
Power and Performance Tradeoffs using Various Caching Strategies

R. Iris Bahary Gianluca Alberaxy Srilatha Mannez
y Brown University

Division of Engineering
Providence, RI 02912

x Politecnico di Torino
Dip. di Automatica e Informatica

Torino, ITALY 10129

z University of Colorado
Dept. of ECE

Boulder, CO 80309

Abstract

In this paper, we propose several different data and instruction
cache configurations and analyze their power as well as perfor-
mance implications on the processor. Unlike most existing work in
low power microprocessor design, we explore a high performance
processor with the latest innovations for performance. Using a de-
tailed, architectural-level simulator, we evaluate full system perfor-
mance using several different power/performance sensitive cache
configurations such as increasing cache size or associativity and
including buffers along side L1 caches. We then use the information
obtained from the simulator to calculate the energy consumption of
the memory hierarchy of the system. As an alternative to simply in-
creasing cache associativity or size to reduce lower-level memory
energy consumption (which may have a detrimental effect on on-
chip energy consumption), we show that, by using buffers, energy
consumption of the memory subsystem may be reduced by as much
as 13% for certain data cache configurations and by as much as
23% for certain instruction cache configurationswithoutadversely
effecting processor performance or on-chip energy consumption.

1 Introduction
The performance of high-end microprocessors continues to grow.
This growth is due in part to the use of speculative, out-of-order
execution coupled with highly accurate branch prediction. Branch
prediction has increased instruction-level parallelism (ILP) by al-
lowing programs to speculatively execute beyond control bound-
aries, while out-of-order execution has increased ILP by allowing
more flexibility in instruction execution. In this paper we concen-
trate on reducing the energy demands of the high-performance pro-
cessors which make use of these aggressive hardware-based tech-
niques. In particular, we investigate architectural-level solutions
that achieve a power reduction in the memory subsystemof the pro-
cessorwithoutcompromising performance.

Prior research has been aimed at measuring and recommending
optimal cache configuration for power. For instance, in [10], the au-
thors determined that high performance caches were also the lowest
power consuming caches since they reduce the traffic to the lower

0

level of the memory system. The work by Kin [7] proposed ac-
cessing a smallfilter cachebefore accessing the first level cache to
reduce the accesses (and energy consumption) from DL1. The idea
lead to a large reduction in memory hierarchy energy consump-
tion, but also resulted in a substantial reduction in processor perfor-
mance. While this reduction in performance may be tolerable for
some applications, the high-end market will not make such a sacri-
fice. Furthermore, energy is a function of time; if a task takes longer
to execute, overall energy consumption might increase although the
power dissipation is reduced. This paper proposes memory hierar-
chy configurations that reduce power while retaining performance.

Reducing cache misses due to line conflicts has been shown
to be effective in improving overall system performance in high-
performance processors. Techniques to reduce conflicts include
increasing cache associativity, use of victim caches [5], or cache
bypassing with and without the aid of a buffer [4, 9, 11]. Fig-
ure 1 shows the design of the memory hierarchy when using buffers
alongside the first level caches.

Unified
L2 cache

L1
Data
Cache

dL1 buffer

iL1 buffer

data access

instruction
access

from
Processor

L1
Inst
Cache

Figure 1:Memory hierarchy design using buffers alongside the L1
caches. These buffers may be used as victim caches, non-temporal
buffers, or speculative buffers.

The buffer is a small cache, between 8–16 entries, located be-
tween the first level and second level caches. The buffer may be
used to hold specific data (e.g. non-temporal or speculative data),
or may be used for general data (e.g. “victim” data). In this pa-
per we analyze various uses of this buffer in terms of both power
and performance. In addition, we compare the power and perfor-
mance impact of using this buffer to more traditional techniques
for reducing cache conflicts such as increasing cache size and/or
associativity.



2 Experimental Setup
This section presents our experimental environment. First, the CPU
simulator will be briefly introduced and then we will describe how
we obtained data about the energy consumption of the caches. Fi-
nally we will describe each architectural design we considered in
our analysis.

2.1 Full Model Simulator
We use an extension of theSimpleScalar[1] tool suite. Sim-
pleScalar is an execution-driven simulator that uses binaries com-
piled to a MIPS-like target. SimpleScalar can accurately model
a high-performance, dynamically-scheduled, multi-issue proces-
sor. We use an extended version of the simulator that more
accurately models all the memory hierarchy, implementing non-
blocking caches and complete bus bandwidth and contention mod-
eling [2]. Other modifications were added to handle precise model-
ing of cache fills.

