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Abstract—A promising multi-user access scheme, non-
orthogonal multiple access (NOMA) with successive interference
cancellation (SIC), is currently under consideration for 5G
systems. NOMA allows more than one user to simultaneously
access the same frequency-time resource and separates multi-user
signals by SIC. These render resource optimization in NOMA
different from orthogonal multiple access. We provide theoretical
insights and algorithmic solutions to jointly optimize power
and channel allocation in NOMA. We mathematically formulate
NOMA resource allocation problems, and characterize and ana-
lyze the problems’ tractability under a range of constraints and
utility functions. For tractable cases, we provide polynomial-time
solutions for global optimality. For intractable cases, we prove the
NP-hardness and propose an algorithmic framework combining
Lagrangian duality and dynamic programming (LDDP) to deliver
near-optimal solutions. To gauge the performance of the solutions,
we also provide optimality bounds on the global optimum.
Numerical results demonstrate that the proposed algorithmic
solution can significantly improve the system performance in both
throughput and fairness over orthogonal multiple access as well
as over a previous NOMA resource allocation scheme.

Index Terms—Non-orthogonal multiple access, resource allo-
cation, successive interference cancellation, 5G.

I. INTRODUCTION

Orthogonal multi-user access (OMA) techniques are used

in 4G long term evolution (LTE) and LTE-Advanced (LTE-

A) networks, e.g., orthogonal frequency division multiple

access (OFDMA) for downlink and single-carrier frequency

division multiple access (SC-FDMA) for uplink [1], [2]. In

OMA, within a cell, each user has exclusive access to the

allocated resource blocks. Thus, each subchannel or subcarrier

can only be utilized by at most one user in every time slot.

OMA avoids intra-cell interference, and enables single-user

detection/decoding and simple receiver design. However, by

its nature, orthogonal channel access is becoming a limiting

factor of spectrum efficiency.

In the coming decade, mobile data traffic is expected to

grow thousand-fold [3], [4]. Accordingly, the network capacity

must dramatically increase for 5G systems. Capacity scaling

for 5G is enabled by a range of techniques and schemes, e.g.,

cell densification, utilization of unlicensed spectrum, and ad-

vanced radio access schemes. New multi-user access schemes

have been investigated as potential alternatives to OFDMA and

SC-FDMA [3]–[5]. A promising scheme is the so-called non-

orthogonal multiple access (NOMA) with successive inter-

ference cancellation (SIC) [6]. Unlike interference-avoidance

multiple access schemes, e.g., OFDMA, multiple users in

NOMA can be assigned to the same frequency-time resource

so as to improve spectrum efficiency [6]. On one hand, this

results in intra-cell interference among the multiplexed users.

On the other hand, some of the interfering signals in NOMA

can be eliminated by multi-user detection (MUD) with SIC

at the receiver side. To enable this process, more advanced

receiver design and interference management techniques are

considered for 5G networks [4].

A. Related Works

From an information theory perspective, under the assump-

tion of simultaneous multi-user transmission via superposition

coding with SIC, capacity region and duality analysis have

been studied in [7]. The authors of [8] have provided an

analysis of implementing interference cancellation in cellular

systems. Towards future 5G communication systems, some

candidate access schemes are under investigation in recent

research activities, e.g., sparse code multiple access (SCMA)

[3], and NOMA [6].

In [9], the authors studied the capacity region for NOMA. In

[10], by assuming predefined user groups for each subchannel,

a heuristic algorithm for NOMA power allocation in downlink

has been proposed, and system-level simulations have been

conducted. In [11], the authors address various implementation

issues of NOMA. The authors in [12] considered a sum-rate

utility maximization problem for dynamic NOMA resource

allocation. In [13], outage performance of NOMA has been

evaluated. The authors derived the ergodic sum rate and outage

probability to demonstrate the superior performance of NOMA

with fixed power allocation. In [14], fairness considerations

and a max-min fairness problem for NOMA have been ad-

dressed. The fairness in NOMA can be improved via using and

adapting the so-called power allocation coefficients. For uplink

NOMA, the authors in [15] provided a suboptimal algorithm

to solve an uplink scheduling problem with fixed transmission

power. In [16], a weighted multi-user scheduling scheme is

proposed to balance the total throughput and the cell-edge
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user throughput. In [17], the authors proposed a greedy-based

algorithm to improve the throughput in uplink NOMA. In

[18], the authors studied and evaluated user grouping/pairing

strategies in NOMA. It has been shown that, from the outage

probability perspective, it is preferable to multiplex users of

large gain difference on the same subcarrier. In [19], the

authors address subcarrier allocation and power assignment in

downlink NOMA, with the objective of balancing the through-

out with the number of scheduled users. The solution approach

uses matching theory, by first assuming equal power split and

applying a user-subchannel matching algorithm that converges

to a stable matching, followed by a water-filling phase for

power allocation. In [20], a monotonic optimization method

is developed for NOMA subcarrier and power allocation. The

method potentially approaches the global optimum, at the cost

of high complexity in the number of users per subcarrier. We

remark that there are other setups of SIC than that considered

in NOMA. An example is the interference channel in which

common information is transmitted for partial interference

cancellation, for which Etkin et al. [21] provided an analysis of

the resulting capacity region and trade-off from an information

theory perspective.

We note that in some studies of NOMA (e.g., [10], [14],

[18]), the aspect of subcarrier or subchannel allocation was

simplified or not addressed. However, to fully reach the

potential of NOMA, user-subchannel allocation is of high

significance due to fading. Assuming uniform subchannels

or using fixed rules for subchannel allocation may result in

significant performance loss. The importance of subchannel

allocation is evidenced by the growing interest in explicitly

taking this aspect into account in some recent works [12],

[19], [20].

Apart from investigation of NOMA performance in cellular

networks, from an optimization perspective, the complexity

and tractability analysis of NOMA resource allocation is of

significance. Here, tractability for an optimization problem

refers to whether or not any polynomial-time algorithm can be

expected to find the global optimum [1]. Tractability results

for resource allocation in OMA and interference channels have

been investigated in a few existing works, e.g., [1], [22], [23]

for OFDMA, [2] for SC-FDMA, and [23], [24] for interference

channel. For NOMA, to the best of our knowledge, no such

study is available in the existing literature.

B. Contributions

In spite of the existing literature of performance evaluation

for NOMA, there is lack of a systematic approach for NOMA

resource allocation from a mathematical optimization point of

view. The existing resource allocation approaches for NOMA

are typically carried out with fixed power allocation [13],

[15], [17], predefined user set for subchannels [10], or pa-

rameter tuning to improve performance, e.g., updating power

allocation coefficients [14]. Moreover, compared with OMA,

NOMA allows multi-user sharing on the same subchannel,

thus provides an extra dimension to influence the performance

in throughput and fairness. However, how to balance these

two key performance aspects in power and channel allocation

is largely not yet studied in the literature. In addition, little

is known on the computational complexity and tractability of

NOMA resource allocation.

In this paper, the solutions of joint channel and power

allocation for NOMA are subject to systematic optimization,

rather than using heuristics or ad-hoc methods. To this end, we

formulate, analyze, and solve the power and channel optimiza-

tion problem for downlink NOMA systems, taking into ac-

count practical considerations of fairness and SIC. We present

the following contributions. First, for maximum weighted-

sum-rate (WSR) and sum-rate (SR) utilities, we formulate

the joint power and channel allocation problems (JPCAP)

mathematically. Second, we prove the NP-hardness of JPCAP

with WSR and SR utilities. Third, we identify tractable cases

for JPCAP and provide the tractability analysis. Fourth, we

propose an algorithmic framework based on Lagrangian du-

ality and dynamic programming to facilitate problem solving.

Unlike previous works, our approach contributes to delivering

near-optimal solutions, as well as performance bounds on

global optimum to demonstrate the quality of our near-optimal

solutions. We use numerical results to illustrate the significant

performance improvement of the proposed algorithm over

existing NOMA and OFDMA schemes.

Our work extends previous study of user grouping in

NOMA. In [18], the number of users to be multiplexed on

a subcarrier is fixed, and performance evaluation consists

of rule-based multiplexing policies. In our case, for each

subcarrier, the number of users and their composition are

both output from solving an optimization problem. Later in

Section VII, results of optimized subcarrier assignment and

user grouping will be presented for analysis. The current paper

extends our previous study [12] in several dimensions. The

extensions consist of the consideration of the WSR utility

metric, a significant amount of additional theoretical analysis

of problem tractability, the development of the performance

bound on global optimality, as well as the consideration of

user fairness in performance evaluation.

