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Abstract 15 

 16 

The transcriptome-wide association study (TWAS) has emerged as one of several promising 17 

techniques for integrating multi-scale ‘omics’ data into traditional genome-wide association 18 

studies (GWAS). Unlike GWAS, which associates phenotypic variance directly with genetic 19 

variants, TWAS uses a reference dataset to train a predictive model for gene expressions, which 20 

allows it to associate phenotype with variants through the mediating effect of expressions. 21 

Although effective, this core innovation of TWAS is poorly understood, since the predictive 22 

accuracy of the genotype-expression model is generally low and further bounded by expression 23 

heritability. This raises the question: to what degree does the accuracy of the expression model 24 

affect the power of TWAS? Furthermore, would replacing predictions with actual, 25 

experimentally determined expressions improve power? To answer these questions, we 26 

compared the power of GWAS, TWAS, and a hypothetical protocol utilizing real expression 27 

data. We derived non-centrality parameters (NCPs) for linear mixed models (LMMs) to enable 28 

closed-form calculations of statistical power that do not rely on specific protocol 29 

implementations. We examined two representative scenarios: causality (genotype contributes to 30 
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phenotype through expression) and pleiotropy (genotype contributes directly to both phenotype 31 

and expression), and also tested the effects of various properties including expression 32 

heritability. Our analysis reveals two main outcomes: (1) Under pleiotropy, the use of predicted 33 

expressions in TWAS is superior to actual expressions. This explains why TWAS can function 34 

with weak expression models, and shows that TWAS remains relevant even when real 35 

expressions are available. (2) GWAS outperforms TWAS when expression heritability is below a 36 

threshold of 0.04 under causality, or 0.06 under pleiotropy. Analysis of existing publications 37 

suggests that TWAS has been misapplied in place of GWAS, in situations where expression 38 

heritability is low. 39 

 40 

Keywords: Power analysis, GWAS, TWAS, Non-centrality parameter, Expression heritability  41 
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Author Summary 42 

We compared the effectiveness of three methods for finding genetic effects on disease in 43 

order to quantify their strengths and help researchers choose the best protocol for their data. The 44 

genome-wide association study (GWAS) is the standard method for identifying how the genetic 45 

differences between individuals relate to disease. Recently, the transcriptome-wide association 46 

study (TWAS) has improved GWAS by also estimating the effect of each genetic variant on the 47 

activity level (or expression) of genes related to disease. The effectiveness of TWAS is 48 

surprising because its estimates of gene expressions are very inaccurate, so we ask if a method 49 

using real expression data instead of estimates would perform better. Unlike past studies, which 50 

only use simulation to compare these methods, we incorporate novel statistical calculations to 51 

make our comparisons more accurate and universally applicable. We discover that depending on 52 

the type of relationship between genetics, gene expression, and disease, the estimates used by 53 

TWAS could be actually more relevant than real gene expressions. We also find that TWAS is 54 

not always better than GWAS when the relationship between genetics and expression is weak 55 

and identify specific turning points where past studies have incorrectly used TWAS instead of 56 

GWAS. 57 

 58 

Introduction 59 

High-throughput sequencing instruments have enabled the rapid profiling of 60 

transcriptomes (RNA expression of genes) [1-4], proteomes (proteins) [5-7] and other ‘omics’ 61 

data [8-10]. These ‘omics’ provide insight into the intermediary effects of genotypes on 62 

endophenotypes, and can improve the ability of genome-wide association studies (GWAS) to 63 

find associations between genetic variants and disease phenotypes. [11-13]. The integration of 64 

diverse ‘omics’ data sources remains a challenging and active field of research [14-17].  65 

 One approach to integrating ‘omics’ and GWAS is the transcriptome-wide association 66 

study (TWAS), which quantitatively aggregates multiple genetic variants into a single test using 67 

transcriptome data. Pioneered by Gamazon et al [18], the TWAS protocol typically has two 68 

steps. First, a model is trained to predict gene expressions from local genetic variants near the 69 

focal genes, using a reference dataset containing both genotype and expression data. Second, the 70 

pretrained model is used to predict expressions from genotypes in the association mapping 71 

dataset under study, which contains genotypes and phenotypes (but not expression). The 72 
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predicted expressions are then associated to the phenotype of interest. TWAS can also be 73 

conducted with summary statistics from GWAS datasets (i.e. meta-analysis) as first 74 

demonstrated by Gusev et al. [19] [20]. TWAS has since achieved significant popularity and 75 

success in identifying the genetic basis of complex traits [21-27], inspiring similar protocols for 76 

other endophenotypes such as IWAS for images [28] and PWAS for proteins [29].   77 

Despite its demonstrated effectiveness, important questions remain regarding the 78 

theoretical conditions under which TWAS is superior to GWAS. First: TWAS mapping relies 79 

entirely on predicted expressions, but as shown by many methodological papers, the mean 𝑅𝑅2 80 

between predicted and actual expressions is very low (around 0.02 ~ 0.05). This is in part due to 81 

low expression heritability [18], which bounds the maximum predictive accuracy attainable by 82 

the genotype-expression model. Naturally, one can ask: given sufficiently low expression 83 

heritability, is there is a point at which TWAS performs worse than GWAS? Indeed in real data, 84 

genes discovered with significant TWAS p-values tend to have a higher 𝑅𝑅2, and thus expression 85 

heritability, than on average [18, 19, 30-32]. We therefore investigate the effect of expression 86 

heritability on the power of TWAS, as well as its interactions with trait heritability, phenotypic 87 

variance from expressions, number of causal genes, and genetic architecture. Second: as 88 

described by Gamazon et al. [18], the key insight of TWAS is that it aggregates sensible genetic 89 

variants to estimate “genetically regulated gene expression”, or GReX [18], for use in 90 

downstream GWAS. Given this hypothesis, one may ask if actual expression data would further 91 

improve the power of downstream GWAS over predicted expressions. This is not a trivial 92 

question, as although actual expressions do not suffer from prediction errors, they also include 93 

experimental or environmental noise which masks the genetic component of expression. To test 94 

this problem, we invent a hypothetical protocol associating real expressions to phenotype, which 95 

we call “expression mediated GWAS” or emGWAS. While emGWAS is not in practical use due 96 

to the difficulties of accessing relevant tissues (e.g., in the studies of brain diseases), it can 97 

potentially be applied to future analyses of diseases where tissues are routinely available (e.g., 98 

blood or cancerous tissues). More importantly, emGWAS serves as a useful benchmark for 99 

evaluating the theoretical properties of TWAS-predicted expressions against ground truth 100 

expression data. By analyzing the power of TWAS, GWAS, and emGWAS, we develop practical 101 

guidelines for choosing each protocol given different expression heritability and genetic 102 

architectures. 103 
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While there has been an existing study comparing the power of GWAS, TWAS, and a 104 

protocol which integrates eQTLs with GWAS [33], the existing study is purely simulation-based, 105 

whereas we determine power directly using traditional closed-form analysis. We derive non-106 

centrality parameters (NCPs) for the relevant statistical tests and the linear mixed model (LMM) 107 

in particular (Methods). Our derivation uses a novel method to convert an LMM into a linear 108 

regression by decorrelating the covariance structure of the LMM response variable (Methods). 109 

