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Abstract—Virtualization has become a very important technology 
which has been adopted in many enterprise computing systems 
and data centers. Virtualization makes resource management 
and maintenance easier, and can decrease energy consumption 
through resource consolidation. To develop and employ 
sophisticated resource management, accurate power and 
performance models of the hardware resources in a virtualized 
environment are needed. Based on extensive experiments and 
measurements, this paper presents accurate power and 
performance models for a high performance multi-core server 
system with virtualization.  

Keywords- modeling; energy efficiency, virtulization, consolidation, 
resource sharing, scheduling. 

 

I.  INTRODUCTION 
The concept of virtualization was introduced a few decades ago, 
but it was not widely used because it required high 
performance hardware. However, as hardware performance has 
improved, virtualization has emerged as a most promising 
solution for eliminating “computing waste” through physical 
resource sharing in enterprise computing server systems in 
general and data centers in particular. Moreover, virtualization 
makes system maintenance much easier, improves system 
availability, and reduces the cost of managing/upgrading a 
large computer system.  

Modern data centers not only consume huge amounts of 
energy, but also their energy needs are increasing very quickly.  
For example, according the 2007 EPA report[1,2], data centers 
consumed 61 billion kWh of electrical energy in 2006 and they 
are on track to consume more than 110 billion kWh in 2011. 
By the 2020, the data center energy consumption s expected to 
account for 8% of the electrical energy consumption in the US 
(and this in spite of continuous improvements in energy 
efficiency of the newer servers).  Fortunately, the average 
(server) utilization of a typical data center is quite low, so a 
suitable server management strategy can significantly reduce 
the data center energy consumption. This is where 
virtualization enters the picture by allowing each 
application/client to think it owns the physical resource while 
in fact that resource is being shared among multiple 
applications/clients.  

An effective policy to reduce the energy cost of data centers 
is thus by representing each process (which itself is a sequence 

of tasks) as a virtual CPU (vCPU) and subsequently packing 
these virtual CPUs into a small number of physical CPUs 
(pCPU). Of course, the task-level performance constraints (e.g., 
the turn-around time) imposed by the application/client that 
generates these tasks must also be met (these are typically 
formulated in a set of service level agreements between the 
clients and the data center operators/owners. Regardless every 
incoming task should be eventually serviced (“fairness” 
criterion.)  To do this mapping from virtual to physical CPUs 
so as to minimize energy consumptions while meeting various 
SLAs is a challenging task of immense value to the data center 
owners. Indeed solving this problem in a cost-efficient and 
manageable manner will accelerate widespread adoption of 
cloud computing at least according to the “infrastructure as a 
service” model.  

To develop a provably “good” solution to this hard 
constrained optimization problem, one will need a better 
understanding of the power-performance tradeoffs in a 
virtualized computer system. Questions such as how many 
virtual domains are needed, what should be the target 
utilization level of a physical CPU[4,5], how does one related 
the workload intensity to the server utilization levels, how do 
we map the vCPU’s to pCPU’s, what performance level should 
be set for a given physical CPU,  etc. can be answered only if 
we have quantitative models relating the level of virtualization 
to power dissipation and performance of the physical CPUs.  
Instead of answering these questions using simulators, we have 
opted to rely on actual hardware measurements on two-server 
computer system, each server comprising of two sockets and 
each socket having two cores. We run a number of application 
programs (some synthetic some from the SpecWeb benchmark) 
to do the experiments, make the measurements, and finally 
construct our power and performance macro-models. In the 
process, we provide some insight as to what level of 
virtualization makes sense for a target enterprise computing 
system.  

We have designed 18 test cases with different 
configurations, in terms of the number of vCPUs, the set of 
active pCPUs, and frequency settings for these pCPUs. Power 
and performance macro-models are obtained from 
experimental results by regression analysis. Determining the 
proper number of vCPUs is important: A small number of 
virtual CPU limits the number of pCPU resources that can be 
utilized by the system and hence results in power and 
performance penalty while a large number vCPU’s creates 



extra overhead which again results in power and performance 
penalty.  