The rest of the paper is organized as follows. Section II gives

the system models for single-carrier and multi-carrier NOMA.

Section III formulates JPCAP for WSR utility and provides

complexity analysis. Section IV analyzes the tractability for

special cases of JPCAP. In Section V, we provide the tractabil-

ity analysis for relaxations of JPCAP. Section VI proposes an

algorithmic framework. Numerical results are given in Section

VII. Conclusions are given in Section VIII.

II. SYSTEM MODEL

A. Basic Notation

We consider a downlink cellular system with a base station

(BS) serving K users. The overall bandwidth B is divided into

N subchannels, each with bandwidth B/N . Throughout the

paper, we refer to subchannel interchangeably with subcarrier.

We use K and N to denote the sets of users and subchannels,

respectively, and gkn to denote the channel gain between the

BS and user k on subcarrier n. Let pkn be the power allocated

to user k on subcarrier n. A user k is said to be multiplexed on

a subchannel n, if and only if pkn > 0. The power values are
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subject to optimization. At the receiver, each user equipment

has MUD capabilities to perform multi-user signal decoding.

With SIC, some of the co-channel interference will be treated

as decodable signals instead of as additive noise.

B. NOMA Systems

To ease the presentation of the system model, for the

moment let us consider the case that all the K users can

multiplex on each subcarrier n in a multi-carrier NOMA

system (MC-NOMA) at downlink. For each subcarrier n, we

sort the users in set K in the descending order of channel

gains, and use bijection bn(k): K 7→ {1, 2, . . . ,K} to represent

this order, where bn(k) is the position of user k ∈ K in the

sorted sequence. For our downlink system scenario, in [25]

(Chapter 6.2.2, pp. 238) it is shown that, with superposition

coding, a user can decode the data of another user with worse

channel gain, and this is not constrained by the specific power

split. The reason is that the first user, due to its better receiving

condition than the second user, can decode any data that the

second user can successfully decode. Consider one subcarrier

and two users k and h with gain gk > gh. User h does not

perform SIC, and its rate equals log(1 + phgh
pkgh+η

), where η
denotes the noise, and pk and ph are the power levels. For

user k with better gain gk, the SINR for the data for user

h is phgk
pkgk+η

> phgh
pkgh+η

. Hence user k can decode the data

(at the rate governed by the right-hand side of the inequality)

of user h, and this is not dependent on the power relation.

Thus user k is able to perform SIC, by subtracting the re-

encoded signal intended for receiver h from the composite

signal. That is, user k on subcarrier n, before decoding its

signal of interest, first decodes the received interfering signals

intended for the users h ∈ K\{k} that appear later in the

sequence than k, i.e., bn(h) > bn(k). The interfering signals

with order bn(h) < bn(k) will not be decoded and thus treated

as noise. Hence, the interference after SIC for user k on

subcarrier n is
∑

h∈K\{k}:bn(h)<bn(k)

phngkn, ∀k ∈ K, ∀n ∈ N . If

there are users having the same channel gain, then SIC applies

following the principle in [25] (Chapter 6.2.2), provided that

an ordering of the users is given. From the discussion, the

SINR of user k on subcarrier n is given below.

SINRkn =
pkngkn

∑

h∈K\{k}:bn(h)<bn(k)

phngkn + η
(1)

The noise power here equals the product of the power spectral

density of white Gaussian noise and the subcarrier bandwidth.

The rate of each user in NOMA is determined by the user’s

SINR after SIC. Thus, the achievable rate of user k on

subcarrier n is Rkn = log(1+SINRkn) nat/s with normalized

bandwidth B
N

= 1.

For single-carrier NOMA systems (SC-NOMA), we omit

the subcarrier index. For convenience, the users k ∈
{1, . . . ,K} in SC-NOMA are defined in the descending order

of channel gains, where g1 ≥ g2 ≥, . . . ,≥ gK . Thus the

user index also represents its position in the sequence, and

user k is able to decode the signal of user h if k < h.

We define SINRk = pkgk∑
h∈K\{k}:h<k phgk+η

, ∀k ∈ K. The

achievable rate of user k is Rk = log(1 + SINRk) nat/s

with normalized bandwidth B = 1. Following the discussion

earlier, for two users 1 and 2 with g1 > g2, the achievable

rates are log(1 + p1g1
η

) and log(1 + p2g2
p1g2+η

), respectively.

We use Un as a generic notation for the set of users multi-

plexed on subchannel n for MC-NOMA. For SC-NOMA, the

corresponding entity is denoted by U . We use M , 1 ≤ M ≤
K, to denote the maximum number of multiplexed users on a

subcarrier. The reason of having this parameter is to address

complexity considerations of implementing MUD and SIC. In

NOMA, the system complexity increases by M , because a

user device needs to decode up to M signals. The setting

of M depends on receiver’s design complexity and signal

processing delay for SIC [4], [8]. For practical implementation,

M is typically smaller than K. However, our optimization

formulations and the solution algorithm are applicable to

any value of M between one and K. We also remark that

the benefits of NOMA come with signaling overhead that is

necessary to facilitate SIC. Although signaling is outside the

scope of the current paper, it is of significance in practical

implementation. On the other hand, it has been shown in [11]

that NOMA remains superior to OMA in throughout when the

signaling overhead is accounted for. In addition, parameter M ,

which limits the number of users per subcarrier, provides an

effective way to control the signaling cost. By the results to

be presented in Section VII, most of the improvements due to

NOMA is achieved for small M .

Two utility functions, WSR and SR, are considered

in this paper. The WSR utility is denoted by fW =
∑

k∈K wk

∑

n∈N Rkn, where wk is the weight coefficient

of user k ∈ K. Clearly, the selection of the weights has

strong influence on the resource allocation among the users.

In general, the weights can be used to steer the resource

allocation towards various goals, such as to implement ser-

vice class priority of users, and fairness (e.g., a user with

averagely poor channel receives higher weight). In our work,

the algorithmic approach is applicable without any assumption

of the specific weight setting. For performance evaluation, we

set the weights following proportional fairness. That is, for

one time slot, a user’s weight is set to be the reciprocal of

the average user rate prior to the current time slot [15]. As

a result, the resource allocation will approach proportional

fairness over time. The SR utility, a special case of WSR,

is defined as fR =
∑

k∈K

∑

n∈N Rkn. The term of SR utility

is used interchangeably throughput in this paper. For both SR

and WSR, SIC with superposition coding [25] applies to the

users multiplexed on the same subcarrier. As was discussed

earlier, the decoding does not rely on assuming specific, a

priori constraint on the power allocation among the users.

III. JOINT POWER AND CHANNEL ALLOCATION

In this section, we formulate JPCAP using WSR utility for

MC-NOMA. We use W-JPCAP to denote the optimization

problem. In general, JPCAP amounts to determining which

users should be allocated to which subcarriers, as well as

the optimal power allocation such that the total utility is

maximized. In the following we define the variables and
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formulate W-JPCAP as P1WSR below, where all p-variables

and x-variables are collected in vectors p and x, respectively.

pkn = allocated power to user k on subcarrier n.

xkn =







1 if user k is multiplexed on subcarrier n,
i.e., pkn > 0,

0 otherwise.

P1WSR: max
x,p

∑

k∈K

wk

∑

n∈N

Rknxkn (2a)

s.t.
∑

k∈K

∑

n∈N

pkn ≤ Ptot (2b)

∑

n∈N

pkn ≤ Pk, ∀k ∈ K (2c)

∑

k∈K

xkn ≤M, ∀n ∈ N (2d)

In P1, the objective (2a) is to maximize the WSR utility,

where Rkn is defined below.

Rkn = log(1 +
pkngkn

∑

h∈K\{k}:
bn(h)<bn(k)

phngkn + η
), ∀k ∈ K, ∀n ∈ N

(3)

Constraints (2b) and (2c) are respectively imposed to ensure

that the total power budget and the individual power limit

for each user are not exceeded. The per-user power limit Pk

is introduced for practical considerations, such as regulatory

requirement on power towards a user device. Such a limit

is also very common in OMA (e.g., [23], [24]). Constraints

(2d) restrict the maximum number of multiplexed users on

each subcarrier to M . We remark that the power allocation is

represented by the p-variables of which the values are subject

to optimization, whereas the power limits Ptot and Pk, k ∈ K
are given entities. Suppose M users, say users 1, . . .M , are

allocated with positive power on channel n. If Ptot ≥
M∑

k=1

Pk

happens to hold, then all the M users may be at their respective

power limits, i.e., setting pkn = Pk, k = 1, . . . ,M , is feasible.