To our best knowledge, this is the first closed-form derivation of the NCP for LMMs in current 110 

literature, with potential for broad applications as LMMs are the dominant models used in 111 

GWAS and portions of the TWAS pipeline.     112 

Unlike pure simulations, which stochastically resample the alternative hypothesis to 113 

estimate statistical power, our closed-form derivation directly calculates power from a particular 114 

configuration of association mapping data. As a result, our method saves computational 115 

resources, yields more accurate power estimations, and adapts easily to similar protocols such as 116 

IWAS [28] and PWAS [29, 34]. Moreover, as the closed-form derivation avoids conducting the 117 

actual regression, our power calculations do not depend on specific implementations of GWAS 118 

and TWAS, which could otherwise cause our results to vary due to differences in filtering inputs 119 

or parameter optimizations. Our work therefore characterizes the theoretical power of the 120 

protocols across all LMM-based implementations and datasets, although we are unable to 121 

account for power losses due to practical implementation issues. 122 

In the following section we describe our novel derivation of NCPs for LMMs and our 123 

power analyses of GWAS, TWAS, and emGWAS. We present guidelines on the applicability of 124 

each protocol under different input conditions and discuss potential limitations of our approach 125 

as well as areas for future research.  126 

 127 

Materials & Methods 128 

Mathematical definitions of GWAS, TWAS, and emGWAS protocols 129 

While there are many variations of GWAS and TWAS [18, 19, 35-39], in this work we 130 

assume that multiple genes contribute to phenotypic variation, and for each causal gene, multiple 131 

single nucleotide polymorphisms (SNPs) contribute to both gene expression and phenotype. This 132 

setting is motivated by the fact that most complex traits are known to have multiple contributing 133 

loci, and TWAS fundamentally assumes that genes have multiple local causal variants. To ensure 134 
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consistency, we apply the same assumptions in the design of the hypothetical protocol 135 

emGWAS. Specifically, we define the following models:  136 

GWAS. For GWAS, we adopted a standard LMM similar to EMMAX [35] 137 𝑌𝑌 = 𝛽𝛽𝑗𝑗0𝟏𝟏 + 𝑋𝑋𝑗𝑗𝛽𝛽𝑗𝑗1 + 𝑢𝑢 + 𝜀𝜀,        𝑗𝑗 = 1,2, … , 𝑛𝑛𝑥𝑥 , (1) 138 

where n is the number of individuals, 𝑛𝑛𝑥𝑥 is the total number of genetic variants, 𝑌𝑌 is an 𝑛𝑛 × 1 139 

vector of phenotypes, 1 is an 𝑛𝑛 × 1 vector of ones, 𝑋𝑋𝑗𝑗 is an 𝑛𝑛 × 1 genotype vector with 𝑋𝑋𝑖𝑖𝑗𝑗 ∈140 

{0,1,2} representing the number of minor allele copies for the 𝑖𝑖𝑡𝑡ℎ  individual and 𝑗𝑗𝑡𝑡ℎ   genetic 141 

variant, 𝛽𝛽𝑗𝑗0 and 𝛽𝛽𝑗𝑗1 are the intercept and effect size of the genetic variant, 𝑢𝑢 is an 𝑛𝑛 × 1 vector of 142 

random effects following the multivariate normal distribution, i.e. 𝑢𝑢 ∼ 𝑁𝑁�0,𝜎𝜎𝑔𝑔2𝐾𝐾𝑥𝑥�, and 𝜀𝜀 is an 143 𝑛𝑛 × 1 vector of errors with 𝜀𝜀 ∼ 𝑁𝑁(0,𝜎𝜎𝑒𝑒2𝐼𝐼). In the distributions of 𝑢𝑢 and 𝜀𝜀, 𝜎𝜎𝑔𝑔2 and 𝜎𝜎𝑒𝑒2 are their 144 

respective variance components, I is an 𝑛𝑛 × 𝑛𝑛 identity matrix, and 𝐾𝐾𝑥𝑥 is the genomic relationship 145 

matrix (GRM), which is a known 𝑛𝑛 × 𝑛𝑛 real symmetric matrix. Following Patterson et al [40], 146 𝐾𝐾𝑥𝑥 is calculated by 147 𝐾𝐾𝑥𝑥 =
1𝑛𝑛𝑥𝑥 𝑋𝑋�𝑋𝑋�𝑇𝑇 , (2) 148 

where 𝑛𝑛𝑥𝑥 is the total number of genetic variants and 𝑋𝑋� is a standardized 𝑛𝑛 × 𝑛𝑛𝑥𝑥 matrix. For 149 

example, an element 𝑋𝑋�𝑖𝑖𝑗𝑗 in the 𝑗𝑗𝑡𝑡ℎ  genetic variant column is calculated as 150 𝑋𝑋�𝑖𝑖𝑗𝑗 =
𝑋𝑋𝑖𝑖𝑗𝑗 − 𝑋𝑋�.𝑗𝑗𝑆𝑆𝑋𝑋𝑗𝑗 , (3) 151 

where 𝑋𝑋�.𝑗𝑗 =
1𝑛𝑛∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑛𝑛𝑖𝑖=1  and 𝑆𝑆𝑋𝑋𝑗𝑗2 =

1𝑛𝑛−1∑ �𝑋𝑋𝑖𝑖𝑗𝑗 − 𝑋𝑋�.𝑗𝑗�2𝑛𝑛𝑖𝑖=1  are the sample mean and sample variance 152 

of the 𝑗𝑗𝑡𝑡ℎ  variant, respectively. 153 

emGWAS. For emGWAS, we first regress the phenotype on the actual (not predicted) 154 

expressions, and then regress the expressions on individual local genetic variants in a similar 155 

manner as a cis-eQTL analysis. We chose the LMM to associate phenotype with expression, 156 

since under the assumption that multiple genes contribute to phenotype, we expect that the 157 

random term of the LMM can capture the effects of non-focal genes. We calculate the GRM 158 

from DNA instead of expressions because they provide better estimates of pairwise relationships 159 

between study participants than correlations based on predicted expression data. using the 160 

assumption that the ultimate goal is to identify genetic variants underlying expressions. We 161 

chose to use linear regression (LM) to model the association between expression and local 162 
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genetic variants (which correspond to cis-eQTLs), as it is the most common model used in cis-163 

eQTL analyses. 164 

Specifically, the phenotype-expression model is 165 𝑌𝑌 = 𝛽𝛽𝑙𝑙0𝟏𝟏 + 𝛽𝛽𝑙𝑙1𝑍𝑍𝑙𝑙 + 𝑢𝑢 + 𝜀𝜀, 𝑙𝑙 = 1,2, … ,𝑛𝑛𝑧𝑧 , (4) 166 

where n, 𝑌𝑌, 1, 𝑢𝑢 and 𝜀𝜀 have identical interpretations as in the GWAS model from (1), 𝑛𝑛𝑧𝑧 is the 167 

total number of genes, 𝑍𝑍𝑙𝑙 is an 𝑛𝑛 × 1 gene expression vector for the 𝑙𝑙𝑡𝑡ℎ gene, and 𝛽𝛽𝑙𝑙0 and 𝛽𝛽𝑙𝑙1 are 168 