Tables 1, 2, and 3 show the configuration of the processor mod-
eled. Note that first level caches are on-chip, while the unified sec-
ond level cache is off-chip. In addition we have a 16-entry buffer
associated with each first level cache; this buffer was implemented
as a fully associative cache with LRU replacement. Note that we
chose a 8K first level cache configuration in order to obtain a rea-
sonable hit/miss rate from our benchmarks since they were origi-
nally developed for smaller memory subsystem configurations than
those currently available [13]. In Tables 2 and 3 note that some
types of resource units (e.g., the FP Mult/Div/Sqrt unit) may have
different latency and occupancy values depending on the type of
operation being performed by the unit.

Our simulations are executed on SPECint95 benchmarks; they
were compiled using a re-targeted version of the GNUgcc com-
piler, with full optimization. This compiler generates 64 bit-wide
instructions, but only 32 bits are used, leaving the others for fu-
ture implementations; in order to model a typical actual machine,
we convert these instructions to 32 bits before executing the code.
Since one of our architectures was intended by the authors for float-
ing point applications [9], we also ran a subset of SPECfp95 in this
case. Since we are executing a full model on a very detailed sim-
ulator, the benchmarks take several hours to complete; due to time
constraints we feed the simulator with a small set of inputs. How-
ever we execute all programs entirely (from 80M instructions in
compressto 550M instructions ingo).

2.2 Power Model
Energy dissipation in CMOS technology circuits is mainly due to
charging and discharging gate capacitances; on every transition we
dissipateEt =

1

2
� Ceq � V 2

dd Watts. To obtain the values for the
equivalent capacitances,Ceq, for the components in the memory
subsystem, we follow the model given by Wilton and Jouppi [12].
Their model assumes a 0.8�m process; if a different process is
used, only the transistor capacitances need to be recomputed. To
obtain the number of transitions that occur on each transistor, we
refer to Kamble and Ghose [6], adapting their work to our overall
architecture.

An m-way set associative cache consists of three main parts: a
data array, a tag array and the necessary control logic. The data

Table 1: Machine configuration parameters.

Parameter Configuration
L1 Icache 8KB direct; 32B line; 1 cycle latency
L1 Dcache 8KB direct; 32B line; 1 cycle latency
L2 Unified Cache 256KB 4-way; 64B line; 12 cycle latency
Memory 64 bit-wide; 20 cycles latency on page hit,

40 cycles on page miss
Branch Pred. (MCFarling) 2k gshare + 2k bimodal + 2k meta
BTB 1024 entry 4-way set assoc.
Return Addr. Stack 32 entry queue
ITLB 32 entry fully assoc.
DTLB 64 entry fully assoc.

Table 2: Processor resources.

Parameter Units
Fetch/Issue/Commit Width 4
Integer ALU 3
Integer Mult/Div 1
FP ALU 2
FP Mult/Div/Sqrt 1
DL1 Read Ports 2
DL1 Write Ports 1
Instruction Window Entries 64
Load/Store Queue Entries 16
Fetch Queue 16
Minimum Misprediction Latency 6

Table 3: Latency and occupancy of each resource.

Resource Latency Occupancy
Integer ALU 1 1
Integer Mult 3 1
Integer Div 20 19
FP ALU 2 1
FP Mult 4 1
FP Div 12 12
FP Sqrt 24 24
Memory Ports 1 1

array consists ofS rows containingm lines. Each line containsL
bytes of data and a tagT which is used to uniquely identify the
data. Upon receiving a data request, the address is divided into
three parts. The first part indexes one row in the cache, the second
selects the bytes or words desired, and the last is compared to the
entry in the tag to detect a hit or a miss. On a hit, the processor
accesses the data from the first level cache. On a miss, we use
a write-back, write-allocate policy. The latency of the access is
directly proportional to the capacitance driven and to the length of
bit and word lines. In order to maximize speed we kept the arrays
as square as possible by splitting the data and tag array vertically
and/or horizontally. Sub-arrays can also be folded. We used the tool
CACTI [12] to compute sub-arraying parameters for all our caches.

According to [6] we consider the main sources of power to be
the following three components:Ebit, Eword , Eoutput . We are not
considering the energy dissipated in the address decoders, since we
found this value to be negligible compared to the other components.
Similar to Kin [7], we found that the energy consumption of the



Table 4:Baseline results:Number of cycles, accesses and energy consumption in the base case. Energy is given in Joules
.