Otherwise, the M users can still be allocated with positive

power, though not all of them can be at the power limits.

Indeed, if user k is allocated with power pkn > 0 on channel

n, then typically pkn < Pk unless user k is not allocated

power on any other channel than n. For the total power limit

Ptot to be meaningful, one can assume
∑

k∈K Pk > Ptot

without loss of generality, because otherwise the total power

limit Ptot is not violated even if all users are allocated with

their respective maximum power, that is, (2b) becomes void

and should be dropped. We do not consider any further specific

assumptions on the relation between Ptot and Pk, k ∈ K, to

keep the generality of the system model.

Remark. We do not explicitly impose the constraint that

pkn > 0 if and only if xkn = 1. This is because setting

pkn > 0 and xkn = 0 is clearly not optimal, by the facts that

pkn > 0 will lead to rate degradation of other users due to the

co-channel interference (if there are other users on channel n),

and that for user k, pkn > 0 means power is consumed, but

xkn = 0 means no benefit as the rate in (2a) becomes zero. �

Formulation P1WSR is non-linear and non-convex. The con-

cavity of the objective function (2a) cannot be established in

general, because of the presence of the binary x-variables and

the product of x and p. However, in complexity analysis, nei-

ther non-convexity nor non-linearity of a formulation proves

the problem’s hardness, as a problem could be inappropriately

formulated. Therefore, we provide formal hardness analysis

for W-JPCAP below.

Theorem 1. W-JPCAP is NP-hard.

Proof: We establish the result in two steps. First, we

conclude that if M = 1 in (2d), W-JPCAP is NP-hard, as

it reduces to OFDMA subcarrier and power allocation, for

which NP-hardness is provided in [22] and [23]. For general

MC-NOMA with M > 1, we construct an instance of W-

JPCAP and establish the equivalence between the instance

and the OFDMA problem considered in [23]. We consider

an instance of W-JPCAP with K users, N subcarriers, and

M = 2. Let ǫ denote a small value with 0 < ǫ < 1
e

KN
. The

total power Ptot is set to NKPk. The power limit Pk = 1 is

uniform for ∀k ∈ K, and the noise parameter η = ǫ. Among

the K users, we select an arbitrary one, denoted by k̄ ∈ K,

and assign a dominating weight wk̄ = eKN and channel gain

gk̄n = 1 on all the subcarriers, whereas the other users’

weights and channel gains are wk = ǫ and gkn ≤
1
e

KN
,

∀k ∈ K\{k̄} and ∀n ∈ N . From above, the ratios
wk̄

wk

and
gk̄n

gkn
are sufficiently large such that allocating any power

p ≤ Pk̄ to user k̄ on any subcarrier n, the utility wk̄Rk̄n >
max(

∑

k∈K\{k̄}

∑

n∈N wknRkn) for using the same power

budget p, since
∑

k∈K\{k̄}

∑

n∈N wknRkn is bounded by

KNe−KN log(1 + e−KNp
ǫ

), and wk̄Rk̄n = eKN log(1 + p
ǫ
)

is clearly greater than KNe−KN log(1 + e−KNp
ǫ

). Thus,

allocating power to user k̄ rather than other users is preferable

for maximizing utility.

Due to the uniform gain gk̄n and the dominating weight

wk̄ for user k̄ on all channels, the optimal power allocation

for user k̄ is to uniformly allocate an amount of
Pk̄

N
to each

subcarrier. Then the remaining problem is to allocate power

Ptot−Pk̄ = (NK−1)Pk to the remaining K−1 users. Every

user k ∈ K\{k̄} is still subject to constraint (2c). Note that for

M = 2, each subcarrier now can accommodate one extra user

at most. Compared to the OFDMA problem in [23], W-JPCAP

has one extra total power constraint, i.e., (2b), however, recall

that Ptot is set to NKPk, and for this value (2b) is in fact

redundant. Therefore, a special case of W-JPCAP with M > 1
is equivalent to the OFDMA problem in [23], and the result

follows.

IV. TRACTABILITY ANALYSIS FOR UNIFORM WEIGHTS

The hardness of W-JPCAP could have stemmed from sev-

eral sources, e.g., the structure of the utility function, discrete

variables, non-concave objective, and the constraints. We start

from investigating how the weight in the utility function

influences the problem’s tractability. The utility function can

affect the computational complexity in problem solving [22],

[24]. One example is that the SR maximization problem

with total power constraint in OFDMA is polynomial-time



5

solvable [22]. With WSR utility, solving the same problem

is challenging [26]. In this section, we consider a special

problem of W-JPCAP, i.e., SR utility with uniform weights for

users. We use R-JPCAP to denote the optimization problem.

Intuitively, R-JPCAP appears somewhat easier than W-JPCAP,

however, the tractability of R-JPCAP, for both SC-NOMA and

MC-NOMA, is not known in the literature. In the following,

analogously to W-JPCAP, we formulate R-JPCAP in P1SR.

P1SR: max
x,p

∑

k∈K

∑

n∈N

Rknxkn (4a)

s.t. (2b), (2c), (2d) (4b)

First, we provide structural insights for power allocation for

R-JPCAP in SC-NOMA.

Theorem 2. For R-JPCAP in SC-NOMA, the following hold

at the optimum:

(a) Suppose gk ≥ gh for two users k and h with k 6= h, then

the optimal power allocation satisfies ph > 0 only if pk > 0.

(b) Up to M consecutive users in descending order of gain

are allocated with positive power.

Proof: By the SC-NOMA system model, the SR utility

function f = f(p1, . . . , pK)R reads:

log

(

1+
p1g1
η

)

+log

(

1+
p2g2

p1g2+η

)

+, . . . ,+ log







1+

pKgK
K−1∑

h=1

phgK+η








= log (p1g1 + η)− log η + log ((p1 + p2)g2 + η)−

log (p1g2 + η)+, . . . ,+log (
K∑

h=1

phgK+η)−log (
K−1∑

h=1

phgK+η)

Next, we consider the partial derivatives ∂f
∂p1

, . . . ,
∂f
∂pk

, . . . , ∂f
∂pK

, as shown in (5).

∂f

∂p1
=

g1
p1g1+η

−
g2

p1g2+η
︸ ︷︷ ︸

≥0

+
g2

(p1+p2)g2+η
−

g3
(p1+p2)g3+η

︸ ︷︷ ︸

≥0

+

, . . . ,+
gK−1

K−1∑

h=1

phgK−1+η

−
gK

K−1∑

h=1

phgK+η

︸ ︷︷ ︸

≥0

+
gK

K∑

h=1

phgK+η

,

∂f

∂p2
,

...

∂f

∂pK−1
=

gK−1

K−1∑

h=1

phgK−1+η

−
gK

K−1∑

h=1

phgK+η

︸ ︷︷ ︸

≥0

+
gK

K∑

h=1

phgK+η

,

∂f

∂pK
=

gK
∑K

h=1
phgK + η

(5)

For conclusion (a), since g1 ≥ g2 ≥, . . . ,≥ gK for the

single subcarrier in SC-NOMA, it can be easily checked from

(5) that the partial derivatives ∂f
∂p1
≥ ∂f

∂p2
≥ ∂f

∂p3
≥, . . . ,≥

∂f
∂pK

> 0, irrespective of the power values. In general, from the

partial derivatives, more utility will be obtained by increasing

power pk instead of ph if k < h, ∀k, h ∈ K. If the user

with the best channel condition, i.e. user 1, has p1 < P1, the

objective value f(p1, . . . , pK)R can be improved by shifting

power from other users to user 1 until p1 equals the power

limit P1. Statement (a) also implies that the optimal power

allocation will be in a consecutive manner, i.e., from user 1

to user M , one by one, and the result of (b) follows.

