
Power and Performance Modeling in a Virtualized Server System

Massoud Pedram and Inkwon Hwang
University of Southern California

Department of Electrical Engineering
Los Angeles, CA 90089 U.S.A.
{pedram, inkwonhw}@usc.edu

Abstract—Virtualization has become a very important technology
which has been adopted in many enterprise computing systems
and data centers. Virtualization makes resource management
and maintenance easier, and can decrease energy consumption
through resource consolidation. To develop and employ
sophisticated resource management, accurate power and
performance models of the hardware resources in a virtualized
environment are needed. Based on extensive experiments and
measurements, this paper presents accurate power and
performance models for a high performance multi-core server
system with virtualization.

Keywords- modeling; energy efficiency, virtulization, consolidation,
resource sharing, scheduling.

I. INTRODUCTION
The concept of virtualization was introduced a few decades ago,
but it was not widely used because it required high
performance hardware. However, as hardware performance has
improved, virtualization has emerged as a most promising
solution for eliminating “computing waste” through physical
resource sharing in enterprise computing server systems in
general and data centers in particular. Moreover, virtualization
makes system maintenance much easier, improves system
availability, and reduces the cost of managing/upgrading a
large computer system.

Modern data centers not only consume huge amounts of
energy, but also their energy needs are increasing very quickly.
For example, according the 2007 EPA report[1,2], data centers
consumed 61 billion kWh of electrical energy in 2006 and they
are on track to consume more than 110 billion kWh in 2011.
By the 2020, the data center energy consumption s expected to
account for 8% of the electrical energy consumption in the US
(and this in spite of continuous improvements in energy
efficiency of the newer servers). Fortunately, the average
(server) utilization of a typical data center is quite low, so a
suitable server management strategy can significantly reduce
the data center energy consumption. This is where
virtualization enters the picture by allowing each
application/client to think it owns the physical resource while
in fact that resource is being shared among multiple
applications/clients.

An effective policy to reduce the energy cost of data centers
is thus by representing each process (which itself is a sequence

of tasks) as a virtual CPU (vCPU) and subsequently packing
these virtual CPUs into a small number of physical CPUs
(pCPU). Of course, the task-level performance constraints (e.g.,
the turn-around time) imposed by the application/client that
generates these tasks must also be met (these are typically
formulated in a set of service level agreements between the
clients and the data center operators/owners. Regardless every
incoming task should be eventually serviced (“fairness”
criterion.) To do this mapping from virtual to physical CPUs
so as to minimize energy consumptions while meeting various
SLAs is a challenging task of immense value to the data center
owners. Indeed solving this problem in a cost-efficient and
manageable manner will accelerate widespread adoption of
cloud computing at least according to the “infrastructure as a
service” model.

To develop a provably “good” solution to this hard
constrained optimization problem, one will need a better
understanding of the power-performance tradeoffs in a
virtualized computer system. Questions such as how many
virtual domains are needed, what should be the target
utilization level of a physical CPU[4,5], how does one related
the workload intensity to the server utilization levels, how do
we map the vCPU’s to pCPU’s, what performance level should
be set for a given physical CPU, etc. can be answered only if
we have quantitative models relating the level of virtualization
to power dissipation and performance of the physical CPUs.
Instead of answering these questions using simulators, we have
opted to rely on actual hardware measurements on two-server
computer system, each server comprising of two sockets and
each socket having two cores. We run a number of application
programs (some synthetic some from the SpecWeb benchmark)
to do the experiments, make the measurements, and finally
construct our power and performance macro-models. In the
process, we provide some insight as to what level of
virtualization makes sense for a target enterprise computing
system.

We have designed 18 test cases with different
configurations, in terms of the number of vCPUs, the set of
active pCPUs, and frequency settings for these pCPUs. Power
and performance macro-models are obtained from
experimental results by regression analysis. Determining the
proper number of vCPUs is important: A small number of
virtual CPU limits the number of pCPU resources that can be
utilized by the system and hence results in power and
performance penalty while a large number vCPU’s creates

extra overhead which again results in power and performance
penalty.

To avoid confusion (previous authors have used same terms
to refer to different things), we provide some key definitions
and terminology that will be used throughout this paper.

• Processor: A package having cores and caches in it

• (physical) CPU1: A physical core in a processor

• virtual CPU: A process

• Domain0: Privileged domain

• Guest domain: All other domains in the virtualized
system

• Virtual machine: Same as a domain

• CPU utilization: Total of utilization of all CPUs in the
system.