the intercept and effect size of the gene.  169 

The linear regression associating gene expression with local genetic variants is 170 𝑍𝑍𝑙𝑙 = 𝛽𝛽𝑙𝑙𝑙𝑙0𝟏𝟏 + 𝛽𝛽𝑙𝑙𝑙𝑙1𝑋𝑋𝑙𝑙𝑙𝑙 + 𝜀𝜀𝑒𝑒𝑙𝑙 , 𝑙𝑙 = 1,2, … ,𝑛𝑛𝑧𝑧 ,𝑘𝑘 = 1,2, … ,𝑛𝑛𝑒𝑒𝑙𝑙 , (5) 171 

where 𝑋𝑋𝑙𝑙𝑙𝑙  is an 𝑛𝑛𝑒𝑒𝑙𝑙 × 1 vector of the 𝑘𝑘𝑡𝑡ℎ local genetic variants for the 𝑙𝑙𝑡𝑡ℎ gene,  𝜀𝜀𝑒𝑒𝑙𝑙~𝑁𝑁(0,𝜎𝜎𝑒𝑒𝑙𝑙2 𝐼𝐼) 172 

is a 𝑛𝑛 × 1 vector of errors with variance component 𝜎𝜎𝑒𝑒𝑙𝑙2 , 𝑛𝑛𝑒𝑒𝑙𝑙 is the total number of local genetic 173 

variants in the 𝑙𝑙𝑡𝑡ℎ gene, and 𝛽𝛽𝑙𝑙𝑙𝑙0 and 𝛽𝛽𝑙𝑙𝑙𝑙1 are the intercept and effect size of the variant. 174 

TWAS. For TWAS, we apply an analysis similar to emGWAS, except that gene 175 

expressions are predicted using a pretrained elastic-net model. Specifically, 176 𝑌𝑌 = 𝛽𝛽𝑃𝑃𝑙𝑙0𝟏𝟏 + 𝛽𝛽𝑃𝑃𝑙𝑙1�̂�𝑍𝑙𝑙 + 𝑢𝑢 + 𝜀𝜀,       𝑙𝑙 = 1,2, … , 𝑛𝑛𝑧𝑧 , (6) 177 

where �̂�𝑍𝑙𝑙 is the altered notation representing an 𝑛𝑛 × 1 vector of predicted gene expressions for 178 

the 𝑙𝑙𝑡𝑡ℎ gene, and 𝛽𝛽𝑃𝑃𝑙𝑙0 and 𝛽𝛽𝑃𝑃𝑙𝑙1 are the intercept and effect size of the predicted gene expression.  179 

There are several methods to estimate gene expression including least absolute shrinkage 180 

and selection operator (LASSO) and elastic-net. Gamazon et al. has shown that elastic-net has 181 

good performance and is more robust to minor changes in the input variants [18]. We therefore 182 

use the “glmnet” package in R to train a predictive model using elastic-net. The objective 183 

function in “glmnet” is 184 𝐿𝐿𝑒𝑒𝑛𝑛𝑒𝑒𝑡𝑡(𝛽𝛽) =
1

2𝑛𝑛 ‖𝑍𝑍 − 𝑋𝑋𝛽𝛽‖2 + 𝜆𝜆 �1− 𝛼𝛼
2

‖𝛽𝛽‖2 + 𝛼𝛼‖𝛽𝛽‖1� (7) 185 

where 𝜆𝜆 and 𝛼𝛼 are tuning parameters. The penalty term is a convex (linear) combination of 186 

LASSO and ridge penalties, where 𝛼𝛼 = 1 is equivalent to the LASSO objective function, and 187 𝛼𝛼 = 0 is equivalent to ridge regression. Optimal values of 𝜆𝜆 and 𝛼𝛼 were chosen by minimizing 188 

the cross-validated squared-error. Readers are referred to S1 Appendix for details.  189 

In practice, the specific regression model varies depending on the tool in use. For 190 

example, the leading TWAS tool PrediXcan [18] does not include the random effects of a mixed 191 

model, and many TWAS tools can also analyze summary statistics instead of subject-level 192 
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genotypes [19]. The motivation of this work is to reveal the key issues of using gene expressions 193 

as mediations, therefore has to adapt comparable framework. In other works, we do not intend to 194 

compare LMM against linear regression, which will mislead the comparison between GWAS 195 

and TWAS. Since LMMs are dominant in GWAS, we chose LMMs as the underlying model for 196 

all of the protocols we analyze, which allows us to compare them under an equivalent statistical 197 

framework. We believe that LMMs are a sensible approach for TWAS, since the random term 198 

can capture the genetic contributions of non-focal genes. 199 

 200 

Closed-form derivation of NCP and power calculation 201 

The non-centrality parameter (NCP) measures the distance between a non-central 202 

distribution and a central distribution under a specific alternative hypothesis. The NCP enables 203 

calculation of the probability of rejecting the null hypothesis, assuming the central distribution, 204 

when the alternative hypothesis is correct. As such, the NCP naturally allows the power of a 205 

statistical test to be determined in a closed form. We have developed the following method to 206 

derive the NCP for LMMs, which we believe is new to the literature.  207 

For a standard simple linear regression, the NCP of a t-test of the coefficient of the 208 

predictor variable can be derived similarly to a one-sample t-test statistic as follows: if 209 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛~𝑁𝑁(𝜇𝜇,𝜎𝜎) is a simple random sample, then the one-sample t-test statistic for evaluating 210 

the null hypothesis 𝐻𝐻0: 𝜇𝜇 = 𝜇𝜇0 is 211 𝑇𝑇 =
𝑋𝑋� − 𝜇𝜇0𝑆𝑆/√𝑛𝑛 =

√𝑛𝑛(𝑋𝑋� − 𝜇𝜇0)/𝜎𝜎�(𝑛𝑛 − 1)𝑆𝑆2/𝜎𝜎2𝑛𝑛 − 1

~𝑡𝑡𝑛𝑛−1, (8)
 212 

where 𝑋𝑋� and 𝑆𝑆 are the sample mean and (unbiased) sample standard deviation respectively. 213 

Under 𝐻𝐻0, √𝑛𝑛(𝑋𝑋� − 𝜇𝜇0)/𝜎𝜎~𝑁𝑁(0,1) and (𝑛𝑛 − 1)𝑆𝑆2/𝜎𝜎2~𝜒𝜒𝑛𝑛−12 , and thus 𝑇𝑇~𝑡𝑡𝑛𝑛−1. Under the 214 

alternative hypothesis 𝐻𝐻𝑎𝑎: 𝜇𝜇 = 𝜇𝜇𝑎𝑎, the test statistic 𝑇𝑇 =
√𝑛𝑛[(𝑋𝑋�−𝜇𝜇𝑎𝑎)+(𝜇𝜇𝑎𝑎−𝜇𝜇0)]/𝜎𝜎�(𝑛𝑛−1)𝑆𝑆2/𝜎𝜎2𝑛𝑛−1   follows a non-215 

central t distribution with NCP given by 216 𝑣𝑣 =
𝜇𝜇𝑎𝑎 − 𝜇𝜇0𝜎𝜎 √𝑛𝑛⁄ (9) 217 

To derive a closed-form NCP for LMMs, we convert the LMM to a linear regression 218 

without intercept by decorrelating the response variable and the predictors, a technique that has 219 

previously been applied to mixed models [41, 42]. The procedure is as follows: we first fit the 220 
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null model 𝑌𝑌𝑐𝑐 = 𝑢𝑢 + 𝜀𝜀 with no genetic variants, following an existing innovation for reducing the 221 

computational cost of repeatedly factorizing the GRM when analyzing many variants [35, 42]. 222 