To avoid confusion (previous authors have used same terms 
to refer to different things), we provide some key definitions 
and terminology that will be used throughout this paper. 

• Processor: A package having cores and caches in it 

• (physical) CPU1: A physical core in a processor 

• virtual CPU: A process 

• Domain0: Privileged domain  

• Guest domain: All other domains in the virtualized 
system 

• Virtual machine: Same as a domain 

• CPU utilization: Total of utilization of all CPUs in the 
system. 

 

II. EXPERIMENTAL SYSTEM UNDER TEST 
A. Hardware Testbed 
Our testbed system has the following configuration. We have 
two processors in the system, which are Intel Xeon E5410 
processors. Each processor has four cores and total size of the 
system memory is 8GBytes. Each processor supports two 
frequency levels, 2.0GHz and 2.3GHz and its VID voltage 
range is 0.85V to 1.35V. Fedora version 11 (Linux) is used as 
an Operating system for domain0. We used XEN hypervisor [8] 
version 3.4.2 for constructing virtualized system. We cut the 
power line between the main board and 12V DC power source 
and measure the power consumed by the processors and on-
board voltage regulators. Figure 1 shows photos of our setup in 
the lab. 

 

 

Figure 1.  The server system under test and the power analyzer. 

                                                           
1 CPU means physical CPU unless it is clearly mentioned as 
virtual CPU 

B. WorkloadGen 
We designed and implemented a workload generator, 
WorkloadGen, for modeling and measuring performance of the 
system. The WorkloadGen utility provides parameters for 
controlling the workload type, e.g., CPU, Memory, or I/O 
intensive, workload intensity. By adjusting the input parameters 
of this program, we can set any workload type and intensity 
combination. Note that once the task type is fixed, all generated 
tasks are homogenous and what we do to set the workload 
intensity is to simply change the task arrival rate. There are 
two module types as depicted in Figure 2. Each Task Generator 
makes tasks that satisfy a target type and intensity profile, and 
sends them to a Task Loader. The Task Loader resides in the 
SUT (System under Test), and loads the tasks sent by Task 
Generators. Task generators and the task loader communicate 
each other though TCP/IP protocol, so they can locate in 
physically separated machines. 
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Figure 2.  Workload generator block diagram. 

Since there is more than one task generator, we also need a 
task loader, which creates a process for each task generator. 
For example, if three task generators connect to a task loader 
and send tasks, the task loader creates three processes for 
serving them; in such a case at most three vCPUs can be 
concurrently utilized. The WorkloadGen reports back statistical 
performance data: average response time per task, average 
waiting time in the application queue, and average execution 
time per task, which are needed for analyzing the overall 
system performance.  

 

III. EXPERIMENTAL RESULTS 
Power dissipation and response time is measured for different 
configurations. We model power and response time as 
functions of CPU utilization. In this study, we select response 
time (as opposed to say throughput) as the performance metric 
of interest.   

A limitation of our experimental study is that we only 
consider one domain, which is the privileged domain, domain0. 
In general, there is more than one domain in a virtualized 
server system, and they are dependent on each other, e.g., all 
I/O between H/W and guest domains must pass through 
domain0. Hence, analyzing the relationship between domains is 
important, but it falls outside the scope of the present paper.  



A. Test cases 
There are four groups of test cases as shown at Table 1. The 
first group, cases 1 through 10, is for modeling power and 
response time of a single server. All cases in the first group 
have four vCPUs, but they differ in the frequency level used for 
the processor as well as the number of active CPUs.2  The 
second group, cases 11 and 12, is studied for modeling power 
when different frequency levels are applied to sockets in the 
same processor. The third group, cases 13 and 14, is studied for 
exploring effects caused by using different number of vCPUs 
compared to cases 1 and 5, respectively. The last group, cases 
15 through 18, is for power modeling when both processors are 
used in the virtualized server system. 