II. EXPERIMENTAL SYSTEM UNDER TEST
A. Hardware Testbed
Our testbed system has the following configuration. We have
two processors in the system, which are Intel Xeon E5410
processors. Each processor has four cores and total size of the
system memory is 8GBytes. Each processor supports two
frequency levels, 2.0GHz and 2.3GHz and its VID voltage
range is 0.85V to 1.35V. Fedora version 11 (Linux) is used as
an Operating system for domain0. We used XEN hypervisor [8]
version 3.4.2 for constructing virtualized system. We cut the
power line between the main board and 12V DC power source
and measure the power consumed by the processors and on-
board voltage regulators. Figure 1 shows photos of our setup in
the lab.

Figure 1. The server system under test and the power analyzer.

1 CPU means physical CPU unless it is clearly mentioned as
virtual CPU

B. WorkloadGen
We designed and implemented a workload generator,
WorkloadGen, for modeling and measuring performance of the
system. The WorkloadGen utility provides parameters for
controlling the workload type, e.g., CPU, Memory, or I/O
intensive, workload intensity. By adjusting the input parameters
of this program, we can set any workload type and intensity
combination. Note that once the task type is fixed, all generated
tasks are homogenous and what we do to set the workload
intensity is to simply change the task arrival rate. There are
two module types as depicted in Figure 2. Each Task Generator
makes tasks that satisfy a target type and intensity profile, and
sends them to a Task Loader. The Task Loader resides in the
SUT (System under Test), and loads the tasks sent by Task
Generators. Task generators and the task loader communicate
each other though TCP/IP protocol, so they can locate in
physically separated machines.

SUT

Task Loader

Task
Generator #1

Task
Generator #2

Task
Generator #n

queue process
type, load level

queue process

queue process

Task generation
profile

Statistical report
(mean response

Time)

execute / wait time

Figure 2. Workload generator block diagram.

Since there is more than one task generator, we also need a
task loader, which creates a process for each task generator.
For example, if three task generators connect to a task loader
and send tasks, the task loader creates three processes for
serving them; in such a case at most three vCPUs can be
concurrently utilized. The WorkloadGen reports back statistical
performance data: average response time per task, average
waiting time in the application queue, and average execution
time per task, which are needed for analyzing the overall
system performance.

III. EXPERIMENTAL RESULTS
Power dissipation and response time is measured for different
configurations. We model power and response time as
functions of CPU utilization. In this study, we select response
time (as opposed to say throughput) as the performance metric
of interest.

A limitation of our experimental study is that we only
consider one domain, which is the privileged domain, domain0.
In general, there is more than one domain in a virtualized
server system, and they are dependent on each other, e.g., all
I/O between H/W and guest domains must pass through
domain0. Hence, analyzing the relationship between domains is
important, but it falls outside the scope of the present paper.

A. Test cases
There are four groups of test cases as shown at Table 1. The
first group, cases 1 through 10, is for modeling power and
response time of a single server. All cases in the first group
have four vCPUs, but they differ in the frequency level used for
the processor as well as the number of active CPUs.2 The
second group, cases 11 and 12, is studied for modeling power
when different frequency levels are applied to sockets in the
same processor. The third group, cases 13 and 14, is studied for
exploring effects caused by using different number of vCPUs
compared to cases 1 and 5, respectively. The last group, cases
15 through 18, is for power modeling when both processors are
used in the virtualized server system.

Bold face L or H frequency annotation in Table 1 means
that the corresponding CPUs are active. This does not, however,
mean that the all such CPUs are executing tasks at all times;
clearly some of the active CPUs may be idle. Non-bold
frequency annotation in the table indicates the fact that the
corresponding CPUs are idle. All idle CPUs are automatically
transitioned to the C1E (extended halt) power saving mode.
Intel core-level power management implemented in their power
control unit (which is inaccessible to Xen) automatically
transitions an idle core into this power saving mode after some
timeout period.

One of our findings is that the power consumption of the
two processors in the server system is largely dependent on the
total utilization of the cores in the two servers, and the
frequency setting of the active cores, and not so much on what
subset of cores is used by the running domains

TABLE I. LIST OF TEST CASES AND GROUPS (SEPARATED BY
DOTTED HORIZONTAL LINES).