We then estimate 𝜎𝜎𝑔𝑔2 using the Newton-Raphson method detailed in S2 Appendix. Denoting the 223 

eigen decomposition of the GRM as 𝐾𝐾𝑥𝑥 = 𝑈𝑈𝑥𝑥Λ𝑥𝑥𝑈𝑈𝑥𝑥−1, we construct the de-correlation matrix as 224 𝐷𝐷𝑥𝑥 = �𝜎𝜎𝑔𝑔2Λ𝑥𝑥 + 𝜎𝜎𝑒𝑒2𝐼𝐼�−12𝑈𝑈𝑥𝑥𝑇𝑇 . (10) 225 

By left multiplying both 𝑋𝑋 and 𝑌𝑌 by 𝐷𝐷𝑥𝑥, and denoting 𝑋𝑋∗ = 𝐷𝐷𝑥𝑥𝑋𝑋 = (𝑋𝑋1∗,𝑋𝑋2∗, … ,𝑋𝑋𝑛𝑛∗)𝑇𝑇 and 226 𝑌𝑌∗ = 𝐷𝐷𝑥𝑥𝑌𝑌 = (𝑌𝑌1∗,𝑌𝑌2∗, … ,𝑌𝑌𝑛𝑛∗)𝑇𝑇, the covariance structure in 𝑌𝑌∗ is thus removed and a linear 227 

regression of 𝑌𝑌∗ on 𝑋𝑋∗ is equivalent to the original LMM model. A proof of the validity of this 228 

decorrelation structure is presented in S3 Appendix.   229 

Based on the closed-form NCP for linear regression, we derive the estimated NCP of the 230 

LMM from (1), which is given by  231 𝜐𝜐�𝐺𝐺𝑗𝑗 =
∑ 𝑋𝑋�𝑖𝑖𝑗𝑗∗𝑛𝑛𝑖𝑖=1 𝑌𝑌�𝑖𝑖∗ ∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅2𝑛𝑛𝑖𝑖=1 −∑ 𝑌𝑌�𝑖𝑖∗𝑛𝑛𝑖𝑖=1 𝐷𝐷�𝑥𝑥𝑖𝑖⋅∑ 𝑋𝑋�𝑖𝑖𝑗𝑗∗𝑛𝑛𝑖𝑖=1 𝐷𝐷�𝑥𝑥𝑖𝑖⋅�∑ �𝑋𝑋�𝑖𝑖𝑗𝑗∗ �2𝑛𝑛𝑖𝑖=1 �∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅𝑛𝑛𝑖𝑖=1 �2 − �∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅𝑛𝑛𝑖𝑖=1 𝑋𝑋�𝑖𝑖𝑗𝑗∗ �2∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅2𝑛𝑛𝑖𝑖=1 , (11)

 232 

where 𝑋𝑋�𝑗𝑗∗ = 𝐷𝐷�𝑥𝑥𝑋𝑋𝑗𝑗 = (𝑋𝑋�1𝑗𝑗∗ ,𝑋𝑋�2𝑗𝑗∗ , … ,𝑋𝑋�𝑛𝑛𝑗𝑗∗ )𝑇𝑇 , 𝑌𝑌�∗ = 𝐷𝐷�𝑥𝑥𝑌𝑌 = (𝑌𝑌�1∗,𝑌𝑌�2∗, … ,𝑌𝑌�𝑛𝑛∗)𝑇𝑇 , and 𝐷𝐷�𝑥𝑥i⋅ = ∑ 𝐷𝐷�𝑥𝑥𝑖𝑖𝑗𝑗𝑛𝑛𝑗𝑗=1 . A 233 

proof of this expression of the NCP for LMMs is in S4 Appendix.  234 

The above result allows us to derive the statistical power of the GWAS, emGWAS, and 235 

TWAS protocols. For GWAS, we use the Bonferroni-corrected significance level 𝛼𝛼𝑥𝑥 =
0.05𝑛𝑛𝑥𝑥  to 236 

account for multiple testing [43], where 𝑛𝑛𝑥𝑥 is the total number of SNPs. Throughout this paper, 237 

we use 𝑓𝑓(𝑡𝑡; 𝜐𝜐) to denote the probability density function of the non-central t distribution with n-2 238 

degrees of freedom and NCP 𝜐𝜐. The statistical power of the  𝑗𝑗𝑡𝑡ℎ  SNP can then be estimated by 239 𝑃𝑃𝐺𝐺𝑗𝑗 = ∫ 𝑓𝑓+∞𝐹𝐹0−1(1−𝛼𝛼𝑥𝑥)
�𝑡𝑡; 𝜐𝜐�𝐺𝐺𝑗𝑗�𝑑𝑑𝑡𝑡 using the estimated NCP 𝜐𝜐�𝐺𝐺𝑗𝑗, where 𝐹𝐹0(𝑡𝑡) is the cumulative 240 

distribution function of the central 𝑡𝑡 distribution with n-2 degrees of freedom, and 𝐹𝐹0−1(1 − 𝛼𝛼𝑥𝑥) 241 

gives the critical value for the central distribution. We directly implement this power 242 

computation in R via the function “pt”, which takes the critical value, NCP, and degrees of 243 

freedom as parameters. 244 

For emGWAS, we assume that the powers of the expression-phenotype and genotype-245 

expression regression models (4) and (5) are independent of each other. For the model 𝑌𝑌 =246 𝛽𝛽𝑙𝑙0𝟏𝟏 + 𝑍𝑍𝑙𝑙𝛽𝛽𝑙𝑙1 + 𝑢𝑢 + 𝜀𝜀 from (4), we left multiply the estimated 𝐷𝐷�𝑥𝑥 to both sides of the equation so 247 

that the estimated NCP for the 𝑙𝑙𝑡𝑡ℎ gene expression is given by 248 
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𝜐𝜐�𝑒𝑒𝑒𝑒𝑙𝑙 =
∑ �̂�𝑍𝑖𝑖𝑙𝑙∗𝑛𝑛𝑖𝑖=1 𝑌𝑌�𝑖𝑖∗ ∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅2𝑛𝑛𝑖𝑖=1 −∑ 𝑌𝑌�𝑖𝑖∗𝑛𝑛𝑖𝑖=1 𝐷𝐷�𝑥𝑥𝑖𝑖⋅∑ �̂�𝑍𝑖𝑖𝑙𝑙∗𝑛𝑛𝑖𝑖=1 𝐷𝐷�𝑥𝑥𝑖𝑖⋅�∑ ��̂�𝑍𝑖𝑖𝑙𝑙∗ �2𝑛𝑛𝑖𝑖=1 �∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅2𝑛𝑛𝑖𝑖=1 �2 − �∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅𝑛𝑛𝑖𝑖=1 �̂�𝑍𝑖𝑖𝑙𝑙∗ �2∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅2𝑛𝑛𝑖𝑖=1 , (12)