DL1 Cache IL1 Cache UL2 Cache
Test Cycles Accesses Eng. (Joules) Accesses Eng. (Joules) Accesses Eng. (Joules)

compress 70 538 278 27 736 186 0.092 66 095 704 0.207 3 134 116 0.402
go 826 111 517 169 860 620 0.612 430 587 086 1.499 60 055 380 6.819
vortex 250 942 324 93 470 624 0.284 108 663 648 0.375 15 336 216 1.796
gcc 392 296 667 103 457 950 0.317 176 609 209 0.618 22 959 880 2.652
li 134 701 535 74 445 274 0.232 140 347 169 0.446 5 856 655 0.652
ijpeg 139 376 153 73 358 576 0.214 135 804 661 0.437 3 906 431 0.451
m88ksim 659 451 084 130 319 219 0.369 241 836 872 0.882 34 953 990 3.980
perl 372 034 266 90 388 059 0.293 148 817 944 0.531 24 532 245 2.794

decoders is about three orders of magnitude smaller than that of the
other components. The energy consumption is computed as:

Ecache = Ebit +Eword +Eoutput (1)

A brief description of each of these components follows.

Energy Dissipated in Bit-Lines: Ebit is the energy consump-
tion in the bit-lines; it is due to precharging lines (including driving
the precharge logic) and reading or writing data. We assume the bit-
lines are precharged to an intermediate voltage value,1

2
Vdd. Since

we also assume a sub-arrayed cache, we need to precharge and dis-
charge only the portion directly related with the address we need to
read/write.

Note that in order to minimize the power overhead introduced
by buffers, in the fully associative configuration, we perform first
a tag look-up and access the data array only on a hit. If timing
constraints make this approach not feasible, direct mapped buffers
should be considered.

Energy Dissipated in Word-Lines: Eword is the energy con-
sumption due to assertion of word-lines; once the bit-lines are all
precharged we select one row, performing the read/write to the de-
sired data.

Energy Dissipated Driving External Buses: Eoutput is the
energy used to drive external buses; this component includes both
the data sent/returned and the address sent to the lower level mem-
ory on a miss request.

3 Experimental Results
The following section describes in detail the various caching strate-
gies we considered and evaluates their effectiveness in terms of per-
formance and energy consumption for several SPEC95 benchmark
experiments. All experiments were compared against the base case
which will be described first.

Base Case: As stated previously, our base case uses 8K direct
mapped on-chip first level caches (i.e. DL1 for data and IL1 for
instruction), with a unified 256K 4-way off-chip second level cache
(UL2). Table 4 shows the execution time measured in cycles and,

for each cache, the number of accesses and the energy consumption
(measured in Joules). The next sections' results will show percent-
age decreases over the base case; thus positive numbers will mean
an improvement in power or performances and negative numbers
will mean a worsening in power/performance. Note that we are
measuring energy for the caches only and that energy consumption
refers to thememory subsystemonly and not the energy consump-
tion of the entire microprocessor or board.

First level caches are on-chip, so their energy consumption refers
to the CPU level, while the off-chip second level cache energy
refers to the board level. In the following sections we show what
happens to the energy in the overall cache architecture (L1 plus L2),
and also clarify whether variations in power belong to the CPU or
to the board. As shown in Table 4 the dominant portion of energy
consumption is due to the UL2, because of its bigger size and high
capacitance board buses. Furthermore we see that the instruction
cache demands more power than the data cache, due to a higher
number of accesses.

Traditional Techniques: We first considered applying tradi-
tional approaches to reducing cache misses in order to improve
energy consumption. Traditional approaches for reducing cache
misses utilize biggercache sizes and/or increased associativity.

Table 5 presents results obtained by increasing the instruction
cache size and/or associativity. Consider first columns 2–7 where
we present results for 8K 2-way and 16K direct mapped configura-
tions, both with a 1 cycle latency. Reduction in cycles, energy in
IL1 and total energy are shown. The overall energy consumption
(i.e. Total Energy) is generally reduced, due to a reduced activity
in the second level cache (since we decrease the IL1 miss rate).
However we can also see cases (e.g.compressandijpeg) in which
we have an increase in energy. This increase occurs since these
benchmarks already present a low miss rate in the base case; in-
creasing associativity or size will increase L1 energy consumption
more than it will decrease energy consumption in the total memory
subsystem. Note also that even if the total energy improves, we
show that the on-chip power increases significantly (up to 23% in
the case ofvortex) as the cache becomes bigger.