Case # of
vCPUs

ID of
pCPUs

Processor 1 Processor 2
0 2 4 6 1 3 5 7

1 4 0,2,4,6 L L L L
2 4 0,2,4 L L L L
3 4 0,2 L L L L
4 4 0,4 L L L L
5 4 0 L L L L
6 4 0,2,4,6 H H H H
7 4 0,2,4 H H H H
8 4 0,2 H H H H
9 4 0,4 H H H H

10 4 0 H H H H
11 4 0,2 L L H H
12 4 0,4 L L H H
13 1 0 L L L L
14 1 0 H H H H

15 4 0,2 L L L L L L L L
16 4 0,1 H H H H L L L L
17 4 0,2 H H H H L L L L
18 4 0,1 H H H H H H H H

2 An active CPU is a pCPU which is utilized by some
domain(s) or is ON ready to serve the domain(s).

Figure 3 depicts a simplified block diagram of Xeon 5400
series processor. Each processor has two sockets and four cores
(CPUs). The two CPUs in the same socket share an L2 cache.
Note that ID of cores in processor 0 is even numbered while
those in the other processor are odd numbered. This numbering
is used in order to be consistent with how XEN assigns ID to
CPUs.

Figure 3. Simplified block diagram of Intel Xeon processor
5400 series (code named Hapertown).

B. Power modeling
For now we focus on the single server system (cases 1 through
14). As seen in Figure 4, the relationship between power and
CPU utilization is linear. Hence we can model power
dissipation as follows: ݌ ൌ ܽ · ݑ ൅ ܾ (1)

where p is power in Watts and u is the total (not average) CPU
utilization. Note that the maximum utilization of 2 CPUs is
200%, and so on.

Figure 4. Server power dissipation vs. total CPU utilization

These cases can be divided in two clusters as shown in
Figure 4. All cases in cluster1 contain active CPUs that run at

12

17

22

27

32

37

42

0 100 200 300 400

po
w

er
(W

)

total util(%)

cluster1(case1-5,11)
case6
case7
case8
case9
case10
case12

low frequency while cluster2 contains cases with active high
frequency CPUs. 3

Based on our experimental results, we state a few
interesting facts.

• When all active CPUs are running at the low frequency
level, the processor power dissipation is mostly
independent of which subset of CPUs is used by the
running domains (see cases 1 through 5, and 11.)

• When all active CPUs are running in high frequency,
the processor power dissipation is dependent on which
subset of CPUs is used by the running domains (see
cases 6 through 10.)

• When active CPUs are running at different frequency
levels, the processor power dissipation is similar to that
of the case which has the same number of active CPUs
all running at the high frequency level (see cases 9 and
12.)

• The idle power dissipations are nearly the same for the
two frequency levels.

• Two CPUs that are in the same socket run at the same
frequency level, regardless of our setting. This, for
example, means that if one CPU is set to the low
frequency while the other set to the high frequency,
both are actually running at the higher frequency. 4

 Table II below reports the regression coefficients (a and b)
for the power macro-model equation (1) for all cases. The table
also gives the coefficient of determination, Rsquared, which
provides a measure of how well future outcomes are likely to
be predicted by the linear regression model. An Rsquared value
close to 1 indicates a good match between the linear fit and
actual data.

TABLE II. COEFFICIENTS OF POWER MACRO-MODEL EQUATION
FOR CASES 1-12, 15-18

case a b Rsquared case a b Rsquared
1 0.046 12.65 0.998 9 0.096 13.62 0.997
2 0.046 12.65 0.999 10 0.127 12.48 0.996
3 0.047 12.39 0.999 11 0.047 12.38 0.997
4 0.049 12.40 0.998 12 0.097 11.74 0.998
5 0.049 12.28 0.991 15 0.046 24.60 0.997
6 0.088 14.44 0.993 16 0.085 24.58 0.998
7 0.091 13.98 0.997 17 0.091 25.65 0.995
8 0.095 13.58 0.996 18 0.128 24.63 0.998

Figure 4 and Table II show that, to a first order, the
relationship between power dissipation and total utilization of
low frequency cases (cluster1) is determined by the frequency
level of the active CPUs regardless of the number and specific
set of CPUs that are active in each socket. There are of course
minor differences. For example, test case 4 has a larger 'a'

3 If any active CPU is running at the high frequency, the
corresponding case is put in cluster2.
4 This observation is from experimental results (although not
reported in table I.)

