This power
model can be used to effectively evaluate the power
cost of software, without requiring knowledge of
the proprietary lower level details of the processor.
The results of the analysis also provide valuable
information about the power consumption in the
’934. Besides suggesting several ideas for the
design ofpower efficient software, this information
reveals other avenues for power reduction in the
processor’s design.

Acknowledgment

The authors would like to thank that D. Mahesh-
wari, H. Kotcherlakota, M. Somasundaram, A.
Watanabe, and B. McKeever of Fujitsu Micro-
electronics Inc. for their help with the experimental
setup and for technical discussions.

References
[1] Feigel, C. and Enfield, M., Fujitsu extends SPARClite

family. Microprocessor Report, June 1994.
[2] Fujitsu Microelectronics Inc. SPARClite Embedded Pro-

cessor User’s Manual 1993.
[3] Fujitsu Microelectronics Inc. SPARClite Embedded Pro-

cessor User’s Manual: MB86934 Addendum, 1994.
[4] Huang, C. X., Zhang, B., Deng, A. C. and Swirski, B.,

The design and implementation of PowerMill. In
Proceedings ofthe International Symposium on Low Power
Design, pp. 105-110, Dana Point, CA, April 1995.

[5] Landman, P. and Rabaey, J., Black-box capacitance
models for architectural power analysis. In Proceedings of
the International Workshop on Low Power Design, pp.
165-170, Napa, CA, April 1994.

[6] Landman, P. and Rabaey, J., Activity-sensitive architec-
tural power analysis for the control path. In Proceedings
of the International Symposium on Low Power Design, pp.
93-98, Dana Point, CA, April 1995.

[7] Lee, T. C., Tiwari, V., Malik, S. and Fujita, M:, Power
analysis and low-power scheduling techniques for em-
bedded DSP software. In Proceedings of the International
Symposium on System Synthesis, Cannes, France, Sept.
1995.

[8] Nagle, L. W. (1975). SPICE2: A computer program to
simulate semiconductor circuits. Technical Report ERL-
M520, University of California, Berkeley.

[9] Salz, A. and Horowitz, M. (1989). IRSIM: An incre-
mental MOS switch-level simulator. In Proceedings of the
Design Automation Conference, pages 173-178.

[10] Sato, T., Nagamatsu, M. and Tago, H., Power and
performance simulator: ESP and its application for
100MIPS/W class RISC design. In Proceedings of 1994
IEEE Symposium on Low Power Electronics, pp. 46-47,
San Diego, CA, Oct. 1994.

242 V. TIWARI AND M. TIEN-CHIEN LEE

[11] Lu, C. L., Tsui, C. Y. and Despain, A. M., Low power
architecture design and compilation techniques for high-
performance processors. In IEEE COMPCON, Feb.
1994.

[12] Tiwari, V., Malik, S. and Ashar, P., Guarded evaluation:
Pushing power management to logic synthesis/design. In
Proceedings ofthe International Symposium on Low Power
Design, pp. 221-226, Dana Point, CA, April 1995.

[13] Tiwari, V., Malik, S. and Wolfe, A., Compilation
techniques for low energy: An overview, in Proceedings
of 1994 IEEE Symposium on Low Power Electronics, pp.
38-39, San Diego, CA, Oct. 1994.

[14] Tiwari, V., Malik, S. and Wolfe, A., Power analysis of
embedded software: A first step towards software power
minimization. IEEE Transactions on I/’LSI Systems, 2(4),
437-445, December 1994.

[15] Ong, P. W. and Yan, R. H., Power-conscious software
design- a framework for modeling software on hardware.
In Proceedings of 1994 Symposium on Low Power
Electronics, pp. 36-37, San Diego, CA, Oct. 1994.

Authors’ Biographies

Vivek Tiwari received the B.Tech., degree in
Computer Science and Engineering from the
Indian Institute of Technology, New Delhi, India
in 1991. Currently he is working towards the
Ph.D. degree in the Department of Electrical
Engineering, Princeton University.

His research interests are in the areas of
Computer Aided Design of VLSI and embedded
systems and in microprocessor architecture. The

focus of his current research is on tools and
techniques for power estimation and low power
design. He has held summer positions at NEC
Research Labs (1993), Intel Corporation (1994),
Fujitsu Labs of America (1994), and IBM T. J.
Watson Research Center (1995), where he worked
on the above topics.
He received the IBM Graduate Fellowship

Award in 1993, 1994, and 1995, and a Best Paper
Award at ASP-DAC ’95.
Mike Tien-Chien Lee received his B.S., degree

in Computer Science from National Taiwan
University in 1987, and the M.S., degree and the
Ph.D., degree in electrical engineering from
Princeton University, in 1991 and 1993, respec-
tively.
He is currently a researcher at Fujitsu Labora-

tories of America, Santa Clara, CA. His research
interests include low-power design, embedded sys-
tem design, high-level synthesis, and test synthesis.
He has served in the program committees of

IEEE Pacific Northwest Test Workshop and IEEE
International Test Synthesis Workshop. He is also
a consulting researcher at Center of Reliable
Computing, Stanford University. He received a
Best Paper Award at ASP-DAC ’95.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

