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Power and efficiency performances of a thermal Brownian heat engine, which consists of Brownian particles

moving in a periodic sawtooth potential with and without external forces and contacting with alternating hot

and cold reservoirs along the space coordinate, are studied in this paper. The performance characteristics are

obtained by numerical calculations. It is shown that due to the heat flow via the change of kinetic energy of

the particles, the Brownian heat engine is always irreversible and the efficiency can never approach the Carnot

efficiency. The influences of the operation parameters, i.e. barrier height of the potential, asymmetry of the

potential and temperature ratio of the heat reservoirs on the power output, the efficiency and the current perfor-

mances of the Brownian heat engine are investigated in detail by numerical analysis. When there is no external

force, the power output versus efficiency characteristic curves are closed loop-shaped ones, which are similar to

those of real conventional irreversible heat engines; whereas when the external force is considered, the power

output versus efficiency characteristic curves of the heat engine changed into open loop-shaped ones. Further-

more, the limited regions of the external force and barrier height of the potential are explored by analyzing the

current property of the model. It is shown that by reasonable choice of the parameters, the Brownian heat engine

can be controlled to operate in the optimal regimes.
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Nomenclature 

A               a defined function 

a               a defined function 

B               a defined function 

b               a defined function 

F                external force  

f                scaled external force 

G                a defined function 

H                a defined function 

I                a defined function 

J                steady state current 

B
k                Boltzmann’s constant 

L                period length of the potential  

1 2,L L              length of the left and right part of the potential  

P                power output (W) 

Q&                rate of heat flow (W)  

T                temperature (K) 

U                scaled barrier height of the potential 

0U               barrier height of the potential 

v                drift velocity of the particle 

x                horizontal axis of the coordinate 
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Greek symbols 

γ                coefficient of friction of the Brownian particle 

η                efficiency 

µ                asymmetry of the potential 

τ                temperature ratio  

 

Subscripts 

C                cold heat reservoir/Carnot value 

c                 critical value  

H                hot heat reservoir  

max               maximum value 

min               minimum value 

rev                reversible 

z                 a particular value at which the current is zero 

 

Superscript 

*                dimensionless form 

1. INTRODUCTION

Recently, there have been many interests in the study

of Brownian heat engines. One motivation is the need to

develop miniaturized devices in order to utilize energy re-

sources at the microscopic scale [1-3]; and another motiva-

tion is the desire in understanding the molecular motors in

bioengineering and nanotechnology [4,5].

Brownian heat engines are usually spatially asymmetric

but periodic structure where the transport of Brownian par-

ticles is driven by certain nonequilibrium processes [6-9].

The model of Brownian motor was first presented by Feyn-

man [10] as a thermal ratchet. It is a machine that can rec-

tify thermal fluctuation to produce a directed current. Actu-
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FIG. 1: Schematic diagram of the thermally driven Brownian heat

engine.

ally, besides the thermal fluctuation, the nonequilibrium driv-

ing force of the Brownian motors can be various. Typical

examples are external modulation of an underlying poten-

tial [11-13], external force [14-16], chemical potential dif-

ferences [6,17], temperature differences [7,8,18-20] and so

on. According to the nonequilibrium driving force of the

Brownian motors, Parrondo and de Cisneros [21] have dis-

tinguished the Brownian motors mainly into three classes:

the forced ratchet (motor), the chemical motors and the ther-

mal motors. The Brownian heat engine that will be studied

in this paper just belongs to the thermal Brownian motors.

 

FIG. 2: Characteristic curves of η, ηrev and Carnot efficiency (ηC)

versus barrier height U , for given µ = 0.3 and τ = 0.3.

The model of thermal Brownian motor working due to

nonuniform temperature was first studied by Büttiker [18],

van Kampen [19] and Landauer [20]. And ever since then,

the Brownian heat engine model driven by a contact with the

heat reservoirs at different temperatures has been the subject

of some authors [22-26] and many meaningful results have

been obtained. As to the studies of Brownian motors, most

have been on the velocity properties of the transport of the

Brownian particles; whereas another important aspect is their

thermodynamic properties [3,8,27-28]. Derényi et al. [29]

gave a definition of generalized efficiency of the microscopic

engines and analyzed its application to a Brownian heat en-

gine. Meanwhile, some researchers [8,9,12,23,28,30,31] had

investigated the efficiency performance of Brownian heat en-

gines. In Matsuo and Sasa’s work [32], it was shown that the

efficiency of the Brownian heat engine can attained Carnot

efficiency at quasistatic limit. However, this is the case in

which the irreversible heat flow via the kinetic energy of the

particles [30, 33] is neglected. If the heat flow via the kinetic

energy is taken into account, the Brownian heat engine can

never approach Carnot efficiency [34-37], even at quasistatic

limit.