Algorithm 1 Polynomial-Time Algorithm for R-JPCAP in SC-

NOMA

1: Initialize p∗k = 0, ∀k ∈ K
2: for k = 1 : M do

3: p∗k ← min(Pk, Ptot), Ptot = Ptot − p∗k
4: if Ptot = 0 then

5: Break

6: Return: Optimal power allocation p∗1, . . . , p
∗
M

By Theorem 2, for the SR utility, the users being allocated

positive power at optimum are consecutive in their gain values,

starting from the user with the best channel gain. Note that

the SR utility maximizes the throughput, but has the issue

of fairness, which is addressed by the more general metric

of weighted SR (WSR) utility, where the weights are set

according to the proportional fairness policy. By Theorem

2 and its proof, R-JPCAP for SC-NOMA can be optimally

solved by the procedure given in Algorithm 1. The users’

power allocation is performed in a consecutive manner, start-

ing from user k = 1, and assigning power min(Pk, Ptot) to

user k and updating Ptot accordingly. Algorithm 1 is clearly

of polynomial-time complexity, resolving the tractability of

R-JPCAP in SC-NOMA, giving Corollary 3 below.

Corollary 3. R-JPCAP for SC-NOMA is tractable, i.e.,

polynomial-time solvable.

Next, we analyze the computational complexity of R-JPCAP

in MC-NOMA.

Theorem 4. R-JPCAP for MC-NOMA is NP-hard.

Proof: The proof is analogous to that of Theorem 1. For

general R-JPCAP with M > 1, we construct a special instance

with K users, N subcarriers, M = 2, Ptot = NKPk, and

uniform Pk = 1. We deploy a “dominant user” k̄ ∈ K in the

instance, that is, user k̄ has the highest and uniform channel

gain of gk̄n = 1 for all the subcarriers, whereas the channel

gain of all the other users and subcarriers is gkn ≤
1
e

KN
,

∀k ∈ K\{k̄}, ∀n ∈ N . One can observe that the ratio
gk̄n

gkn

for ∀n ∈ N , ∀k ∈ K\{k̄} has been set sufficiently large, and

from (5), the partial derivative of user k̄ satisfies ∂f
∂pk̄n

> ∂f
∂pkn

for ∀k ∈ K\{k̄} on each n, irrespective of the power values.

Then the statement (a) in Theorem 2 is valid for any subcarrier

n in this instance, that is, if k̄ is multiplexed on subcarrier

n, the optimal power pkn > 0 only if pk̄n > 0 for any

k 6= k̄. Thus, on each subcarrier n, allocating power to user

k̄ is preferred for optimality. Furthermore, due to the uniform
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channel gain for user k̄, the optimal power allocation for user

k̄ is to allocate equal power 1
N

on every subcarrier. Then

the remaining problem is equivalent to the OFDMA resource

allocation problem in [23], and the result follows.

From the results in this section, using SR utility function

instead of WSR does not change the intractability of JPCAP.

V. TRACTABILITY ANALYSIS FOR RELAXED JPCAP

In this section, we aim to identify and characterize tractable

cases for JPCAP. We provide tractability and convexity anal-

ysis for a relaxed version of W-JPCAP and R-JPCAP. For

problem’s relaxation, we make the following observations.

First, from the proofs of Theorem 1 and 4, we have the

following corollary.

Corollary 5. Both R-JPCAP and W-JPCAP remain NP-hard,

even if constraint (2b) is relaxed (i.e., the constraint is removed

from the optimization formulations P1SR and P1WSR).

Second, solving JPCAP will be challenging if (2c) is

present. The observation applies also to OFDMA resource

allocation, see e.g., [1], [22], [23]. Next, the discrete x-

variables are introduced in JPCAP due to the presence of

constraint (2d). This results in a non-convex feasible region. In

the following, we relax two constraints (2c) and (2d) as well

as removing x-variables, and construct a relaxed version of

R-JPCAP and W-JPCAP in P2SR and P2WSR, respectively.

P2SR : max
p

∑

k∈K

∑

n∈N

Rkn, s.t. (2b) (6)

P2WSR : max
p

∑

k∈K

wk

∑

n∈N

Rkn, s.t. (2b) (7)

Note that both formulations above are with the p-variables

only. We characterize the optimal power allocation for P2SR

in SC-NOMA first.

Lemma 6. For P2SR in SC-NOMA with g1 ≥ g2 ≥, . . . ,≥ gK ,

power allocation p1 = Ptot, p2 = · · · = pK = 0 is optimal.

Proof: First, observe that relaxing the user-individual

power constraint (2c) is equivalent to setting Pk = Ptot, i.e.,

the user power limit is set to be equal to the total power

limit, such that (2c) becomes redundant. Then, the result of

the lemma is obtained by applying the result of Theorem 2,

that is, the optimum can be computed by using Algorithm 1,

which, with Pk = Ptot, leads immediately to the result of the

lemma.

Next, we generalize the results of Lemma 6 to multi-carrier

systems, and show P2SR is also tractable in MC-NOMA.

Lemma 7. For P2SR in MC-NOMA, there is an optimal

solution satisfying |Un| ≤ 1, ∀n ∈ N , i.e., OMA is optimal.

Proof: Suppose at the global optimum, a subcarrier n has

|Un| > 1. Consider the two users having the largest gain values

in Un, and, without any loss of generality of the proof, suppose

that the two user indices are 1 and 2, with g1n ≥ g2n. Denote

the power allocated to users 1 and 2 on this subcarrier by p1n
and p2n, respectively, with p1n > 0 and p2n > 0. Denote by

p∗n the sum of the two, i.e., p∗n = p1n + p2n. The achieved

sum utility for these two users is thus R
(2)
n = log p1ng1n+η

η
+

log
p∗

ng2n+η

p1ng2n+η
.

Consider allocating the amount of power p∗n to user 1

instead, leaving zero power to user 2. The power allocation

of the other users remain unchanged. Note that this power

re-allocation affects only the utility values of user 1 and 2.

For user 1 the resulting utility becomes R
(1)
n = log

p∗

ng1n+η

η
,

whereas for user 2 the utility is zero. Comparing R
(1)
n and

R
(2)
n , we obtain the following.

R(2)
n −R(1)

n = log(
p1ng1n + η

p∗ng1n + η
×

p∗ng2n + η

p1ng2n + η
)

= log(
p1ng1np

∗
ng2n + p1ng1nη + p∗ng2nη + η2

p1ng1np∗ng2n + p∗ng1nη + p1ng2nη + η2
)

(8)

It can be observed that
(p1ng1nη + p∗ng2nη)− (p∗ng1nη + p1ng2nη)

= (p1nη − p∗nη)(g1n − g2n) < 0
(9)

Since p1n < p∗n and g1n > g2n, we have R
(2)
n < R

(1)
n . This

contradicts the optimality of the first power allocation, and the

lemma follows.

From Lemma 7 for P2SR, which amounts to maximizing

the sum rate utility subject to one single constraint on the

total power, OMA resource allocation is optimal. We remark

that P2SR is convex and tractable. It can be checked that the

Hessian matrix of the objective function in P2SR is negative

semi-definite. As the p-variables are continuous and (2b) is

linear, P2SR is convex. In general, the optimal solution can

be obtained by performing a polynomial-time algorithm [22],

that is, choosing the user with the best channel gain on each

subcarrier and then applying water-filling power allocation for

the assigned users. The conclusion is summarized below.

Corollary 8. The optimization problem in P2SR is tractable

for SC-NOMA and MC-NOMA.

Remark. In some proposed NOMA schemes, e.g., [9], [10],

users with inferior channel condition may request more power

to enhance fairness, e.g., if g1n ≥ g2n ≥, . . . ,≥ gKn on a

subcarrier n, the power allocation is subject to 0 < p1n ≤
p2n ≤, . . . ,≤ pKn. By Lemma 6, we remark that, on each

subcarrier n, equal power allocation for the multiplexed users

k ∈ Un is optimal. �

In the following, we characterize the tractability and con-

vexity for P2WSR. From formulation P2WSR, the convexity is

not straightforward to obtain. Note that Lemma 6 and Lemma

7 may not hold for P2WSR, as a user with inferior channel

gain may be associated with higher weight, and as a result,

the optimum possibly has |Un| > 1 for some n ∈ N . We make

the following derivations to show P2WSR is convex.

Theorem 9. The optimization problem in P2WSR is convex.

Proof: From Eq. (3), for any subcarrier n ∈ N , there are

K equations linking the power allocation with the user rates.