 249 

where �̂�𝑍𝑙𝑙∗ = 𝐷𝐷�𝑥𝑥𝑍𝑍𝑙𝑙 = ��̂�𝑍1𝑙𝑙∗ , �̂�𝑍2𝑙𝑙∗ , … , �̂�𝑍𝑛𝑛𝑙𝑙∗ �𝑇𝑇. We use the significance level 𝛼𝛼𝑧𝑧 =
0.05𝑛𝑛𝑧𝑧  for each 250 

individual test, where 𝑛𝑛𝑧𝑧 is the total number of genes. The statistical power of detecting the 𝑙𝑙𝑡𝑡ℎ 251 

gene expression is then estimated by 𝑃𝑃𝑒𝑒𝑒𝑒𝑙𝑙 = ∫ 𝑓𝑓+∞𝐹𝐹0−1(1−𝛼𝛼𝑧𝑧)
(𝑡𝑡; 𝜐𝜐�𝑒𝑒𝑒𝑒𝑙𝑙)𝑑𝑑𝑡𝑡. For the model from (5), we 252 

simply calculate the estimated NCP of the standard linear regression, which is 253 𝜐𝜐�𝑒𝑒𝑋𝑋𝑙𝑙𝑙𝑙 =
∑ (𝑋𝑋𝑖𝑖𝑙𝑙𝑙𝑙 − 𝑋𝑋‾⋅𝑙𝑙𝑙𝑙)𝑛𝑛𝑖𝑖=1 𝑍𝑍𝑖𝑖𝑙𝑙�∑ (𝑋𝑋𝑖𝑖𝑙𝑙𝑙𝑙 − 𝑋𝑋‾⋅𝑙𝑙𝑙𝑙)2𝑛𝑛𝑖𝑖=1 𝜎𝜎�𝑒𝑒𝑙𝑙 , (13)

 254 

where255 𝜎𝜎�𝑒𝑒𝑙𝑙 =
1𝑛𝑛−2∑ �𝑍𝑍𝑖𝑖𝑙𝑙 − 𝑍𝑍‾⋅𝑙𝑙 + �̂�𝛽𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖𝑙𝑙𝑙𝑙 − 𝑋𝑋‾⋅𝑙𝑙𝑙𝑙)�2𝑛𝑛𝑖𝑖=1 . (14) 256 

Again, we use the significance level 𝛼𝛼𝑒𝑒𝑙𝑙 =
0.05𝑛𝑛𝑒𝑒𝑒𝑒  , where 𝑛𝑛𝑒𝑒𝑙𝑙 is the total number of local genetic 257 

variants in the 𝑙𝑙𝑡𝑡ℎ gene, so that the power of detecting 𝑋𝑋𝑙𝑙𝑙𝑙  is estimated by 𝑃𝑃𝑒𝑒𝑋𝑋𝑙𝑙𝑙𝑙 =258 ∫ 𝑓𝑓+∞𝐹𝐹0−1(1−𝛼𝛼𝑒𝑒𝑒𝑒) (𝑡𝑡; 𝜐𝜐�𝑒𝑒𝑋𝑋𝑙𝑙𝑙𝑙)𝑑𝑑𝑡𝑡. Since we assume the power of (4) and (5) are independent, the power 259 

of detecting the 𝑙𝑙𝑡𝑡ℎ gene and the 𝑘𝑘𝑡𝑡ℎ variants in the 𝑙𝑙𝑡𝑡ℎ gene simultaneously is given by 260 𝑃𝑃𝑒𝑒𝑒𝑒𝑙𝑙𝑃𝑃𝑒𝑒𝑋𝑋𝑙𝑙𝑙𝑙 . If the independence assumption is violated, i.e., the powers of these two steps are 261 

positively correlated, then the estimated power for emGWAS will be conservative. 262 

For TWAS, the NCP is estimated in a similar manner as the first step of emGWAS, i.e.  263 𝜐𝜐�𝑇𝑇𝑙𝑙 =
∑ �̂̂�𝑍𝑖𝑖𝑙𝑙∗𝑌𝑌�𝑖𝑖∗𝑛𝑛𝑖𝑖=1 ∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅2𝑛𝑛𝑖𝑖=1 −∑ 𝑌𝑌�𝑖𝑖∗𝑛𝑛𝑖𝑖=1 𝐷𝐷�𝑥𝑥𝑖𝑖⋅∑ �̂̂�𝑍𝑖𝑖𝑙𝑙∗𝑛𝑛𝑖𝑖=1 𝐷𝐷�𝑥𝑥𝑖𝑖⋅�∑ ��̂̂�𝑍𝑖𝑖𝑙𝑙∗�2𝑛𝑛𝑖𝑖=1 �∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅2𝑛𝑛𝑖𝑖=1 �2 − �∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅𝑛𝑛𝑖𝑖=1 �̂̂�𝑍𝑖𝑖𝑙𝑙∗�2∑ 𝐷𝐷�𝑥𝑥𝑖𝑖⋅2𝑛𝑛𝑖𝑖=1 , (15)

 264 

where the only difference between (12) and (15) is that �̂�𝑍𝑖𝑖𝑙𝑙∗ = 𝐷𝐷�𝑥𝑥𝑍𝑍𝑖𝑖𝑙𝑙 in (15) is replaced by �̂̂�𝑍𝑖𝑖𝑙𝑙∗ =265 𝐷𝐷�𝑥𝑥�̂�𝑍𝑖𝑖𝑙𝑙 in (15). The significance level is again 𝛼𝛼𝑧𝑧 =
0.05𝑛𝑛𝑧𝑧  and the power is estimated by 𝑃𝑃𝑇𝑇𝑙𝑙 =266 ∫ 𝑓𝑓+∞𝐹𝐹0−1(1−𝛼𝛼𝑧𝑧)

(𝑡𝑡; 𝜐𝜐�𝑇𝑇𝑙𝑙)𝑑𝑑𝑡𝑡. 267 

 268 

Simulation of phenotype and expression   269 

As the statistical power of each protocol depends on the magnitude of the genetic effect, 270 

we simulated input data at various effect sizes. While effect size depends on a combination of 271 
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many factors, we chose to focus on the following three aspects. 1) We considered two genetic 272 

architectures: causality and pleiotropy (Fig 1). In the causality scenario, the contribution of 273 

genotype to phenotype is mediated through expression (Fig 1a), whereas in the pleiotropy 274 

scenario, genotype contributes to both expression and phenotype directly (Fig 1b). We did not 275 

consider the scenario where phenotype is causal to expression. 2) We considered the strength of 276 

three different variant components: trait heritability (the variance component of phenotype 277 

explained by genotype, denoted ℎx=>y2 ), expression heritability (the variance component of 278 

expression explained by genotype, denoted ℎx=>z2 ), and the phenotypic variance component 279 

explained by expression, denoted ℎz=>y2  and abbreviated as PVX. 3) We also considered the 280 

number of genes contributing to phenotype and the number of local genetic variants contributing 281 

to expression.  282 

In all our simulations, we use real genotypes from the 1000 Genomes Project (N = 2504). 283 