(a) 

(b) 

 

 

FIG. 3: Influences of µ and τ on the power output (P∗) versus barrier

height (U) characteristic.

Without considering the heat flow via the kinetic energy,

Asfaw and Bekele [23, 31] studied the efficiency and coef-

ficient of performance (COP) of a Brownian motor model

driven by a contact with heat reservoirs at different tempera-

tures which could act as a heat engine or refrigerator. While

Ai et al. [25,34], Zhang et al. [35], Lin and Chen [36] in-

vestigated the performances of the similar Brownian micro

heat engine and refrigerator models by taking into account

the influence of the heat flow via the kinetic energy and got

many different results. Furthermore, in a recent work, As-

faw [38] presented a Brownian engine model which con-

sidered the viscous drag force of the particles and the heat

flows via both the potential and kinetic energies. The effects

of subdividing the ratchet potential on the velocity and effi-

ciency performances are investigated. The model can act as

a heat engine or a refrigerator and it is shown that the ve-

locity and efficiency (or COP) can be maximized when the

sawtooth potential is subdivided into series of smaller con-
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nected barrier series. However, the focus of this work [38]

was on the velocity and efficiency performances while the

thermodynamic properties of the heat engine model, such as

the power versus efficiency characteristic and the influences

of the operation parameters had not been extensively inves-

tigated. Thus, a further step made in this paper is to analyze

the thermodynamic performances of such a Brownian heat

engine model with and without external forces extensively.

The general expressions of the power and efficiency as func-

tions of the major parameters that characterizing the engine

are derived. The power versus efficiency characteristic and

the influences of external force and other operation parame-

ters are analyzed in detail by numerical calculations. More-

over, the optimal regions of power and efficiency, as well as

the limited regions of the external force and barrier height

of the potential are determined. It is found that, if these pa-

rameters are properly chosen, the Brownian heat engine can

operate in the optimum regimes.

(a) 

(b) 

FIG. 4: Influences of µ and τ on the efficiency (η ) versus barrier

height (U) characteristic.

2. MODEL OF THE BROWNIAN HEAT ENGINE

 

FIG. 5: Three dimensional diagram of power output (P∗) versus µ

and U for given τ = 0.3.

Figure 1 shows the schematic diagram of the thermally

driven Brownian heat engine. In the heat engine system, the

Brownian particle which is placed in a periodic sawtooth po-

tential moves in a viscous medium. The medium is alter-

natively in contact with the hot (the temperature is TH ) and

cold (the temperature is TC) heat reservoirs along the space

coordinate. The sawtooth potential is described by

U(x) =

{

U0(1+ x
/

L1), i f −L1 < x ≤ 0;

U0(1− x
/

L2), i f 0 < x ≤ L2;
(1)

where x is the horizontal axis of the coordinate; L1 and L2,

are respectively, the widths of the left and right part of the

ratchet; L = L1 +L2 is the period length and U0 is the barrier

height of the potential.

The Brownian particle will attain a directed motion when

it is exposed to the potential coupled with spatially periodic

temperature field. For such a system, according to Refs. [23,

26], if the external force F is considered, the general expres-

sion for the steady state current J for the Brownian particle

in any periodic potential is given by

J =
−I

G1G2 +HI
(2)

where I, G1, G2 and H are

I = ea−b
−1

G1 =
L1

aTH

(1− e−a)+
L2

bTC

e−a(eb
−1),G2

=
γL1

a
(ea

−1)+
γL2

b
ea(1− e−b) (3)

H = A+B+C
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(a) 

(b) 

FIG. 6: Influences of µ and τ on the power output (P∗) versus effi-

ciency (η) characteristic.

where γ is the coefficient of friction of the Brownian particle,

and

A =
γ

TH

(
L1

a
)2(e−a +a−1),

B =
γL1L2

abTC

(1− e−a)(eb
−1),C =

γ

TC

(
L2

b
)2(eb

−b−1)

a = (U0 +FL1)
/

TH ,b = (U0 −FL2)
/

TC (4)

If F = 0, equation (2) becomes the current when there is no

external force. The drift velocity v of the particle is associ-

ated to the steady state current J and it is given by v = JL.