For the user with the best gain value, there is no interference

term in Eq. (3), and hence the power variable of this user can

be expressed in its rate. Going through the remaining users in

descending order of gain and performing successive variable
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substitution, the p-variables can be all expressed in the rate

values. Utilizing the observation, we prove the convexity by

reformulating P2WSR by treating rates Rkn, k ∈ K, n ∈ N as

the optimization variables. This transformation is analogous

to the geometric programming method [27]. To facilitate the

proof, we use mn(i) to denote the user index in the ith
position in the sorted sequence for subcarrier n, with indices

i = 0, . . . ,K, and the convention that mn(0) = 0. Problem

P2WSR is then reformulated below.

max
R

K∑

i=1

wk

N∑

n=1

Rkn (10a)

s.t.

K∑

i=1

N∑

n=1

(
η

gmn(i),n
−

η

gmn(i−1),n
) exp(

K∑

h=i

Rmn(h),n)

−
η

gmn(K),n
≤ Ptot (10b)

Rkn ≥ 0, ∀k ∈ K, ∀n ∈ N (10c)

The objective and constraints (10c) are both linear. For

constraints (10b), note that η
gmn(i),n

− η
gmn(i−1),n

≥ 0, due

to the descending order of channel gains, Hence the sum-exp
function in (10b) is convex [28], and the theorem follows.

For the above convex and tractable cases, i.e., P2SR and

P2WSR, standard optimization approaches for convex prob-

lem can be applied. For intractable cases, we develop an

algorithmic framework based on Lagrangian dual optimization

and dynamic programming (DP) to provide both near-optimal

solutions and optimality bounds in the next section.

VI. OPTIMIZATION ALGORITHM FOR NOMA POWER AND

CHANNEL ALLOCATION

In view of the complexity results, we aim to develop an al-

gorithm that is not for exact global optimum, yet the algorithm

by design, is capable of providing near-optimal solutions.

Moreover, the algorithm is expected to deliver optimality

bounds in order to gauge performance, and is capable of

progressively improving the bounds by scaling parameters.

In this section, we propose an algorithmic framework based

on Lagrangian duality and dynamic programming (LDDP).

In the developed algorithm, we make use of the Lagrangian

dual from relaxing the individual power constraint (2c) with

multipliers, and we develop a DP based approach to solve the

problem for given multipliers. The algorithm is designed to

solve both R-JPCAP and W-JPCAP problems. For generality,

we take W-JPCAP for illustration.

A. Lagrangian Duality and Power Discretization

Let vectors p and x collect all p-variables and x-variables,

respectively. Vector λ := {λk, ∀k ∈ K} contains the La-

grangian multipliers associated with constraints (2c) in P1WSR.

We construct the subproblem of Lagrangian relaxation below.

PLR: max
x,p

L(x,p,λ)=
∑

k∈K

wk

∑

n∈N

xknRkn+
∑

k∈K

λk(Pk−
∑

n∈N

pkn)

s.t. (2b), (2d)

PLR is subject to the total power constraint (2b) as well

as constraints (2d) that limit the number of users in each

subcarrier. Unlike the objective in P1WSR and P1SR, allocating

power to user k on subcarrier n in PLR requires to pay a

penalty in utility, i.e., −λkpkn. The Lagrange dual function

is defined by z(λ) = max
x,p

L(x,p,λ). The dual optimum is

correspondingly defined below.

z∗ = min
λ�0

z(λ) (12)

The optimization task amounts to solving PLR for a given

λ and finding the optimal λ to minimize the Lagrangian dual

in (12). Note that since P1WSR and P1SR are non-convex in

general, there may exist a duality gap between z∗ and global

optimum z† to the original problem, i.e., z∗ ≥ z†.

Formulation PLR is non-convex in general due to the reasons

we discussed in Section IV. We consider solving z(λ), making

use of the observation that, once the power is discretized, PLR

admits the use of DP for reaching optimality in polynomial-

time of the problem size and the number of power discretiza-

tion levels. To this end, we discretize the power budget Ptot

into J uniform steps, and denote by δ the size of each step, i.e.,

δ = Ptot/J . Denote by pj be the power value for level j and

pj = δ ∗ j, where j ∈ J = {1, . . . , J}. We denote by PLR-D

the version of PLR after power discretization. The formulation

of PLR-D and its optimization variables are presented below.

xj
kn =







1 if power level j is allocated to user k on

subcarrier n,

0 otherwise.

PLR-D : max
x

LD(x,λ)=
∑

k∈K

wk

∑

n∈N

∑

j∈J

xj
knR

j
kn+

∑

k∈K

λk(Pk −
∑

n∈N

∑

j∈J

xj
knp

j) (13a)

s.t.
∑

k∈K

∑

n∈N

∑

j∈J

xj
knp

j ≤ Ptot (13b)

∑

k∈K

∑

j∈J

xj
kn ≤M, ∀n ∈ N (13c)

∑

j∈J

xj
kn ≤ 1, ∀k ∈ K, ∀n ∈ N (13d)

The objective (13a) and constraints (13b), (13c) originate

from PLR but are adapted to power discretization. In (13a),

the achievable rate of allocating user k on subcarrier n with

power level j is denoted by Rj
kn below for ∀k ∈ K, ∀n ∈ N ,

∀j ∈ J , and with normalized bandwidth B
N

= 1.

Rj
kn = log(1 +

pjgkn
∑

h∈K\{k}:bn(h)<bn(k)

(
∑

j′∈J

xj′

hnp
j′)gkn + η

)

Constraints (13d) state that each user on a subcarrier can select

one power level at most, and
∑

j∈J xj
kn = 0 means that there

is no power allocation for user k on subcarrier n. For given

λ, let zD(λ) = max
x

LD(x,λ) and p∗ denote the optimal

objective value and the corresponding power solution of PLR-D,

respectively. Next, we develop a DP based approach to solve

PLR-D exactly to optimality.

Remark. Power discretization in PLR-D is considered as an

approximation for the continuous power allocation in PLR.
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However, in practical systems, the power is typically set in

discrete steps, e.g., discrete power control in LTE downlink

[29]. In this case the discrete model PLR-D is exact. �

B. Two-Stage DP Based Approach

Given power levels in set J and multipliers in vector λ,

problem PLR-D can be solved by using DP. In general, DP

guarantees global optimality if the problem has the so called

“optimal substructure property” [30]. A classical example is

the knapsack problem with integer coefficients [31]. In our

case, PLR-D does exhibit the property, and a proof of the

optimality of DP will be provided later in Theorem 10.

To ease the presentation, we describe the DP algorithm in

two stages. In the first stage, intra-subcarrier power allocation

is carried out among users, that is, for subcarrier n ∈ N ,

the algorithm computes the optimal user power allocation by

treating power pj , j = 1, . . . , J , as the power budget for the

subcarrier in question. The optimal utility value of consuming

power pj on n is denoted by Vn,j , where n ∈ N , j ∈ J . Since

the number of multiplexed users cannot exceed M on each

subcarrier, we keep track on the optimum allocation for each

m ∈ {1, . . . ,M}. We define a tuple of format t = (ut ,Mt ) to

represent a candidate partial solution, where ut is the utility

value, and Mt is the number of users allocated with positive

power. For a partial problem of assigning positive power to

exactly m out of the first k users with power budget pj , the

optimal utility is denoted by Tm
k,j .

The optimality of stage 1 is obtained from DP recursion.

The values Tm
k,j can be arranged in form of a K × J ×M

matrix A1. Computing Tm
k,j for k,m, j = 1 is straightforward.

For k ≥ 2,m ≥ 2 and j ≥ 2, the following recursive formula

is used to obtain the corresponding value in A1.

Tm
k,j = max{ max

j′=1,...,j−1
{wkR

j′

kn−λkp
j′+Tm−1

k−1,j−j′}, T
m
k−1,j}

(14)

From (14), the procedure of obtaining Tm
k,j is decomposed into

multiple stages, and the recursion is applied to move from one

stage to another. Thus, each partial problem has an optimal

substructure [30].

The algorithmic operations for stage one are given in

Algorithm 2. The bulk of the computation starts at Line 2.

For user k = 1, exactly one tuple is created for each j, and

the corresponding utility value is T 1
1,j , j ∈ J , see Line 4.

For users k > 1, the recursion is performed in Lines 5 to 15.

In Lines 9 to 15, a tuple t is created, and its utility value ut

will replace the current Tm
k,j if ut > Tm

k,j . Note that in Line

12, the utility ut is the sum of two parts, i.e., assigning a trial

power pj
′

to user k plus the previously obtained maximum

utility Tm−1
k−1,j−j′ . The algorithm terminates when all the K

users and J power levels have been processed. The optimal

value of assigning power pj on a subcarrier n is stored in Vn,j ,

see Line 17.