Bold face L or H frequency annotation in Table 1 means 
that the corresponding CPUs are active. This does not, however, 
mean that the all such CPUs are executing tasks at all times; 
clearly some of the active CPUs may be idle. Non-bold 
frequency annotation in the table indicates the fact that the 
corresponding CPUs are idle. All idle CPUs are automatically 
transitioned to the C1E (extended halt) power saving mode. 
Intel core-level power management implemented in their power 
control unit (which is inaccessible to Xen) automatically 
transitions an idle core into this power saving mode after some 
timeout period.  

One of our findings is that the power consumption of the 
two processors in the server system is largely dependent on the 
total utilization of the cores in the two servers, and the 
frequency setting of the active cores, and not so much on what 
subset of cores is used by the running domains  

TABLE I.  LIST OF TEST CASES AND GROUPS (SEPARATED BY 
DOTTED HORIZONTAL LINES). 

Case # of  
vCPUs 

ID of  
pCPUs 

Processor 1 Processor 2 
0 2 4 6 1 3 5 7 

1 4 0,2,4,6 L L L L     
2 4 0,2,4 L L L L     
3 4 0,2 L L L L     
4 4 0,4 L L L L     
5 4 0 L L L L     
6 4 0,2,4,6 H H H H     
7 4 0,2,4 H H H H     
8 4 0,2 H H H H     
9 4 0,4 H H H H     

10 4 0 H H H H     
11 4 0,2 L L H H     
12 4 0,4 L L H H     
13 1 0 L L L L     
14 1 0 H H H H     

15 4 0,2 L L L L L L L L 
16 4 0,1 H H H H L L L L 
17 4 0,2 H H H H L L L L 
18 4 0,1 H H H H H H H H 

                                                           
2 An active CPU is a pCPU which is utilized by some 
domain(s) or is ON ready to serve the domain(s).  

 

Figure 3 depicts a simplified block diagram of Xeon 5400 
series processor. Each processor has two sockets and four cores 
(CPUs). The two CPUs in the same socket share an L2 cache. 
Note that ID of cores in processor 0 is even numbered while 
those in the other processor are odd numbered. This numbering 
is used in order to be consistent with how XEN assigns ID to 
CPUs. 

 

Figure 3.  Simplified block diagram of Intel Xeon processor 
5400 series (code named Hapertown). 

B. Power modeling 
For now we focus on the single server system (cases 1 through 
14). As seen in Figure 4, the relationship between power and 
CPU utilization is linear. Hence we can model power 
dissipation as follows: ݌ ൌ ܽ · ݑ ൅ ܾ (1)

where p is power in Watts and u is the total (not average) CPU 
utilization. Note that the maximum utilization of 2 CPUs is 
200%, and so on. 

Figure 4.  Server power dissipation vs. total CPU utilization 

These cases can be divided in two clusters as shown in 
Figure 4. All cases in cluster1 contain active CPUs that run at 
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low frequency while cluster2 contains cases with active high 
frequency CPUs. 3  

Based on our experimental results, we state a few 
interesting facts. 

• When all active CPUs are running at the low frequency 
level, the processor power dissipation is mostly 
independent of which subset of CPUs is used by the 
running domains (see cases 1 through 5, and 11.) 

• When all active CPUs are running in high frequency, 
the processor power dissipation is dependent on which 
subset of CPUs is used by the running domains (see 
cases 6 through 10.) 

• When active CPUs are running at different frequency 
levels, the processor power dissipation is similar to that 
of the case which has the same number of active CPUs 
all running at the high frequency level (see cases 9 and 
12.) 

• The idle power dissipations are nearly the same for the 
two frequency levels. 

• Two CPUs that are in the same socket run at the same 
frequency level, regardless of our setting. This, for 
example, means that if one CPU is set to the low 
frequency while the other set to the high frequency, 
both are actually running at the higher frequency. 4 

 Table II below reports the regression coefficients (a and b) 
for the power macro-model equation (1) for all cases. The table 
also gives the coefficient of determination, Rsquared, which 
provides a measure of how well future outcomes are likely to 
be predicted by the linear regression model. An Rsquared value 
close to 1 indicates a good match between the linear fit and 
actual data. 