If the system works as a heat engine, the net flux of the

particle is from hot reservoir to the cold reservoir. Thus,

when the particle moves in the hot region of the ratchet, it

must absorb energy in order to climb up the potential and

to overcome the external force (F) and the viscous drag

force (γv); when it moves in the cold region, the particle

will release energy as it moves down the potential hill while

at the same time absorb energy to overcome the external

force and the viscous drag force. Considering the heat flow

(kB(TH − TL)/2) via the kinetic energy of the particles [30,

(a) 

(b) 

(c) 

 

 

 

FIG. 7: Influences of U , µ and τ on the power output (P∗) versus

external force ( f ) characteristic.

33], the rates of total heat absorbed from the hot reservoir

(Q̇H ) and released to the cold reservoir (Q̇C) will be [38]

Q̇H = U0 +(F + γv)L1 + kB(TH −TC)
/

2 (5)

Q̇C = U0 − (F + γv)L2 + kB(TH −TC)
/

2 (6)

where kB is the Boltzmann’s constant.
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(a) 

(b) 

(c) 

 

 

 

FIG. 8: Influences of U , µ and τ on efficiency (η) versus external

force ( f ) characteristic.

 

FIG. 9: Influences of external force ( f ) on the power output (P∗)

versus the current (J∗) characteristic, for given µ = 0.5 and τ = 0.3.

 

FIG. 10:

Influences of external force ( f ) on efficiency (η) versus the current

(J∗) characteristic, for given µ = 0.5 and τ = 0.3.

 

FIG. 11: Influences of external force ( f ) on the power output (P∗)

versus efficiency (η) characteristic, for given µ = 0.5 and τ = 0.3.
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The power output (P) and the efficiency (η) of the Brown-

ian heat engine can be expressed as

P = Q̇H − Q̇C = (F + γv)(L1 +L2) = L(F + γv) (7)

η =
P

Q̇H

=
L(F + γv)

U0 +(F + γv)L1 + kB(TH −TC)
/

2
(8)

If the heat flow via the kinetic energy is ignored, the re-

versible efficiency of the Brownian heat engine (ηrev) is

given by

ηrev =
L(F + γv)

U0 +(F + γv)L1
(9)

For the convenience of the following discussion, equations

(2) and (7) can be rewritten into dimensionless forms

J∗ = J
/

[TH

/

(γL2)] (10)

P∗ = P
/

(kBTH) (11)

As to the heat engine model, we introduce some scaled

parameters, i.e. the scaled barrier height of potential U =
U0

/

(kBTH), the scaled external force f = FL
/

(kBTH), the

asymmetry of the potential µ = L1

/

L and the temperature

ratio of heat reservoirs τ = TC

/

TH . Equations (8) - (11) can

be expressed as functions of the parameters U , f , µ and τ. For

simplicity, the Boltzmann’s constant kB is taken to be unity.

In the following two sections, the power versus efficiency

performance and the influences of these parameters will be

investigated with and without external force, respectively, in

detail.

3. POWER VERSUS EFFICIENCY CHARACTERISTIC

WITHOUT EXTERNAL FORCE

In the absence of the external force, i.e. F = 0, using equa-

tions (8) and (9), one can obtain the characteristic curves of

η, ηrev and Carnot efficiency ηC (ηC = 1−τ) versus the bar-

rier height U , as shown in Figure 2. It can be seen that ηrev is

a monotonic decreasing function of U . When the heat engine

approaches the quasistatic limit, i.e. U → 0, ηrev will attain

the Carnot efficiency (ηC). It is also clear that, the value of

η is always smaller than ηrev and thus it can never approach

Carnot efficiency (ηC).

Using equations (8) and (11) and the condition F = 0, for

given values of µ and τ, the characteristic curves of power

output (P∗) and efficiency (η) versus barrier height (U) can

be plotted as shown in Figures 3 and 4. It can be seen that

the curves of P∗ and η versus U are all parabolic-like ones,

and there exist the optimal barrier height UP∗ and Uη which

lead to the maximum power output (P∗
max) and maximum ef-

ficiency (ηmax), respectively. It is shown in Figures 3 (a) and

4 (a) that, for given values of τ, the values of UP∗ and Uη will

decrease with the increase of µ; there exists the critical value

of barrier height (Uc) for the characteristic curve; if U < Uc,

P∗ and µ will increase with the increase of ; if U > Uc, P∗

and η will decrease with the increase of µ. While for given

values of µ, as shown in Figure 3 (b) and 4 (b), the values of

Uη, P∗
max and ηmax will decrease whereas UP∗ will increase

with the increase of τ.