In the second stage, power allocation of Ptot is carried out

among the subcarriers, i.e., inter-subcarrier power allocation.

Then DP is applied to perform optimal power allocation at the

subcarrier level. For given λ, zD(λ) is obtained in Algorithm

3. The operations start at Line 3. In the first stage of TSDP,

Algorithm 2 is performed to obtain Vn,1, . . . , Vn,J for each

Algorithm 2 Stage 1 of TSDP: Intra-subcarrier Power Allo-

cation

Input: K, J , M , and λ

Output: Vn,j for each j ∈ J on subcarrier n

1: Tm
k,j ← ∅, for ∀k ∈ K, ∀j ∈ J , ∀m ∈ {1, . . . ,M}

2: for j = 1 : J do

3: t ← (w1R
j
1n − λ1p

j , 1)
4: T 1

1,j ← ut

5: for k = 2 : K do

6: for j = 1 : J do

7: for j′ = 0 : j do

8: for m = 1 : min{k,M} do

9: if j′ = 0 then

10: t ← (Tm
k−1,j , m), Tm

k,j ← max{ut , T
m
k,j}

11: if 1 ≤ j′ ≤ j − 1 and m < min{k,M} then

12: t ← (wkR
j′

kn − λkp
j′ + Tm

k−1,j−j′ , m+ 1)

13: Tm+1
k,j ← max{ut , T

m+1
k,j }

14: if j′ = j then

15: t ← (wkR
j
kn−λkp

j , 1), T 1
k,j←max{ut , T

1
k,j}

16: for j = 1 : J do

17: Vn,j ← max
k∈K,m∈{1,...,M}

Tm
k,j

subcarrier n ∈ N . Note that by the construction of Algorithm

2, in Vn,j , the number of multiplexed users is at most M for

∀n ∈ N . Thus in stage two, index m is no longer needed. In

Lines 6-10, based on the accumulated value T̂n−1,j−j′ , a new

candidate for T̂n,j is obtained by adding Vn,j′ . Then for the

partial problem of allocating power pj to 1, . . . , n subcarriers,

the optimal solution T̂n,j is obtained.

Algorithm 3 Two-Stage Dynamic Programming (TSDP)

Input: K, N , J , M , and λ

Output: z(λ)D

1: Initialize T̂n,j ← 0 for ∀n ∈ N , ∀j ∈ {0, . . . , J}
2: Stage 1:

3: for n = 1 : N do

4: Perform Algorithm 2, and obtain Vn,1, . . . , Vn,J

5: Stage 2:

6: for j = 1 : J do

7: T̂1,j ← V1,j

8: for n = 2 : N do

9: for j = 1 : J do

10: T̂n,j = max
j′=1,...,j

{(Vn,j′ + T̂n−1,j−j′), T̂n−1,j}

11: zD(λ)← max
n∈N ,j∈J

T̂n,j

The DP recursion (for n ≥ 2) for the second stage is given

in Line 10. The values T̂n,j for all k ∈ K, j ∈ J can

be viewed in form of an N × J matrix A2. From the DP

recursions in TSDP, the global optimum of PLR-D is obtained

from accumulating the solutions of the partial problems. By

the end of stage two, zD(λ) is equal to the maximum T̂n,j

among the elements in A2, see Line 11. In PLR-D, for the

partial problem for users 1, . . . , k, subcarriers 1, . . . , n, and

with a total power budget pj , the optimum is independent of
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that for the remaining subcarriers or users. The complexity for

computing optimality is provided in Theorem 10.

Theorem 10. The global optimum of PLR-D is obtained by

TSDP with a time complexity being polynomial in M,N,K,

and J .

Proof: The input of PLR-D are N , K, M and J . By

inspecting (14) and Line 10 in Algorithm 3, computing matrix

A1 for all subcarriers requires O(KNMJ2) in running time.

For matrix A2, the running time is of O(NJ2). Hence the

former is dominating, and the overall time complexity is

O(KNMJ2), which is polynomial in the input size.

Remark. Increasing J provides better granularity in power

discretization. By improving the granularity, the solution of

PLR-D can approach arbitrarily close to that of PLR. �

C. Algorithmic Framework: Lagrangian Duality With Dy-

namic Programming

We develop a framework LDDP to deliver near-optimal

solutions (N-LDDP) of the global optimum z† of P1WSR

and P1SR. We also derive a scheme UB-LDDP to provide

upper bounds for gauging the solution quality of N-LDDP.

LDDP is summarized in Algorithm 4. In Line 3 to Line 11, we

obtain zD(λ) and the power solution p∗ by applying TSDP to

solve PLR-D. These steps constitute N-LDDP. The iterations for

solving the Lagrangian dual terminate either after a specified

number of iterations Cmax, or if the difference between the

objective values in two successive iterations is less than ǫ [30].

Lines 15–20 form UB-LDDP, which approximates the global

optimum from above. UB-LDDP delivers an upper bound, i.e.,

a value that is guaranteed to be no smaller than the global

optimum. The purpose is for performance evaluation. Note that

the problem is maximization, and hence the solution from the

first part of the algorithm, N-LDDP, has a utility value that is

lower than global optimum. Computing the global optimum is

NP-hard. However, to assess the performance of this solution,

we can instead obtain the upper bound at significantly lower

complexity. The deviation from global optimum cannot be

more than the deviation from the upper bound, which can be

used in our performance evaluation.

In Line 9, the users’ individual power constraints may be vi-

olated in p∗. Thus, we develop a three-step approach to convert

p∗ into a feasible solution pf for JPCAP if the former violates

(2c). Let set K̄ denote the users allocated with positive power

in p∗, K̄ ⊆ K. We denote K′ = {k ∈ K̄ :
∑

n∈N pkn > Pk}
as the subset of users for which (2c) does not hold. To obtain

pf , step one, power allocation for each user k ∈ K̄ \ K′ on

subcarriers keeps same as in p∗. Step two, for each k ∈ K′, the

subcarriers are sorted in ascending order in power allocation

of k. Following the sequence, power is allocated as in p∗,

however until the limit Pk is reached. Doing so releases an

amount of
∑

k∈K′

∑

n∈N pkn−
∑

k∈K′ Pk power that can be

re-allocated to users in K̄ \K′ in step three. The re-allocation

follows the descending order of the product of channel gain

and weight. That is, letting (k̃, ñ) = argmax wkngkn, k ∈
K̄ \ K′, n ∈ N , pk̃ñ is increased as much as allowed by Pk̃

and Ptot, then we select the next best candidate, and so on,

Algorithm 4 LDDP for Solving W-JPCAP

1: Initialize λ, tolerance ǫ, number of iteration C ← 0,

maximum number of iterations Cmax, ď and d̂ such that

|ď− d̂| > ǫ, p∗ ← 0

2: while |ď− d̂| > ǫ or C ≤ Cmax do

3: ď← d̂
4: Perform TSDP (Algorithm 3) to solve PLR-D

5: zD(λ)← max
n∈N ,j∈J

T̂n,j

6: p∗ ← power solution of zD(λ)
7: d̂← zD(λ)
8: if p∗ violates constraints (2c) then

9: Convert p∗ to pf

10: Compute f(pf )W =
∑

k∈K wk

∑

n∈N Rkn by (3)

11: VLB ← f(pf )W

12: Update λ by subgradient method

13: C = C + 1
14: end

15: Relax (13b) with µ and construct P ′
LR-D

16: repeat

17: Bisection search for µ
18: zD(λ, µ)← max

x
L′
D(x,λ, µ)

19: until µ∗ ← {µ : min
µ≥0

max
x

L′
D(x,λ, µ)}

20: VUB ← zD(λ, µ∗)
21: Return: VLB and VUB

until either Ptot or Pk for all k ∈ K̄ is reached. In Line 10,

we obtain the resulting utility f(pf )W for using pf , where

the calculation of f(pf )W =
∑

k∈K wk

∑

n∈N Rkn follows

the equation in (3). The utility value of N-LDDP is delivered

in VLB at Line 11. In Line 12, VLB is used in the calculation

of step size of subgradient optimization (see [30]).