Increasing the size or associativity of the cache is often not pos-
sible without also increasing the cycle latency. Unfortunately, this
can cause an overall decrease in processor performance even if the
cache miss rate goes down This was shown in the Alpha 21264 mi-
croprocessor where processor performance decreased by about 4%



Table 5: Increasing instruction cache size/associativity:Percent improvement in performance and power compared to the
base case. Note that columns 2–7 assume a 1 cycle lookup while columns associated with8K-2way-2cyclesassumes a 2 cycle
lookup.

Test 8K-2way-1cycle 16K-direct-1cycle
%Cycles %IL1 Eng. %Tot. Eng. %Cycles %IL1 Eng. %Tot. Eng.

compress 0.241 -18.393 -5.260 0.342 -20.311 -5.665
go 13.145 -20.593 8.978 21.172 -22.612 15.900
vortex 8.296 -22.117 6.136 21.141 -23.216 18.074
gcc 5.077 -18.946 2.079 19.287 -20.044 15.438
li 7.200 -18.776 1.582 2.466 -20.108 -5.062
ijpeg 4.759 -18.024 -2.283 4.409 -19.882 -3.286
m88ksim 16.096 -17.237 12.893 27.325 -15.530 24.727
perl 11.131 -18.834 7.854 19.099 -20.270 14.983

Table 6:Victim cache fully associative:Percent improvement in performance and power compared to the base case.

Swapping Non Swapping
Test Data Only Inst. Only Data & Inst. Data Only Inst. Only Data & Inst.

%Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng.

compress 2.302 6.786 -0.440 -1.511 2.829 5.974 2.913 6.981 -0.439 -1.496 2.774 5.654
go 3.330 10.980 4.398 3.476 7.836 14.494 4.216 12.889 6.500 4.597 10.917 17.999
vortex 3.037 12.008 5.201 4.804 7.429 12.989 3.426 12.336 5.630 4.855 9.749 17.737
gcc 1.722 6.983 3.008 2.536 4.609 8.964 2.108 7.414 4.300 3.370 6.691 11.266
li 2.880 6.616 3.058 2.040 6.258 9.108 3.818 8.961 6.105 4.900 10.689 15.004
ijpeg 4.411 11.039 1.605 -0.715 5.924 11.440 4.859 10.582 2.661 -0.242 7.543 12.158
m88ksim 0.355 3.062 9.799 9.392 10.219 12.512 0.607 4.412 21.071 18.136 21.854 23.116
perl 0.899 4.485 5.591 5.063 6.750 9.781 1.692 5.420 7.581 5.637 8.496 11.364

when going to a 2-cycle pipelined cache configuration [3].
Since simply increasing cache size or associativity may have a

detrimental effect on power and/or energy consumption, we next
considered the idea of adding small buffers to hold additional L1
data (see Figure 1). These buffers effectively prevent the L1 cache
from replacing blocks of data that will be referenced later (and
thereby reduces the cache miss rate.)

Victim Cache: The first use of buffers we considered was mod-
eled after the idea of avictim cacheoriginally presented by Jouppi
in [5], but with minor changes. The author presented the following
algorithm. On a main cache miss, the victim cache is accessed; if
the address hits the victim cache, the data is returned to the CPU
and at the same time it is promoted to the main cache; the replaced
line in the main cache is moved to the victim cache, therefore per-
forming a “swap”. If the victim cache also misses, an L2 access
is performed; the incoming data will fill the main cache, and the
replaced line will be moved to the victim cache. The replaced entry
in the victim cache is discarded and, if dirty, written back to the
second level cache.

We first made a change in the algorithm, performing a parallel
look-up in the main and victim cache, as we saw that this helps per-
formance without significant drawbacks on power. We refer to this
algorithm asvictim cache swapping, since swapping is performed
on a victim cache hit.

We found that the time required by the processor to perform the
swapping, due to a victim hit, was detrimental to performance, so
we also tried a variation on the algorithm that does not require

swapping (i.e. on a victim cache hit, the line is not promoted to
the main cache). We refer to it asvictim cache non-swapping.

Table 6 shows effects using a fully associativevictim cache.
They refer to theswappingand non swappingmechanisms. We
present cycles and overall energy reduction for three different
schemes; they use a buffer associated with theData cache, theIn-
structioncache, or both of them. We observed that the combined
use of buffers for both caches offers a roughly additive improve-
ment over the single cache case. This result generally applies to all
uses of buffers we tried. As stated before, we show that thenon
swappingmechanism generally outperforms the original algorithm
presented by the author. In [5], the data cache of a single issue
processor was considered, where a memory access occurs approxi-
mately one out of four cycles; thus the victim cache had ample time
to perform the necessary swapping. The same cannot be said of a
4-way issue processor that has, on average, one data memory ac-
cess per cycle. In this case the advantages obtained by swapping
are often outweighed by the extra latency introduced.