Figure 5 shows the three dimensional diagram of power

output (P∗) versus barrier height (U) and symmetry of the

potential (µ) with τ = 0.3. It can be seen that, for given val-

ues of µ, the curves of P∗ versus U are parabolic-like ones;

while for given U , the curves of P∗ versus µ are monotonic

ones. It is found that the maximum power output (P∗
max) first

decreases and then increases with the increase of µ. Simi-

larly, using equation (8) and the condition F = 0, one can get

the three dimensional diagram of efficiency (η) versus U and

µ with τ = 0.3. Its shape is similar to Figure 5 and the max-

imum efficiency ηmax also first decreases and then increases

with the increase of µ.

Using equations (8) and (11) and the condition F = 0, one

can obtain the characteristic curves of power output (P∗) ver-

sus efficiency (η) as shown in Figure 6. Similar to the char-

acteristics of the real conventional irreversible heat engines

[39-43], the curves of P∗ versus η are all closed loop-shaped

ones and there exist two important points of states: the max-

imum power point (ηP∗ ,P∗
max) and the maximum efficiency

point (ηmax,P∗
η). When the Brownian heat engine is operat-

ing in the regions U ≤Uη and U ≥UP∗ , the power output will

increase with the increase of efficiency. When the Brownian

heat engine is operating in the region Uη < U < UP∗ , the

power output will decrease with the increase of efficiency.

Usually, for a heat engine, one always wants to obtain the

power and efficiency as large as possible for a given set of

other parameters. Thus, it is more reasonable for the Brown-

ian heat engine to operate in the region Uη <U <UP∗ , which

will lead to the optimal regions of power and efficiency, i.e.

P∗
η < P∗ < P∗

max , ηP∗ < η < ηmax (12)

And the optimal barrier height of the potential should be

located in the region

kBTHUη < U0 < kBTHUP∗ (13)

4. POWER VERSUS EFFICIENCY CHARACTERISTIC

WITH EXTERNAL FORCE

 

FIG. 12: Characteristic curves of current (J∗) versus barrier height

(U) for given µ = 0.4 and τ = 0.3.
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Using equations (8) and (11), the characteristic curves of

power output (P∗) and efficiency (η) versus external force

( f ) and the influences of U , µ and τ can be plotted as shown

in Figures 7 and 8. It is shown that the curves of P∗ and

η versus f are all parabolic-like ones, and there exist opti-

mal external forces fP∗ and fη which lead to the maximum

power output (P∗
max) and the maximum efficiency (ηmax). For

given values of µ and τ, the values of P∗
max, ηmax, fP∗ and

fη will increase with the increase of U . For given values of

U and τ, the values of P∗
max, ηmax, fP∗ and fη will increase

with the increase of µ; and one can see that the influence of µ

here is quite different from the case that there is no external

force, where P∗
max and ηmax will first decrease and then in-

crease with the increase of µ, as shown the three dimensional

diagram in Figure 5. For given values of µ and U , the values

of P∗
max and ηmax will decrease while fP∗ and fη will increase

with the increase of τ.

Combining equations (8), (10) with equation (11), the

curves of power output (P∗) and efficiency (η) as functions of

the current (J∗) can be plotted as shown in Figures 9 and 10.

It can be seen from Figure 9 that the power output is a mono-

tonic increasing function of current J∗. While the curves of

efficiency versus current are loop-shaped ones, as shown in

Figure 10. There exist the maximum efficiency ηmax and the

corresponding current J∗η, as well as the maximum current

J∗max and the corresponding efficiency ηJ∗ .

Combining equations (8) with (11), the influence of the

external force ( f ) on the power output (P∗) versus efficiency

(η) characteristics can be shown in Figure 11. The influ-

ences of the external force are obvious: when there is no

external force, i.e. f = 0, the curves of power output versus

efficiency are closed loop-shaped ones, as shown by curve 1

in Figure 11; when the external force is applied on the parti-

cle, i.e. f = 0.5, f = 1.0, f = 1.5 or f = 2.0, the curves of

power output versus efficiency are open loop-shaped ones, as

shown by curves 2-5 in Figure 11. There also exist the max-

imum power P∗
max and the corresponding efficiency ηP∗ , as

well as the maximum efficiency ηmax and the corresponding

power output P∗
η. The performance of the Brownian heat en-

gine depends greatly on the parameters f , U , µ and τ; if the

values of the parameters are properly chosen, the Brownian

heat engine can operate in the optimal regimes.