To provide an upper bound for z†, we apply post-processing

to zD(λ) in LDDP. We remark that if J is sufficiently large,

zD(λ) can be empirically considered as an upper bound to

W-JPCAP or R-JPCAP due to Lagrangian duality, however,

theoretically there is no guarantee. For example, zD(λ) could

be possibly less than z† for small J , e.g., J = 1. From Line

15 to Line 20, we design an approach to convert zD(λ) to

a theoretically guaranteed upper bound. First, in Line 15, for

the multipliers in λ and keeping their values fixed, we further

relax the total power constraint (13b) with multiplier µ, and

reconstruct the subproblem of Lagrangian relaxation below.

P ′
LR-D : max

x
L′
D(x,λ, µ) =

∑

k∈K

wk

∑

n∈N

∑

j∈J

xj
knR̄

j
kn

︸ ︷︷ ︸

part I

+

∑

k∈K

λk(Pk−
∑

n∈N

∑

j∈J

xj
kn(p

j−δ))

︸ ︷︷ ︸

part II

+µ(Ptot−
∑

k∈K

∑

n∈N

∑

j∈J

xj
kn(p

j−δ))

︸ ︷︷ ︸

part III

s.t. (13c) and (13d)

The calculation of R̄j
kn for ∀k ∈ K, ∀n ∈ N , and ∀j ∈ J is

shown below.

R̄j
kn = log(1 +

(pj + δ)gkn
∑

h∈K\{k}:
bn(h)<bn(k)

(
∑

j′∈J

xj′

hnp
j′ − δxj′

hn)gkn + η
) (16)
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Recall that δ is the step in power discretization. In comparison

to L(x,p,λ) in PLR and LD(x,λ) in PLR-D, the construction

of P ′
LR-D contains addition or subtraction of power δ, for the

purpose of ensuring that the outcome is a valid upper bound

to the global optimum. This is achieved by using δ to obtain

more optimistic values in all three parts of the function. In

(16), for example, one power step δ is added to the signal of

interest in the numerator and each interfering signal becomes

weaker due to the subtraction of δ in the denominator. As

a result, the overall utility for L′
D(x,λ, µ) is guaranteed to

be an over-estimation. From Lines 16 to 19, bisection search

is applied to obtain the optimal µ∗ such that zD(λ, µ∗) =
min
µ≥0

max
x

L′
D(x,λ, µ). Then, the upper bound is delivered in

VUB in Line 20. The validity of this upper bound is proved

below.

Theorem 11. VUB ≥ z†.

Proof: Suppose λ∗ is the multiplier vector for PLR-D

when Algorithm 4 terminates. Note that λ∗ for z(λ∗) may

not necessarily lead to the minimum dual value z∗ in PLR, so

we have z(λ∗) ≥ z∗ ≥ z†. We prove that zD(λ∗, µ∗) ≥ z(λ∗)
holds, to show VUB is an upper bound of z†. We use vector

pc ≻ 0 to denote the optimal power allocation for z(λ∗).
Based on pc, we now construct a power vector pd ≻ 0
for P ′

LR-D. Each power value in pc is rounded to pd such

that each element in pd is represented by the closest power

level j ∈ J , i.e., pc + θ = pd, where |θ| � δ. Given pc

and pd, the corresponding x-vectors xc and xd are derived

for PLR and P ′
LR-D, respectively. Substituting λ∗, µ and xd

in the objective of P ′
LR-D, we have L′

D(xd,λ
∗, µ). Since we

over-calculate the objective in P ′
LR-D, the summation of part

I and part II in L′
D(xd,λ

∗, µ) is greater than or equal to

L(xc,pc,λ
∗). Part III is no less than zero in L′

D(xd,λ
∗, µ)

for any µ ≥ 0 due to ||pc||1 ≤ Ptot and |θ| � δ. Then

L′
D(xd,λ

∗, µ) ≥ L(xc,pc,λ
∗) = z(λ∗) for any µ ≥ 0. Thus,

we have L′
D(xd,λ

∗, µ∗) ≥ z(λ∗). Note that for λ∗ and µ∗,

VUB = zD(λ∗, µ∗) is the optimum value of the Lagrangian

relaxation in P ′
LR-D, whereas L′

D(xd,λ
∗, µ∗) is not because

xd is not necessarily an optimal power allocation. Therefore,

zD(λ∗, µ∗) ≥ L′
D(xd,λ

∗, µ∗), and the conclusion follows.

On the complexity of LDDP, we observe the following.

Within each iteration, N-LDDP calls Algorithm TSDP that

has polynomial-time complexity O(KNMJ2) and hence is

scalable. Note that the number of power levels J can be tuned

from the complexity perspective. An iteration of N-LDDP may

require the conversion to feasible power allocation (Line 9). It

is easily observed that this three-step conversion, as outlined

earlier, has a complexity of O(KN log2(KN)), which scales

much better than O(KNMJ2). Next, obtaining the upper

bound in UB-LDDP consists of using Algorithm TSDP in

one-dimensional bi-section search. This computation does

not lead to the computational bottleneck, because the upper

bound is computed only once, and its purpose is not for

power allocation in NOMA, but for performance evaluation

as a post-processing step. Hence, overall, the complexity is

determined by N-LDDP, and equals O(CKNMJ2), where

C is the number of subgradient optimization iterations upon

termination. Subgradient optimization for Lagrangian duality

has asymptotic convergence in general. In the next section,

however, we observe that convergence is approached with only

a few iterations.

VII. PERFORMANCE EVALUATION

A. Experimental Setup

We have carried out performance studies in downlink with

randomly and uniformly distributed users. Table I summarizes

the key parameters. We generate one hundred instances and

consider the average performance. To evaluate the performance

of LDDP, we have implemented a previous NOMA power

and channel allocation scheme called “fractional transmit

power control” (NOMA-FTPC) and an OFDMA scheme with

FTPC (OFDMA-FTPC) [10]. In these two schemes, the set

of multiplexed users Un for each subcarrier n is determined

by a greed-based user grouping strategy, where |Un| = M for

NOMA-FTPC and |Un| = 1 for OFDMA-FTPC. Based on

the user allocation, the FTPC method is then used for power

allocation. In FTPC, more power is allocated to the users with

inferior channel condition for the fairness consideration [10].

Table I
SIMULATION PARAMETERS.

Parameter Value

Cell radius 200 m
Carrier frequency 2 GHz
Total bandwidth (B) 4.5 MHz
Number of subcarriers (N ) 5 in NOMA, 25 in OFDMA
Number of users (K) 4 to 20
Path loss COST-231-HATA
Shadowing Log-normal, 8 dB standard deviation
Fading Rayleigh flat fading [25]
Noise power spectral density -173 dBm/Hz
Total power (Ptot) 1 W
Number of power levels (J) 20 to 100

Minimum power unit (δ=Ptot

J
) 0.01 to 0.05 W

User power limit (Pk) 0.2 W
Parameter M 2 to 6

Tolerance ǫ in LDDP 10
−5

Cmax in LDDP 200

For OFDMA-FTPC, following the LTE standard, the overall

bandwidth of 4.5 MHz is divided into twenty-five subchannels

with the bandwidth of 180 kHz for each. For NOMA imple-

mentation, considering the fact that the decoding complexity

and signaling overhead increase with the number of subcarriers

[6], and following the NOMA setup in [10], we consider five

subcarriers with the bandwidth of 900 kHz for each in NOMA-

FTPC and in the proposed LDDP.

In the simulations, N-LDDP aims to deliver a near-optimal

solution (also a lower bound), and UB-LDDP, by design,

provides an upper bound for global optimum. In the following,

we examine five performance aspects. First, a comparative

study for the SR utility of LDDP, NOMA-FTPC and OFDMA-

FTPC is carried out. Second, we evaluate the convergence

behavior of LDDP. Third, we consider the WSR utility and

examine users’ fairness. Fourth, we evaluate the throughput

performance for the cell-edge users. Fifth, we investigate the

characteristics of user grouping in N-LDDP.
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B. Performance in Throughput and Bounding

Applying the three algorithms to all instance, the average

results are summarized in Fig. 1 to 3. In Fig. 1, we evaluate the

SR utility with respect to user number K, with setting M = 2
and J = 100. We make the following observations. First,

the performance improvement tends to be marginal for larger

K in all the schemes. This is expected since the multiuser

diversity is effective when the number of users is small, and is

saturated if K is large. Second, N-LDDP outperforms NOMA-

FTPC and OFDMA-FTPC. N-LDDP achieves performance

improvement of around 20% over NOMA-FTPC. NOMA-

FTPC, in turn, performs much better than OFDMA. Third,

N-LDDP is capable of providing near-optimal solutions. The

average gap between UB-LDDP and N-LDDP is 11% in

average, and the variation of the gap is insensitive to the

number of users. This implies that the gap between N-LDDP

and the global optimum z† is even smaller than 11%.
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Figure 1. LDDP performance in respect of the number of users.