value (slope) than case 3. This is because two CPUs in the
same socket share L2 cache. Test case 4 has two active CPUs
that belong to different sockets (there is no L2 cache sharing),
so it consumes more power than case 3 where the two active
CPUs share the L2 cache in socket 0. In summary, the
regression coefficients of the power vs. utilization equation for
all cases of cluster1 are nearly the same. In contrast, there is a
big variation in the coefficient values of the power vs.
utilization equation for the high frequency cases (cluster2.)
Table II shows that the higher the number of active high-
frequency CPU’s, the lower the slope (‘a’ value) of the power
vs. utilization equation. This observation means, for example,
that case 6 (with 4 active high-frequency CPUs) consumes less
power than case 10 (only 1 active CPU) at high total CPU
utilization level. Note that the apparent difference between
power intercepts (‘b’ values) of these cases is due to the
regression fit by a linear equation. The difference between
coefficients of cases 8 and 9 is small, but can be explained
based on the L2 sharing notion.

The power equation for the cluster2 cases thus includes
another term which is the power consumption of shared
resources. This term is proportional to the average utilization of
the active CPUs. The other terms are proportional to the
number of active CPUs. Consequently the new power equation
for the high frequency cases may be written as follows: ݌ு ൌ ሺߙଵ · ݊ ൅ ଶ݊ߙ ൅ ଷሻߙ · ݑ ൅ ሺߚଵ · ݊ ൅ ଶ݊ߚ ൅ ଷሻ (2)ߚ

where pH is power in Watts, u is the total CPU utilization, and n
is the number of active CPUs. The coefficients for our testbed
have been computed as follows: 3 ߙ ,0.0691 = 2 ߙ ,0.0045 = 1ߙ =
0.0532, 1.759- = 2 ߚ ,0.199 = 1ߚ, and 14.050 = 3 ߚ

As table II shows we can use a unified equation for all
cases in cluster1. For cluster2, slope ('a') and power intercept
('b') are calculated from equation (2).

TABLE III. COEFFICIENTS OF THE UNIFIED POWER MACRO-
MODEL EQUATIONS FOR CLUSTERS 1 AND 2

 case a b Rsquared
cluster1 1-5,11 0.047 12.55 0.998

cluster2

6 0.089 14.41 0.993
7 0.090 14.06 0.996
8 0.097 13.57 0.996
9 0.097 13.57 0.998

10 0.127 12.49 0.996
 12 0.097 13.065 0.953

Cases 15 to 18 are for checking whether or not we can
extend the power model got from cases 1 to 10 to multi
processor systems. Note that the offset coefficients (‘b’ terms)
in these equations is not a simple summation of the offset terms
of the corresponding single-server macro-models. Neither is the
slope (‘a’ term) an average of the slopes of corresponding
single-server systems.

5 Case 12 is a mixed frequency case, i.e., the power intercept is
the average of power intercept of cluster1 and that of case8 in
table III.

Table IV compares the (measured) coefficients obtained
through regression analysis performed directly on data obtained
for the two-server system versus (estimated) coefficients
obtained by taking average of the ‘a’ terms and summation of
the ‘b’ terms of the corresponding single-serve data from Table
II. As shown in Table IV, estimated one is not identical to
measured one, but the difference is not large; the maximum
error is less than 9%. Measured power includes power
consumed by voltage regulator, so a plausible reason for this
difference is that the voltage regulator conversion efficiency
changes based on its load current demand. Another possible
reason is error in measurement.6 In summary, we can use the
coefficients in Table II for estimating power dissipation of
multiprocessor systems with a relatively small error.

TABLE IV. ESTIMATED VS. MEASURED COEFFICIENTS

case estimated measured
 a b a b

15 0.049 24.80 0.046 24.60
16 0.088 24.76 0.085 24.58
17 0.095 25.86 0.091 25.65
18 0.127 24.96 0.128 24.63

C. Response time modeling
In our experiments, inter-arrival times of tasks follow
exponential distribution, so, the average amount of time a task
stays in the system is as follows [5]: ܹ ൌ ሾܵଶሿ2ሺ1ܧߣ െ ሾܵሿሻܧߣ ൅ ሾܵሿ (3)ܧ

where λ is inter-arrival time, S is a random variable
representing the service time, and E[.] denotes the expected
value operation. Because relationship between the inter-arrival
time and utilization is approximately linear, 7 we can use
equation (4) for modeling the system’s response time for a task: ݎ ൌ ܿ · ݀ݑ െ ݑ ൅ ݁ (4)

where r denotes response time and u denotes the total CPU
utilization.