5. THE LIMITED REGIONS OF THE EXTERNAL

FORCE AND BARRIER HEIGHT OF THE POTENTIAL

Using equation (10), for given values of µ and τ, i.e.

µ = 0.4 and τ = 0.3, the characteristic curves of current (J∗)

versus barrier height (U) and the influence of external force

( f ) can be plotted as shown in Figure 12. The curves of J∗

versus U are parabolic-like ones. When there is no external

force ( f = 0), the current is always higher than zero. This

indicates that, without external force, the particle always

moves from the hot reservoir to the cold reservoir. When

the external force is considered, there exists a critical value

of the barrier height (Uz) at which the current changes its di-

rection. If U < Uz, the current is less than zero, which means

that the engine model works as a refrigerator. If U > Uz,

the current is higher than zero, which means that the engine

model works as a heat engine. Thus, if external force is con-

 

FIG. 13: Characteristic curves of current (J∗) versus external force

( f ) for given µ = 0.4 and τ = 0.3.

sidered, for the barrier height (U0), only when the condition

that

U0 > UzkBTH (14)

is satisfied, the engine model can work as a two-reservoir

heat engine. When the engine model works as a heat engine,

there exists the optimum barrier height UJ∗ which leads to

the maximum current J∗max. From Figure 9, one can see that

the power output is a monotonic increasing function of the

current J∗. Thus, the optimum barrier height UJ∗ in Figure

12 which corresponds to the maximum current also leads to

the maximum power output of the heat engine. With the in-

crease of f , J∗max will decrease while UJ∗ will increase. This

is because that the direction of external force is opposite to

the movement of the particle, it will hinder the transport of

the particle. So the larger the f , the less the J∗max. Conse-

quently, higher barrier height is needed for the heat engine in

order to get the maximum current.

Similarly, using equation (10), for given values of µ and

τ, i.e. µ = 0.4 and τ = 0.3, the characteristic curves of cur-

rent (J∗) versus external force ( f ) and the influence of bar-

rier height (U) can be plotted as shown in Figure 13. It is

shown that the current is a monotonic decreasing function of

f . There exists a particular external force ( fz) at which the

current changes its direction. When 0 ≤ f < fz, the current is

higher than zero, which means that the engine model works

as a heat engine. When f > fz, the current is less than zero,

which means that the engine model works as a refrigerator.

Thus, for the external force (F), only when the condition that

0 ≤ F < fzkBTHL (15)

is satisfied, the engine model can work as a two-reservoir

heat engine.

Equation (14) is the limited region of barrier height for the

Brownian motor to work as a heat engine when there is no

external force. Combining equation (14) with (15), one can

found that only when the external force and barrier height

of the potential are located in the regions 0 < F < fzkBTHL,

U0 > UzkBTH or F = 0, U0 > 0, the Brownian motor can

operate as a two-reservoir heat engine.
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6. CONCLUSIONS

In the present work, the thermodynamic performance of

a thermally driven Brownian heat engine is studied. The

heat engine consists of Brownian particles moving in a pe-

riodic sawtooth potential with and without external forces,

where the viscous medium is alternately in contact with the

hot and cold reservoirs along the space coordinate. The per-

formance characteristics are analyzed by numerical calcula-

tions. It is shown that the Brownian heat engine is always

irreversible due to the heat flow via the change of kinetic en-

ergy of the particle, and the efficiency can never approach

the Carnot efficiency, even in the quasistatic limit. Numer-

ical analysis has shown that the operation parameters, i.e.

barrier height of the potential, asymmetry of the potential

and temperature ratio of the heat reservoirs have great in-

fluences on the power output, efficiency and current perfor-

mances of the Brownian heat engine. It is found that when

there is no external force, the power output versus efficiency

characteristic curves are closed loop-shaped ones, which are

similar to the characteristics of real conventional irreversible

heat engines; whereas when the external force is applied on

the particle, the power output versus efficiency characteris-

tic curves of the heat engine changed into open loop-shaped

ones. The limited regions of the external force and barrier

height of the potential are explored by analyzing the current

property of the model. And it is found that only when the ex-

ternal force and barrier height of the potential are located in

the region 0 < F < fzkBTHL, U0 > UzkBTH or F = 0, U0 > 0,

the Brownian motor can operate as a two- reservoir heat en-

gine. Results of numerical calculations show that through

the proper choice of the parameters, the Brownian heat en-

gine can be controlled to operate in the optimal regimes. The

results obtained herein can provide some guidelines in re-

vealing the general performance characteristics of thermal

Brownian heat engines.
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