Although there are multiple existing datasets containing both expressions and genotype, we 284 

chose to use simulated expressions instead as it is difficult to match real data exactly to desired 285 

properties such as expression heritability or the number of contributing genetic variants. By 286 

simulating expressions, we can perform a consistent power analysis across a comprehensive 287 

range of prespecified input conditions.    288 

In the causality scenario, phenotypes were simulated with the following procedure. First, 289 

several genes (𝑛𝑛𝑧𝑧−𝑠𝑠𝑖𝑖𝑔𝑔= 4, 9, or 13) were selected as causal genes. For each gene (indexed by 𝑙𝑙 =290 

 1,2, … , 𝑛𝑛𝑧𝑧−𝑠𝑠𝑖𝑖𝑔𝑔), several common and independent genetic variants were selected as causal 291 

variants (𝑛𝑛𝑧𝑧(𝑙𝑙)−𝑠𝑠𝑖𝑖𝑔𝑔  = 4 ~9, 𝑀𝑀𝑀𝑀𝐹𝐹 > 0.05, and 𝑅𝑅2 < 0.01). A linear combination of local variants 292 

in the 𝑙𝑙𝑡𝑡ℎ gene is generated to produce the expression values 𝑍𝑍(𝑙𝑙), and a linear combination of 293 

these gene expressions 𝒁𝒁 is generated as the genomic contribution to phenotype. Note that at 294 

each step, we ensure the simulated linear combinations of variants and expressions match our 295 

desired values for expression heritability ℎ𝑥𝑥=>𝑧𝑧2  and PVX ℎz=>y2  (S5 Appendix).  296 

In the pleiotropy scenario, we followed a similar procedure except that the phenotype 𝑌𝑌 297 

was directly generated from a linear combination of genotypes, instead of expressions (S6 298 

Appendix). Note that although the expressions 𝑍𝑍 and phenotype 𝑌𝑌 are unrelated by genuine 299 

biological causality, they are generated from the same genetic variants and are therefore 300 

statistically correlated. Therefore, if the trait heritability and expression heritability are 301 
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sufficiently large, TWAS can still identify causal genes using the statistical correlation between 302 

genetic variants and expression.    303 

We simulated both scenarios with expression heritability ℎ𝑥𝑥=>𝑧𝑧2  from the values (2.5%, 304 

3%, 4%, 6%, 8%, 10%, 30%), and with trait heritability ℎ𝑥𝑥=>𝑦𝑦2  in the pleiotropy scenario or PVX 305 ℎ𝑧𝑧=>𝑦𝑦2  in the causality scenario from the values (0.5%, 1%, 2.5%, 5%, 10%). Although we 306 

initially tested more extreme values, our Results show that the turning points where TWAS 307 

outperforms GWAS are well within the range of values presented here, and the relative 308 

performance of the protocols remains consistent under more extreme conditions. We therefore 309 

chose to restrict our discussion to the most relevant values for protocol selection, noting that the 310 

expression heritability values we examine are at the high-end of real observed values [18], while 311 

the trait heritability values are lower than typically found in GWAS. 312 

Finally, as each simulation involves multiple variants and genes, the overall power of 313 

each protocol is defined as follows: the power of GWAS is the probability of detecting at least 314 

one causal variant in any causal gene, the power of emGWAS is the probability of detecting at 315 

least one gene and one local SNP of that gene simultaneously, and the power of TWAS is the 316 

probability that at least one predicted gene expression is significant. Specifically, 317 

𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1 − � �1− 𝑃𝑃𝐺𝐺(𝑗𝑗)�𝑛𝑛𝑥𝑥−𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗=1 , (16) 318 

𝑃𝑃𝑒𝑒𝑚𝑚𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1− � �1− 𝑃𝑃𝑒𝑒𝑒𝑒(𝑙𝑙)𝑃𝑃𝑒𝑒𝑋𝑋(𝑙𝑙)�𝑛𝑛𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠
𝑙𝑙=1 ,  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑒𝑒𝑋𝑋(𝑙𝑙) = 1 − � �1− 𝑃𝑃𝑒𝑒𝑋𝑋(𝑙𝑙)(𝑙𝑙)�𝑛𝑛𝑧𝑧(𝑒𝑒)−𝑠𝑠𝑠𝑠𝑠𝑠

𝑙𝑙=1 , (17) 319 

𝑃𝑃𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 = 1 − � �1− 𝑃𝑃𝑇𝑇(𝑙𝑙)�𝑛𝑛𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠
𝑙𝑙=1 , (18) 320 

where 𝑛𝑛𝑥𝑥−𝑠𝑠𝑖𝑖𝑔𝑔 , 𝑛𝑛𝑧𝑧−𝑠𝑠𝑖𝑖𝑔𝑔  and 𝑛𝑛𝑧𝑧(𝑙𝑙)−𝑠𝑠𝑖𝑖𝑔𝑔  denote the numbers of significant SNPs, genes, and SNPs in 321 

the 𝑙𝑙𝑡𝑡ℎ significant gene respectively, 𝐺𝐺(𝑗𝑗) denotes the 𝑗𝑗𝑡𝑡ℎ  significant SNP identified by GWAS, 322 𝑍𝑍(𝑙𝑙) and 𝑋𝑋(𝑙𝑙)(𝑘𝑘) denote the 𝑙𝑙𝑡𝑡ℎ significant gene and the 𝑘𝑘𝑡𝑡ℎ significant SNP of the 𝑙𝑙𝑡𝑡ℎ 323 

significant gene identified by emGWAS, and 𝑇𝑇(𝑙𝑙) denotes the 𝑙𝑙𝑡𝑡ℎ significant gene identified by 324 

TWAS. 325 

 326 

  327 
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Results  328 

As a quality control measure, we compared the actual expression heritability and the 329 

mean 𝑅𝑅2 of the predicted expressions (Table 1). As expected, the mean 𝑅𝑅2 grows closer to the 330 

actual heritability value as expression heritability increases.  331 

 332 

Table 1: Comparisons of 𝑹𝑹𝟐𝟐 of imputed gene expression under different levels of expression 333 

heritability and number of genetic variants. 334 

 335 

 Mean of 𝑅𝑅2 Sample Standard 

Deviation of 𝑅𝑅2 

 

ℎ12 = 0.025 0.007847616 0.007415877  ℎ12 = 0.03 0.01259302 0.008410582  ℎ12 = 0.04 0.02319834 0.009481371  ℎ12 = 0.06 0.04415579 0.01083593  ℎ12 = 0.08 0.06465895 0.01175991  ℎ12 = 0.1 0.08518152 0.01264175  ℎ12 = 0.3 0.2886779 0.01514781  

 336 

Causality scenario 337 

We first analyzed cases where expression heritability is high (ℎ𝑥𝑥=>𝑧𝑧2  = 0.1 or 0.3) but the 338 

PVX is low (Fig 2). Overall, emGWAS clearly outperforms both GWAS and TWAS by a large 339 

margin, and TWAS also generally outperforms GWAS. Note that although the PVX is low and 340 

favors GWAS, TWAS is still more powerful due to the high expression heritability, which shows 341 

that expression heritability affects the performance of TWAS more than the PVX. Consistent 342 

with intuition, we observed that GWAS and TWAS have higher power as expression heritability 343 

increases, whereas this increase is much smaller for emGWAS. The power of GWAS and 344 

emGWAS reduces as the number of causal genes grows, whereas TWAS is largely unaffected by 345 

the number of causal genes. This is also consistent with intuition since TWAS uses GReX (�̂�𝑍) to 346 

aggregate genetic effects, avoiding the burden of multiple-testing correction.   347 
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We then analyzed cases where the PVX is high, but expression heritability is relatively 348 

low (ℎ𝑥𝑥=>𝑧𝑧2 = 0.025, 0.03, 0.04 or 0.08). Evidently, emGWAS performs best with powers 349 

consistently at 1.0. The comparison between TWAS and GWAS is more nuanced, as TWAS is 350 

suboptimal to GWAS when the expression heritability is 0.025 or 0.03 (Figs 3a and 3b), begins 351 

to outperform GWAS when the expression heritability is 0.04 (Fig 3c), and clearly outperforms 352 