 

TABLE II.  COEFFICIENTS OF POWER MACRO-MODEL EQUATION 
FOR CASES 1-12, 15-18 

case a b Rsquared case a b Rsquared 
1 0.046 12.65 0.998 9 0.096 13.62 0.997 
2 0.046 12.65 0.999 10 0.127 12.48 0.996 
3 0.047 12.39 0.999 11 0.047 12.38 0.997 
4 0.049 12.40 0.998 12 0.097 11.74 0.998 
5 0.049 12.28 0.991 15 0.046 24.60 0.997 
6 0.088 14.44 0.993 16 0.085 24.58 0.998 
7 0.091 13.98 0.997 17 0.091 25.65 0.995 
8 0.095 13.58 0.996 18 0.128 24.63 0.998 

 

Figure 4 and Table II show that, to a first order, the 
relationship between power dissipation and total utilization of 
low frequency cases (cluster1) is determined by the frequency 
level of the active CPUs regardless of the number and specific 
set of CPUs that are active in each socket.  There are of course 
minor differences. For example, test case 4 has a larger 'a' 

                                                           
3 If any active CPU is running at the high frequency, the 
corresponding case is put in cluster2. 
4 This observation is from experimental results (although not 
reported in table I.) 

value (slope) than case 3. This is because two CPUs in the 
same socket share L2 cache. Test case 4 has two active CPUs 
that belong to different sockets (there is no L2 cache sharing), 
so it consumes more power than case 3 where the two active 
CPUs share the L2 cache in socket 0. In summary, the 
regression coefficients of the power vs. utilization equation for 
all cases of cluster1 are nearly the same. In contrast, there is a 
big variation in the coefficient values of the power vs. 
utilization equation for the high frequency cases (cluster2.) 
Table II shows that the higher the number of active high-
frequency CPU’s, the lower the slope (‘a’ value) of the power 
vs. utilization equation. This observation means, for example, 
that case 6 (with 4 active high-frequency CPUs) consumes less 
power than case 10 (only 1 active CPU) at high total CPU 
utilization level. Note that the apparent difference between 
power intercepts (‘b’ values) of these cases is due to the 
regression fit by a linear equation. The difference between 
coefficients of cases 8 and 9 is small, but can be explained 
based on the L2 sharing notion.  

The power equation for the cluster2 cases thus includes 
another term which is the power consumption of shared 
resources. This term is proportional to the average utilization of 
the active CPUs. The other terms are proportional to the 
number of active CPUs. Consequently the new power equation 
for the high frequency cases may be written as follows: ݌ு ൌ ሺߙଵ · ݊ ൅ ଶ݊ߙ ൅ ଷሻߙ · ݑ ൅ ሺߚଵ · ݊ ൅ ଶ݊ߚ ൅  ଷሻ (2)ߚ

where pH is power in Watts, u is the total CPU utilization, and n 
is the number of active CPUs. The coefficients for our testbed 
have been computed as follows: 3 ߙ ,0.0691 = 2 ߙ ,0.0045 = 1ߙ = 
0.0532, 1.759- = 2 ߚ ,0.199 = 1ߚ, and 14.050 = 3 ߚ 

As table II shows we can use a unified equation for all 
cases in cluster1. For cluster2, slope ('a') and power intercept 
('b') are calculated from equation (2).   
 

TABLE III.  COEFFICIENTS OF THE UNIFIED POWER MACRO-
MODEL EQUATIONS FOR CLUSTERS 1 AND 2 

 case a b Rsquared 
cluster1 1-5,11 0.047 12.55 0.998 

cluster2 

6 0.089 14.41 0.993 
7 0.090 14.06 0.996 
8 0.097 13.57 0.996 
9 0.097 13.57 0.998 

10 0.127 12.49 0.996 
 12 0.097 13.065 0.953 

 

Cases 15 to 18 are for checking whether or not we can 
extend the power model got from cases 1 to 10 to multi 
processor systems. Note that the offset coefficients (‘b’ terms) 
in these equations is not a simple summation of the offset terms 
of the corresponding single-server macro-models. Neither is the 
slope (‘a’ term) an average of the slopes of corresponding 
single-server systems.   