Table V shows regression coefficients of the response time
equation for test cases. Values of Rsquare establish that equation
(4) is quite accurate for modeling the system’s response time.

6 Our current power analyzer reports power dissipation only
twice per second.
7 This statement does not hold true under very high utilization
rate, e.g. 95% or higher for a single CPU. Because such a
situation should be avoided in any case (due to exponential
increase in systems response time), we do not consider it here.

TABLE V. COEFFICIENTS OF RESPONSE TIMEC EQUATION

case c d e Rsquared
1 0.013 404.5 0.045 0.997
2 0.007 290.0 0.048 0.997

3,4 0.014 199.4 0.044 0.991
5 0.053 109.0 0.038 0.996
6 0.012 407.5 0.042 0.998
7 0.009 294.0 0.042 1.000

8,9 0.017 204.9 0.036 0.949
10 0.058 111.1 0.029 0.989

Figure 5 depicts response time for test cases 1 to 10. As
expected, the maximum utilization is limited by the number of
active CPUs times 100%. However, the trends for all cases are
similar i.e., the magnitude of change in response time is small
under low utilization rates, but it increases exponentially as the
utilization reaches the maximum allowed utilization.

Limiting the number of CPUs assigned to a domain
(alternatively, guaranteeing a pre-specified total CPU
utilization percentage for a virtual domain) is quite useful and
common in virtualized systems because it enables performance
isolation among the different virtual domains in the system.
Hence, how much resource a domain consumes compared to
total amount of resources assigned to the domain is an
important parameter.

Figure 5. Response time vs. total CPU utilization.

For this purpose, we introduce a new term, normalized
utilization, which is the total utilization of the CPUs in a given
domain divided by the CPU quota (in percentage) allocated to
the domain. The range of normalized utilization is between 0%
and 100%.

Figure 6 redraws the response time data as a function of the
normalized utilization. The response time plots are now very
similar to each other except cases 5 and 10, which are using
only one active CPU. This is expected. Since in both cases,
there is only one active CPU and 4 vCPU’s and the overhead of
managing these vCPU’s becomes large.

A general approach for resource management in enterprise
computing systems is to keep the normalized utilization under a
pre-defined upper bound in order to guarantee a specified

0.035

0.085

0.135

0.185

0.235

0.285

0 100 200 300 400

re
sp

on
se

 ti
m

e
(s

)

total util (%)

case10 case8,9 case7 case6
case5 case3,4 case2 case1

quality of service [9]. Figure 6 proves that we cannot use a
fixed upper bound for all cases. For example, suppose the
maximum acceptable response time is set at 0.1s. Then we can
push the CPUs up to a normalized utilization level of 85% in
case 6 without violating this performance constraint, but only
up to 60% utilization level in case 10. The reason is that case
10 has only one active CPU, and hence, the four vCPUs are
executed on that CPU in a time-multiplexed manner. This
creates certain overhead that will start to dominate the average
response time per request as the number of context switches
between the vCPU’s increases (which itself happens because of
the increase in the number of requests generated by each
vCPU). Similarly, the upper bounds for case 5 and case 1 are
58% and 84% normalized utilization levels, respectively.

(a) (b)

Figure 6. Response time vs. normalized utilization:
(a) Low frequency - 2GHz, (b) High frequency - 2.3GHz

To further justify the explanation provided in the last
paragraph for the difference among these cases, consider other
results. Figure 7 shows the effect of the number of vCPUs on
the response time vs. utilization curves. Cases 13 and 14, which
also have only CPU but also only one vCPU, exhibit response
time curves that always lie below those of cases 5 and 10,
which have one CPU but four vCPUs. Clearly the response
time curves for cases 13 and 14 lie below those of cases 5 and
10, that is, for a fixed number of active CPUs, the fewer vCPUs
we have, the fewer context switches occur, and hence, the
shorter is the response time.

(a) (b)

Figure 7. Response time per request for different number of
vCPUs: (a) Low frequency-2GHz, (b) High frequency-2.3GHz

D. Energy-Delay Product for different workload intensities
As shown in Figure 4, idle power consumption is not zero.8
Consequently, the energy cost, which is defined as average
energy consumption per request, decreases as the workload
intensity increases (see Figure 8.) Similarly, the average energy
consumption per request decreases as the total CPU utilization
increases (see Figure 9.) However, under high workload
intensity, the response time also increases with the workload
intensity (this increase accelerates as the CPU utilization
approaches a threshold as seen in Figures 5 and 6). We thus use
the energy-delay product (EDP) per request as a cost function
to be optimized.