Buffers need not be used only for holding “evicted” data. In-
stead, specific data or instructions may be sorted out and placed in
the buffer before it has the opportunity of being written to the L1
cache. We next present three different sorting schemes that can be
used with these buffers and evaluate their effective on performance
and energy consumption.

Non-Temporal Buffer: We next evaluated the energy and per-
formance benefits of using anon-temporalbuffer as introduced by
Rivers and Davidson [9]. In their work on data caches, the au-



Table 7:Speculative buffer: Percent improvement in performance and power compared to the base case.

Test Data Only Inst. Only Data & Inst.
%Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng.

compress 1.902 5.366 -0.197 -1.271 2.401 4.786
go 3.410 10.758 6.277 4.489 9.839 15.408
vortex 2.389 7.753 5.781 5.088 7.995 12.838
gcc 1.511 5.271 4.521 3.591 6.154 9.128
li 2.438 4.992 5.943 5.662 8.748 10.839
ijpeg 3.328 8.009 1.399 -0.724 4.582 7.380
m88ksim 0.292 2.203 22.883 21.650 23.127 24.469
perl 0.656 3.245 6.599 5.646 7.379 9.147

thors observed that in numerical applications data accesses may be
divided in two categories:scalaraccessesthat presenttemporalbe-
havior, i.e. are accessed more than once during their lifetime in the
cache, andvectoraccesses that presentnon-temporalbehavior, i.e.
once accessed are no longer referenced [9]. This is true, since vec-
tors are generally accessed sequentially and often their working-set
is bigger than the cache itself, so that when they need to be refer-
enced again, they no longer reside in the cache. The idea is to use a
special buffer to contain the non-temporal data and reduce conflicts
in the main cache. They presented a history based algorithm that
tags each line with a temporal/non-temporal bit; this information
is also saved in the second level cache, requiring additionally write
backs for replaced clean blocks.

Since this algorithm was intended for numerical applications we
added a subset of SPECfp95 to this set of runs. Results show this
technique not to be effective for integer programs; performance
generally is worse by 3%–20%, while power increases by 7%–58%.
We also observed that only specific numeric applications benefit
from this algorithm; for exampleswim improves 6.8% in perfor-
mance and 46% in overall energy consumption, but others such as
hydro2dwere 7% worse in energy consumption and 1% worse in
performance.

The main reason of these negative results is due to an increased
write back activity to the second level cache required by the algo-
rithm that saves in the L2 the temporal/non-temporal information.
Given a shorter latency L2 cache (e.g. on-chip L2 design), this al-
gorithm might present better overall results.

Speculative Buffer: Using branch prediction, microprocessors
may allow a program to execute “speculatively” down a particular
branch direction before the outcome of the branch is known. Even
with branch prediction accuracies over 90%, many instructions are
executed unnecessarily from the wrong path. One side effect of this
is that unnecessary data may be placed in the L1 cache, evicting
data that may be needed again (and thus causing a miss). As an al-
ternative use for the buffers, we considered sorting data according
to its “speculative confidence”. We use the confidence predictors
presented in Manneet al. [8] to mark every cache access with a
confidence level obtained by examining the processor speculation
state and the current branch prediction estimate. We use the main
cache to accommodate misses that are most likely on the correct
path (high confidence) and thespeculative bufferfor misses that
have a high probability to be from a mis-speculated path (low con-
fidence). This idea originates from a study in which the authors

found that line fills coming from mis-speculated path misses have a
lower probability of being furtheraccessed.

Table 7 presents results using a fully associativespeculative
buffer. Compared to thevictim cachescheme, thespeculative buffer
gave mixed results. When used in conjunction with the instruction
cache, thespeculative bufferprovided a clear advantage in terms of
both energy and performance compared with avictim cacheimple-
mented with swapping. When used with a data cache, the advantage
is not so apparent. Furthermore, using avictim cachewithout swap-
ping gives overall better results compared to the speculative buffer
for both instruction and data.