                                                           
5 Case 12 is a mixed frequency case, i.e., the power intercept is 
the average of power intercept of cluster1 and that of case8 in 
table III. 



Table IV compares the (measured) coefficients obtained 
through regression analysis performed directly on data obtained 
for the two-server system versus (estimated) coefficients 
obtained by taking average of the ‘a’ terms and summation of 
the ‘b’ terms of the corresponding single-serve data from Table 
II. As shown in Table IV, estimated one is not identical to 
measured one, but the difference is not large; the maximum 
error is less than 9%. Measured power includes power 
consumed by voltage regulator, so a plausible reason for this 
difference is that the voltage regulator conversion efficiency 
changes based on its load current demand. Another possible 
reason is error in measurement.6 In summary, we can use the 
coefficients in Table II for estimating power dissipation of 
multiprocessor systems with a relatively small error. 

 

TABLE IV.  ESTIMATED VS. MEASURED COEFFICIENTS  

case estimated measured 
 a b a b 

15 0.049 24.80 0.046 24.60 
16 0.088 24.76 0.085 24.58 
17 0.095 25.86 0.091 25.65 
18 0.127 24.96 0.128 24.63 

 

 

 

C. Response time modeling 
In our experiments, inter-arrival times of tasks follow 
exponential distribution, so, the average amount of time a task 
stays in the system is as follows [5]: ܹ ൌ ሾܵଶሿ2ሺ1ܧߣ െ ሾܵሿሻܧߣ ൅  ሾܵሿ (3)ܧ

where λ is inter-arrival time, S is a random variable 
representing the service time, and E[.] denotes the expected 
value operation. Because relationship between the inter-arrival 
time and utilization is approximately linear, 7  we can use 
equation (4) for modeling the system’s response time for a task: ݎ ൌ ܿ · ݀ݑ െ ݑ ൅ ݁ (4) 

where r denotes response time and u denotes the total CPU 
utilization. 

Table V shows regression coefficients of the response time 
equation for test cases. Values of Rsquare establish that equation 
(4) is quite accurate for modeling the system’s response time. 

 

 

 

                                                           
6 Our current power analyzer reports power dissipation only 
twice per second. 
7 This statement does not hold true under very high utilization 
rate, e.g. 95% or higher for a single CPU. Because such a 
situation should be avoided in any case (due to exponential 
increase in systems response time), we do not consider it here. 

TABLE V.  COEFFICIENTS OF RESPONSE TIMEC EQUATION 

case c d e Rsquared 
1 0.013 404.5 0.045 0.997 
2 0.007 290.0 0.048 0.997 

3,4 0.014 199.4 0.044 0.991 
5 0.053 109.0 0.038 0.996 
6 0.012 407.5 0.042 0.998 
7 0.009 294.0 0.042 1.000 

8,9 0.017 204.9 0.036 0.949 
10 0.058 111.1 0.029 0.989 

 

Figure 5 depicts response time for test cases 1 to 10. As 
expected, the maximum utilization is limited by the number of 
active CPUs times 100%. However, the trends for all cases are 
similar i.e., the magnitude of change in response time is small 
under low utilization rates, but it increases exponentially as the 
utilization reaches the maximum allowed utilization.  

Limiting the number of CPUs assigned to a domain 
(alternatively, guaranteeing a pre-specified total CPU 
utilization percentage for a virtual domain) is quite useful and 
common in virtualized systems because it enables performance 
isolation among the different virtual domains in the system. 
Hence, how much resource a domain consumes compared to 
total amount of resources assigned to the domain is an 
important parameter. 

Figure 5.  Response time vs. total CPU utilization. 

For this purpose, we introduce a new term, normalized 
utilization, which is the total utilization of the CPUs in a given 
domain divided by the CPU quota (in percentage) allocated to 
the domain. The range of normalized utilization is between 0% 
and 100%.  