Next, the impact of parameters J and M is evaluated. The

instances with K = 20 are used in the simulations, and M = 2
in Fig. 2 and J = 100 in Fig. 3. From Fig. 2, increasing

J leads to progressively tighter intervals between UB-LDDP

and N-LDDP since larger J provides better granularity in

power discretization, and thus improves the solution quality.

Moreover, we observe that the improvement comes mainly

from UB-LDDP. This is because, for delivering the upper

bound, the objective value in P ′
LR-D has been intentionally

over-calculated by δ = Ptot

J
. Compared to using δ = 0,

applying δ > 0 in the over-calculation results in an excess of

utility in the objective. This excess part is clearly J-related,

and is significantly reduced when J is large.

20 30 40 50 60 70 80 90 100
36

38

40

42

44

46

48

50

52

54

J (Number of power levels)

 A
v
a

ra
g

e
 s

u
m

−
ra

te
 u

ti
lit

y
 (

M
b

p
s
)

 

 

UB-LDDP

N-LDDP

Figure 2. LDDP bounding performance in respect of parameter J .

In Fig. 3, more users are allowed to share the same sub-

carrier. Increasing M leads to more total throughput for both

NOMA schemes. One can observe that N-LDDP constantly

outperforms NOMA-FTPC. We also notice that increasing M
results in degradation of UB-LDDP. The main reason is that

when M grows, the over-calculations in the objective of P ′
LR-D

are accumulated over all multiplexed users.
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Figure 3. SR utility comparison in respect of parameter M .

C. Performance in Convergence

We illustrate the convergence behavior of LDDP by two

representative instances with 4 and 20 users, respectively, with

N = 5, J = 100, and M = 2. The evolution of the values

of zD(λ) and VLB over the iteration number C is provided in

Fig. 4.

From the figure, a majority of the iterations is part of the

tailing-off effect. The utility (VLB of the algorithm) and the

Lagrangian dual function (zD(λ)) both approach the achiev-

able values with 10 iterations or fewer. Note that each iteration

has polynomial-time complexity, see Theorem 10.

1 3 5 7 9 11 13 15 17 19
25

30

35

40

45

50

 Number of iterations

 U
ti
lit

y
 

 

 

zD(λ) (K=20)

N-LDDP (K=20)

zD(λ) (K=4)

N-LDDP (K=4)

Figure 4. Illustration for LDDP convergence with K = 4 and 20, N = 5,
J = 100, and M = 2.

D. Performance in Fairness

As our next part of results, we evaluate the performance

for LDDP, NOMA-FTPC, and OFDMA-FTPC in fairness. We

examine the fairness over a scheduling time period. As was

mentioned earlier, scheduling in the time domain is slotted.

Denote by t the time slot index. We define a scheduling

frame consisting of 20 slots. The channel state information

is collected once per frame. Define R̄k(t) = (1 − 1
T
)R̄k(t −

1)+ 1
T
rk(t− 1) as user k’s average rate prior to slot t, where

parameter T is the length of a time window (in the number of

time slots), and rk(t− 1) is user k’s instantaneous rate in slot

t − 1 [15]. By proportional fairness, the weight of user k in

slot t is set to 1/R̄k(t), and for each slot, N-LDDP, NOMA-

FTPC, and OFDMA-FTPC with WSR utility maximization are

performed once.
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Suppose the average users’ rates are R̄1, . . . , R̄K at the

end of the scheduling period, and consider the Jain’s fairness

index, computed as
(
∑

K
k=1 R̄k)

2

K
∑

K
k=1 R̄2

k

. This index, developed in [32],

is widely used as a fairness measure for user throughput in

communications networks. The value of this fairness index is

between 1
K

and 1.0. A higher value indicates fairer throughput

distribution, and the maximum value of 1.0 is reached if and

only if all users achieve exactly the same throughput. Note that

the use of this index, by itself, does not prevent a user from

being served with low throughput (or even zero throughput),

which, however, will most likely bring down the value of

the index. In our case, zero or very low throughput of any

user is avoided by the fact that the weights in W-JPCAP are

set in accordance with proportionally fair scheduling. Hence,

over time, the weight of a user will increase to infinity, if the

user keeps being allocated with zero throughput. For further

insights of user throughput, particularly throughput of cell-

edge users, please see Section VII-E.

The fairness index in respect of K and M is shown in Fig.

5 and Fig. 6, respectively. The parameters are set to be M = 2
in Fig. 5 and K = 20 in Fig. 6. For both figures, we consider

a scheduling period of 100 time slots, with J = 100 and

T = 50. From Fig. 5 and 6, we observe that, first, the proposed

N-LDDP achieves the best performance. Moreover, Fig. 5,

increasing K leads to fairness degradation in all schemes due

to more competition among the users.
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Figure 5. Fairness comparison in respect of the number of users.
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Figure 6. Fairness comparison in respect of parameter M .

From Fig. 6, the fairness index increases in M . This is

because a larger M provides more flexibility in resource

allocation among the users. There is however a saturation

effect, showing that the constraining impact due to limiting the

number of multiplexed users per subcarrier decreases when the

limit becomes large. Note that in Fig. 3, the improvement of

throughput is marginal with M becomes large. Thus a mod-

erate M is justified not only by implementation complexity,

but also that having a large M may not lead to significant

performance improvement.

In the two figures, OFDMA-FTPC gives the lowest fairness

index. A particular reason is that the FTPC channel and

power allocation scheme is sub-optimal. This also explains

the improvement enabled by the proposed power optimization

algorithm in comparison to NOMA-FTPC. We also remark

that the vertical axis of the two figures starts from a positive

value, hence the relative difference between the schemes in

fairness is smaller than what it may appear to be.

E. Performance for Cell-edge Users in Throughput

The performance of cell-edge users is of significance. To

evaluate, we split the service area of the cell into an edge

zone and a center zone. Performance comparison is carried

out for twenty-user instances with M = 2, J = 100, and 100

time slots. In the simulations, we deploy half of the users to

the cell edge in each instance. Each value in Fig. 7 represents

the average user rate over the entire scheduling period. We

observe that using LDDP significantly improves the rates for

cell-edge users. From the results in Fig. 7, the average rates

of all cell-edge users in N-LDDP are much more than those

of NOMA-FTPC and OFDMA-FTPC.
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Figure 7. Performance comparison in cell-edge users.

F. Characteristics of User Grouping

The final part of our performance study is on characteristics

of user grouping, i.e., which users tend to be multiplexed

together on the same subcarrier by optimization, We consider a

scenario with M = 2, J = 100, K = 20, and apply N-LDDP

to 1,000 realizations. For each subcarrier, we index the users

in descending order of channel gain. If there are two users

multiplexed on the subcarrier in the algorithm solution, we

consider the difference of the two user indices. For example,

if the users with the highest and lowest gains are grouped

together, the difference is 19. The results are illustrated in

Fig. 8, where the horizontal axis is the difference in index.

From the figure, we observe that users having large differ-

ence in channel gain are more likely to be multiplexed on the

same subcarrier. This is coherent with the conclusion in [18].

On the other hand, it is also evident by the figure that optimal

assignment is not necessarily to select users with the best and

poorest gains on a subcarrier. The observation motivates the

treatment of subcarrier allocation as optimization variables.
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Figure 8. The results of user grouping in N-LDDP.

VIII. CONCLUSIONS

We have considered jointly optimizing power and channel

allocation for NOMA. Theoretical insights on complexity and

optimality have been provided, and we have proposed an

algorithm framework based on Lagrangian dual optimization

and dynamic programming. The proposed algorithm is capable

of providing near-optimal solutions as well as bounding the

global optimum tightly. Numerical results demonstrate that the

proposed algorithmic notions result in significant improvement

of throughput and fairness in comparison to existing OFDMA

and NOMA schemes.

An extension of the work is the consideration of max-

min fairness for one scheduling instance. In this case, one

solution approach is to perform a bi-section search. For each

target level that represents the minimum throughput required

for all users, the problem reduces to a feasibility test, i.e.,

whether or not the target is achievable subject to the power

limits. This can be formulated as to minimize the total power,

with constraints specifying the throughput target value and

user-individual power limits. The development of optimization

algorithms for this problem is subject to further study.
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