Figure 8. Energy per request vs. the workload intensity (# of
requests per second).

8 In fact a server’s idle power consumption is quite high – this
effect which is present in all of today’s servers (including the
Xeon 5400 series used here) is widely acknowledged and
referred to as “energy non-proportionality.”

0.035

0.085

0.135

0.185

0.235

0.285

0 50 100

re
sp

on
se

 ti
m

e
(s

)

norm util (%)

case5

case3,4

case2

case1

0.035

0.085

0.135

0.185

0.235

0.285

0 50 100

re
sp

on
se

 ti
m

e
(s

)

norm util (%)

case10

case8,9

case7

case6

0.035

0.085

0.135

0.185

0.235

0.285

30 50 70 90

re
sp

on
se

 ti
m

e
(s

)

total util (%)

case13

case5

0.035

0.085

0.135

0.185

0.235

0.285

30 50 70 90

re
sp

on
se

 ti
m

e
(s

)

total util (%)

case14

case10

0

0.5

1

1.5

2

2.5

3

0 50 100 150

en
er

gy
 /

re
qu

es
t (

J)

#requests / s

case1-5
caes6-10

Figure 9. Energy per request vs. utilization.

Figure 10 shows that different cases are EDP-optimal for
different levels of workload intensity in terms of our cost
function. This experimental data motivates the need for
dynamically changing the virtualization configuration in a
server system. In Figure 10, for workload intensity 105 or
more requests per second, case 6 is the best choice in terms of
its EDP per request value. The lowest EDP value per request is
achieved with case 1 when the number of requests per second
is between 50 and 100, and so on. This shows that the dynamic
configuration change in a virtualized environment can be quite
beneficial in terms of minimizing the EDP value per request.

Figure 10. 'Energy delay product' / request vs. # of requests

IV. CONCLUSION
We present precise power and performance models for a
virtualized server system based on Intel Xeon 5400 series.
Power dissipation model (as a function of the total CPU
utilization) of the virtualized system is similar to one of non-
virtualized systems. However, the configuration of virtual
machine affects the performance metric i.e., the number of
virtual CPUs and physical CPUs greatly influence the system’s
overall performance.

REFERENCES
[1] J. G. Koomey, “Estimating total power consumption by servers

in the US and theworld. Final report,” http://enterprise.amd.com
/Downloads/svrpwrusecompletefinal.pdf, 2007

[2] U.S. EPA, “Report to congress on server and data center energy
efficiency,” U.S. Environmental Protection Agency, Tech. Rep.,
Aug. 2007.

[3] L. Barroso and U. H¨olzle, “The case for energy-proportional
computing,” IEEE Computer, Jan 2007.

[4] J. Heo, X. Zhu, P. Padala, and Z. Wang, “Memory Overbooking
and Dynamic Control of Xen Virtual Machines in Consolidated
Environments,” The 11th IFIP/IEEE International Symposium
on Integrated Network Management (IM 09) (Mini-
Conference), NY, June 2009

[5] G. Khanna, K Beaty, G. Kar, A. Kochut, "Application
performance management in virtualized server environments. In:
Proc. of the IEEE Network Ops. and Mgmt. Symp., pp. 373-381,
Apr 2006.

[6] S. Ross, "Introduction to Probability Models", academic press,
2006

[7] XEN credit scheduler, http://wiki.xensource.com/xenwiki/Credit
Scheduler

[8] XEN hypervisor, http://www.xen.org
[9] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient

response time guarantees for virtualized enterprise servers,” in
RTSS, pp. 303–312, 2008

0.35

0.55

0.75

0.95

1.15

1.35

1.55

1.75

1.95

0 100 200 300 400

en
er

gy
 /

re
qu

es
t (

J)

total util (%)

caes1-4 case5
case6-9 case10

20

25

30

35

40

45

50

55

60

0 20 40 60 80 100 120

en
er

gy
 *

 r
es

po
ns

e
tim

e
pr

od
uc

t p
er

 r
eq

ue
st

 (J
 *

 m
s)

of requests / s

case1 case2 case3 case4

case5 case6 case7 case8

case9 case10 min