Figure 6 redraws the response time data as a function of the 
normalized utilization. The response time plots are now very 
similar to each other except cases 5 and 10, which are using 
only one active CPU. This is expected. Since in both cases, 
there is only one active CPU and 4 vCPU’s and the overhead of 
managing these vCPU’s becomes large.  

A general approach for resource management in enterprise 
computing systems is to keep the normalized utilization under a 
pre-defined upper bound in order to guarantee a specified 
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quality of service [9]. Figure 6 proves that we cannot use a 
fixed upper bound for all cases. For example, suppose the 
maximum acceptable response time is set at 0.1s. Then we can 
push the CPUs up to a normalized utilization level of 85% in 
case 6 without violating this performance constraint, but only 
up to 60% utilization level in case 10. The reason is that case 
10 has only one active CPU, and hence, the four vCPUs are 
executed on that CPU in a time-multiplexed manner. This 
creates certain overhead that will start to dominate the average 
response time per request as the number of context switches 
between the vCPU’s increases (which itself happens because of 
the increase in the number of requests generated by each 
vCPU).  Similarly, the upper bounds for case 5 and case 1 are 
58% and 84% normalized utilization levels, respectively. 

 

(a) (b) 

Figure 6.  Response time vs. normalized utilization:  
(a) Low frequency - 2GHz, (b) High frequency - 2.3GHz 

 

To further justify the explanation provided in the last 
paragraph for the difference among these cases, consider other 
results. Figure 7 shows the effect of the number of vCPUs on 
the response time vs. utilization curves. Cases 13 and 14, which 
also have only CPU but also only one vCPU, exhibit response 
time curves that always lie below those of cases 5 and 10, 
which have one CPU but four vCPUs. Clearly the response 
time curves for cases 13 and 14 lie below those of cases 5 and 
10, that is, for a fixed number of active CPUs, the fewer vCPUs 
we have, the fewer context switches occur, and hence, the 
shorter is the response time. 

 

(a) (b)

Figure 7.  Response time per request for different number of 
vCPUs: (a) Low frequency-2GHz, (b) High frequency-2.3GHz 

 

D. Energy-Delay Product for different workload intensities 
As shown in Figure 4, idle power consumption is not zero.8 
Consequently, the energy cost, which is defined as average 
energy consumption per request, decreases as the workload 
intensity increases (see Figure 8.) Similarly, the average energy 
consumption per request decreases as the total CPU utilization 
increases (see Figure 9.) However, under high workload 
intensity, the response time also increases with the workload 
intensity (this increase accelerates as the CPU utilization 
approaches a threshold as seen in Figures 5 and 6). We thus use 
the energy-delay product (EDP) per request as a cost function 
to be optimized. 

 

Figure 8.  Energy per request vs. the workload intensity (# of 
requests per second). 

 

                                                           
8 In fact a server’s idle power consumption is quite high – this 
effect which is present in all of today’s servers (including the 
Xeon 5400 series used here) is widely acknowledged and 
referred to as “energy non-proportionality.”  
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Figure 9.  Energy per request vs. utilization. 

 

Figure 10 shows that different cases are EDP-optimal for 
different levels of workload intensity in terms of our cost 
function. This experimental data motivates the need for 
dynamically changing the virtualization configuration in a 
server system.  In Figure 10, for workload intensity 105 or 
more requests per second, case 6 is the best choice in terms of 
its EDP per request value. The lowest EDP value per request is 
achieved with case 1 when the number of requests per second 
is between 50 and 100, and so on. This shows that the dynamic 
configuration change in a virtualized environment can be quite 
beneficial in terms of minimizing the EDP value per request.  

Figure 10.  'Energy delay product' / request vs. # of requests 

 

 

IV. CONCLUSION 
We present precise power and performance models for a 
virtualized server system based on Intel Xeon 5400 series. 
Power dissipation model (as a function of the total CPU 
utilization) of the virtualized system is similar to one of non-
virtualized systems. However, the configuration of virtual 
machine affects the performance metric i.e., the number of 
virtual CPUs and physical CPUs greatly influence the system’s 
overall performance.  
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