GWAS when the expression heritability is 0.08 (Fig 3d). This quantifies an important turning 353 

point in that GWAS is superior to TWAS when expression heritability is less than 0.04, even if 354 

PVX is high (favoring TWAS).  355 

 356 

Pleiotropy scenario 357 

Again, we first analyze cases where expression heritability is high and trait heritability is 358 

low (Fig 4). Unlike in the causality scenario, the power of emGWAS is very low compared to 359 

TWAS and GWAS. A potential explanation is that when the effect of genetic variants on 360 

phenotype is not mediated through expressions, the non-genetic effects within the actual 361 

expressions add noise to emGWAS predictions. In contrast, the elastic-net model in TWAS 362 

captures only the genetic component of expressions, meaning the predicted expressions are a 363 

more accurate model of the direct genetic effect on phenotype. While errors are unavoidable in 364 

the elastic-net training process (as revealed in Table 1), our results show that the loss of power 365 

due to non-genetic effects is overwhelmingly greater than the loss due to training errors. As in 366 

the casualty scenario, TWAS generally outperforms GWAS except in the case where trait 367 

heritability is extremely low and the number of contributing genes is large, which is rare in 368 

practice. We therefore conclude that in both scenarios, TWAS has better power than GWAS 369 

when expression heritability is high. 370 

We finally analyze cases where expression heritability is low but trait heritability is high. 371 

Here, emGWAS continues to be the least powerful of the three protocols. As in the causality 372 

scenario, we again observe a turning point where TWAS outperforms GWAS: TWAS has lower 373 

power than GWAS when the expression heritability is 0.025 or 0.04 (Figs 5a and 5b), TWAS 374 

has comparable power when the expression heritability is 0.06 (Fig 5c), and TWAS outperforms 375 

GWAS when the expression heritability is 0.08 (Fig 5d).  376 

Our results can be summarized in two observations (Fig 6). First, emGWAS outperforms 377 

TWAS and GWAS in the casualty scenario, but is less powerful in the pleiotropy scenario 378 
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regardless of the accuracy of the predicted expressions (Table 1). This demonstrates that when 379 

non-genetic components in expression do not contribute to phenotype (i.e. pleiotropy scenario), 380 

predicted expressions capture genetic contributions better than actual expressions (which include 381 

non-genetic components). Second, the turning point at which traditional GWAS outperforms 382 

TWAS is an expression heritability of less than 0.04 in the causality scenario, or 0.06 in the 383 

pleiotropy scenario.   384 

These turning points are immediately relevant to the practical conduct of association 385 

mapping studies, as shown by the following analysis of expression heritability in existing TWAS 386 

publications. As few publications disclose their estimated expression heritability, we use 387 

published 𝑅𝑅2 values of the correlation between predicted and actual expressions to approximate 388 

the underlying expression heritability. We use the difference between expression heritability and 389 𝑅𝑅2 as calculated from our simulations (Table 1) to map these 𝑅𝑅2 values to an estimated 390 

expression heritability (i.e. 𝑅𝑅2 of 0.023 and 0.044 give expression heritability values 0.04 and 391 

0.06, respectively), although in practice the true difference may vary depending on the predictive 392 

model used in each study. Table 1 of the PrediXcan publication lists significant results from their 393 

paper, in which 14 out of 41 discovered genes have 𝑅𝑅2 values less than 0.044, with 2 values less 394 

than 0.023. Additionally, our review of recent TWAS publications shows that most of the genes 395 

presented have mean 𝑅𝑅2 values less than 0.044 or 0.023 (Table 2). As our power analysis 396 

indicated, GWAS may have better power than TWAS given these low expression heritability 397 

conditions. Although we are unable to determine if the genes discovered by these publications 398 

follow the causality or pleiotropy scenario, other advanced statistical models [44] may be used to 399 

determine appropriate thresholds to distinguish between pleiotropy and causality.  400 

In summary, we suggest the following modifications to the TWAS protocol. First, one 401 

may estimate expression heritability in the reference panel and filter out genes with expression 402 

heritability less than 0.04. Second, after conducting TWAS association mapping, determine the 403 

underlying causality scenario (causality or pleiotropy) in order to choose an appropriate 404 

expression heritability threshold (0.04 or 0.06). Finally, conduct GWAS for each gene with an 405 

expression heritability below the given threshold.  406 

 407 

  408 
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Table 2: Mean 𝑹𝑹𝟐𝟐 in published TWAS projects. 409 

Title of the publication Description of prediction accuracy 

Large-scale transcriptome-wide association 

study identifies new prostate cancer risk 

regions [22] 

The mean 𝑅𝑅2 = 0.07 for measured and 

predicted gene expression for TCGA normal 

prostate samples using models fitted in GTEx 

normal prostate. 

A framework for transcriptome-wide 

association studies in breast cancer in diverse 

study populations [45] 

The median CV 𝑅𝑅2 for the 153 genes is 0.011 

in both African American and white women. 

Evaluation of PrediXcan for prioritizing 

GWAS associations and predicting gene 

Expression [46] 

The average of prediction accuracy (𝑅𝑅2 ) is 

0.023 for the DGN model and 0.02 for the 

GTEx model, with both using whole blood 

model.  

A gene-based association method for mapping 

traits using reference transcriptome data [18] 

The average prediction 𝑅𝑅2 value is 0.0197 for 

GEUVADIS LCLs. For GTEx tissues, the 

prediction 𝑅𝑅2 values are 0.0367 (adipose), 

0.0358 (tibial artery), 0.0356 (left-ventricular 

heart), 0.0359 (lung), 0.0269 (muscle), 0.0422 

(tibial nerve), 0.0374 (sun-exposed skin), 

0.0398 (thyroid) and 0.0458 (whole blood). 

 410 

Application to the power estimation of EpiXcan 411 

Our NCP-based framework can be applied to estimate the power of other protocols. To 412 

demonstrate this point, we estimated the power of EpiXcan [27], a novel TWAS-like protocol 413 

integrating epigenetic functional annotations to improve the accuracy of predicted expressions 414 

and therefore overall TWAS power. The original EpiXcan paper demonstrated that (1) the 415 

predictive accuracy of expressions is significantly increased, and (2) EpiXcan enabled the 416 

discovery of novel genes [27]. We present here the first rigorous power analysis of EpiXcan. We 417 

first conduct simulations where a subset of SNPs are assigned increased effects, which reflects 418 

the main insight of the EpiXcan paper that epigenetic-relevant functional SNPs have higher 419 

impact on variation in gene expression. In particular, we assume the real effect size follows a 420 
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standard normal distribution N(0,1), and sample effect sizes from this distribution. Assuming 421 

these functional SNPs are known (based on various techniques of annotating SNP functions), we 422 

relieve their penalty in training the predictive model. Using the predicted expressions, we 423 

calculate power using our derived NCP, and compare the resulting analysis with the standard 424 

TWAS protocol. Supplementary Fig. S1-S4 depict this quantitative evaluation of the 425 

improvement in power due to the contribution of epigenetic-relevant functional SNPs. Evidently, 426 

under the causality model EpiXcan indeed increases power by improving expression predictions 427 

(Supplementary Fig. S1, S2). However, under the pleiotropy model, EpiXcan only shows a very 428 

small increase in power over TWAS (Supplementary Fig. S3, S4). This observation suggests 429 

that when DNA mutations contribute to phenotype directly, the benefit of more accurate 430 

predictions for expressions may not be substantial.  431 

 432 

Discussion  433 

In this work, we produced a novel derivation of the NCP for LMMs based on the 434 

decorrelation procedure, allowing us to calculate closed-form estimates of statistical power for 435 

three protocols: GWAS, emGWAS, and TWAS. Our power analysis revealed two practical 436 

insights. First, in the pleiotropy scenario, the use of predicted expressions in TWAS is 437 

overwhelmingly more powerful than the use of actual expressions in emGWAS, regardless of the 438 

accuracy of the predicted expressions per se (Table 1). This suggests that even if real 439 

expressions can be experimentally determined, TWAS is still superior for the analysis of some 440 

genes. While this appears counterintuitive, in statistical terms it is a direct result of the lack of a 441 

causal relationship between expression and phenotype under pleiotropy. This result reinforces 442 

the key insight, as presented by some publications [18], that TWAS uses expression as an 443 

objective function to select a linear combination of genetic variants, rather than attempting to 444 

accurately predict expressions. We note that this is equivalent to denoising in the field of 445 

machine learning [47]. Second, expression heritability determines the relative power of TWAS 446 

and GWAS. When the expression heritability is lower than 0.04 (in the casualty scenario) or 0.06 447 

(in the pleiotropy scenario), GWAS outperforms TWAS despite not utilizing gene expression 448 

information. This suggests that in practice, TWAS may often be suboptimal when expression 449 

heritability is low (Table 2 & Table 1 in [18]), which can be mitigated by choosing the optimal 450 

association mapping protocol according to this work’s quantitative guidelines.  451 
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A recent publication has also compared the statistical powers of GWAS and TWAS using 452 

pure simulations [33]. However, since we calculate power from a closed-form NCP derivation, 453 

our work establishes theoretical benchmarks for the performance of each protocol, independent 454 

of their implementations. Our work also has a different focus: rather than comparing techniques 455 

for training the genotype-expression predictive model and the impact of the actual number of 456 

causal genetic variants, we rank the effectiveness of GWAS, TWAS and emGWAS to better 457 

guide the practical application of TWAS. We analyze the theoretical effectiveness of real 458 

expressions as utilized by emGWAS, but exclude the protocol eGWAS as analyzed in [33], 459 

which uses eQTLs to assist association mapping. Our conclusions also differ slightly, as while 460 

the previous publication highlighted the importance of expression heritability, they concluded 461 

that expression heritability affects power only under the causality scenario, and not pleiotropy. In 462 

contrast, we concluded that expression heritability affects both scenarios.  463 

Finally, our closed-form derivation is readily adaptable to other methods utilizing middle 464 

‘omics’ (endophenotypes) such as IWAS [28] and PWAS [29, 34]. In fact, the variable 𝑍𝑍 in 465 

formula (15) can already represent such data as images or proteins, and thus no further 466 

modifications of the NCPs are necessary to adapt this work. 467 

The present NCP framework only focuses on statistical power for detecting associations, 468 

and is not able to determine causality in the framework of Mendelian randomization such as in 469 

SMR and its extensions [48, 49]. As a future work, we may attempt to derive closed-form power 470 

analyses for the MR framework.  471 

There are several limitations in the present study. Although our closed-form derivation is 472 

easily adaptable and works independently of specific implementations, it is unable to capture 473 

power loss due to implementation limitations or bias in specific datasets. Additionally, closed-474 

form derivations are more sensitive to model assumptions than simulation-based methods. Our 475 

calculation of the NCP also requires the variance component 𝜎𝜎𝑔𝑔2 to be estimated from data, in 476 

order to form the decorrelation matrix 𝐷𝐷𝑥𝑥. Although this approximation introduces extra 477 

variability and may therefore cause a decrease in power, we have omitted this variability from 478 

our analyses as the estimation of 𝜎𝜎𝑔𝑔2 is generally well-established, and has high accuracy in 479 

practice when given thousands of samples. Finally, we only compared linear models for GWAS 480 

and TWAS. As a future work, we may explore kernel-based nonparametric and semiparametric 481 

methods for conducting both GWAS [50, 51] and TWAS [52]. 482 
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 681 

Fig 1: Causality (a) and Pleiotropy (b) scenarios for genotype (X), expression (Z) and 682 

phenotype (Y). 683 
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 684 

Fig 2: Causality scenario when expression heritability is high and PVX is low.  685 

The PVX is 0.005, 0.01, 0.025, and 0.05 in the four columns as indicated by the X-axis labels. 686 

The number of genes contributing to phenotype for (a), (b) and (c) are 4, 9, and 13 respectively. 687 

The expression heritability for the top and bottom rows of (a), (b) and (c) are 0.1 and 0.3 688 

respectively. The number of causal variants per gene is randomly sampled from the interval 689 

[4,9]. 690 
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 691 

 692 

Fig 3: Causality scenario when expression heritability is low and PVX is high.  693 

The PVX is 0.05 and 0.1 in the two columns as indicated by the X-axis labels. The numbers of 694 

genes contributing to phenotype in the left, middle and right panels are 4, 9, and 13 respectively. 695 

The expression heritability levels in (a), (b), (c) and (d) are 0.025, 0.03, 0.04, and 0.08 696 

respectively. The number of causal variants per gene is randomly sampled from the interval 697 

[4,9]. 698 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2020.07.19.211151doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211151
http://creativecommons.org/licenses/by-nc/4.0/


 27 

 699 

Fig 4: Pleiotropy scenario when expression heritability is high and trait heritability is low.  700 

The trait heritability is 0.005, 0.01, 0.025, and 0.05 in the four columns as indicated by the X-701 

axis labels. The numbers of genes contributing to phenotype for (a), (b) and (c) are 4, 9, and 13 702 

respectively. The expression heritability for the top and bottom rows of (a), (b) and (c) are 0.1 703 

and 0.3 respectively. The number of causal variants per gene is randomly sampled from the 704 

interval [4,9].  705 
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 706 

Fig 5: Pleiotropy scenario when expression heritability is low and trait heritability is high.  707 

The PVX is 0.05 and 0.1 in the two columns as indicated by the X-axis labels. The numbers of 708 

genes contributing to phenotype for the left, middle and right panels are 4, 9, and 13 respectively. 709 

The expression heritability levels in (a), (b), (c) and (d) are 0.025, 0.04, 0.06, and 0.08 710 

respectively. The number of causal variants per gene is randomly sampled from the interval 711 

[4,9].  712 
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