We also tried a variation on this algorithm deciding randomly
whether to put an incoming fill either in the main cache or in the
buffer. We tried, among other cases, to put randomly 10% or 20%
of the fills in the buffer. It is interesting to note that therandom
case presents, on average, good results. This demonstrates that sim-
ply adding “associativity” to the main cache, suffices in eliminat-
ing most of the contention misses. This may also suggest that our
benchmarks are not ideal candidates forspeculative sortingthough
there may exist applications that would benefit in particular from a
speculative buffer.

Whether using the buffers as avictim or speculative buffer, it is
important to note that using these buffers not only reduces energy
consumption in the overall cache memory system, but it does so
without significantly increasing on-chip energy consumption. For
instance, for the results listed in Table 7 we found that the on-chip
energy consumption in the data portion increases on average only
by 0.7%, and in the instruction portion by 2.8% (these number are
not shown in the table). Even more, for some programs likegowe
reduce the on-chip data cache portion up to 8%. This is in contrast
to results shown in Table 5 where on-chip power increased by as
much as 23%.

Penalty Buffer: We observed that, as opposed to data cache be-
havior, there is not a fixed correlation between variations in instruc-
tion cache miss-rate and performance gain. This is due to the fact
that some misses are more critical than others; fetch latency often
may be hidden by the Fetch/Dispatch queue as well as the Instruc-
tion Window (Resources Reservation Unit — RUU in SimpleScalar
terminology) making some instruction misses non-critical. That is,
a full queue implies the processor may have a choice of instructions
to execute next whereas an empty queue would imply few (if any)
choices. Since misses sometimes present a burst behavior, these
hardware structures can remain empty and all latency is detrimen-



Table 8: Penalty buffer: Percent improvement in perfor-
mance and power compared to the base case. Note that the
penalty bufferwas used with the instruction cache only.

Test Dispatch, Th=10 RUU, Th=28
%Cycles %Energy %Cycles %Energy

compress 0.016 -1.037 0.076 -1.224
go 6.018 4.259 6.371 4.599
vortex 6.518 5.403 6.292 4.282
gcc 4.764 3.944 4.692 3.878
li 6.249 5.696 6.352 5.881
ijpeg 2.952 1.067 2.214 -0.940
m88ksim 18.400 17.174 24.551 23.140
perl 7.048 5.946 6.558 5.291

tal for performance.
The final caching strategy we considered is sorting misses on a

“penalty” basis; we monitor the state (i.e. number of valid entries)
of the Dispatch Queue and RUU upon a cache miss and we mark
them ascritical (Dispatch Queue or RUU with few valid entries) or
non-critical (Dispatch Queue or RUU with many valid entries). We
placenon-critical instruction misses in thepenalty bufferandcriti-
cal ones in the main cache. In this way we preserve the instructions
contained in the main cache that are presumed to be more critical.

We tried two different schemes in deciding when to bypass the
main cache and place fills instead in the penalty buffer. In the
first scheme we compared the number of Dispatch Queue or RUU
valid entries to a fixed threshold. In the second scheme, we used a
history-based method that saves in the main cache the state of the
hardware resources at the moment of the fill (e.g. how many valid
instructions we have in the RUU). This number will be compared to
the current one at the moment of a future replacement. If the actual
miss is more critical than the past one, it will fill the main cache,
otherwise it will fill thepenaltybuffer.

Table 8 presents results using a 16-entry fully associativepenalty
buffer. Note that this scheme was applied only to the instruction
cache. Columns 2,3 show results using the Dispatch Queue with a
fixed threshold of 10 and columns 4-5 show results using the RUU
with a threshold of 28 (these threshold values provided the best
overall results). We observed some good results (in several cases
we improve over thevictim or speculative buffer), but when we
tried different threshold values or history schemes, we found great
variability in the behavior. This variability is due to the fact that in
some cases looking separately at the Dispatch Queue or the RUU
doesn' t give a precise model of the state of the pipeline, thus creat-
ing interference in thepenalty buffermechanism. Nevertheless, this
scheme produces better results than thespeculative bufferscheme.
We are currently investigating a combined use of these two schemes
that may prove even better.

4 Conclusions and Future Work

In this paper we presented tradeoffs between power and perfor-
mance in cache architectures, using conventional as well as inno-
vative techniques; we showed that adding small buffers can offer
an overall energy reduction along with a performance improvement

in most cases. Using a buffer along with a first-level data cache
can improve performance by up to 4% and energy consumption by
13%. Using a buffer along with the first-level instruction cache has
been shown to improve performance by up to 25% and energy con-
sumption by 23%. Including buffers for both data and instruction
caches tend to have an additive effect. It is also important to note
that using small buffers suffice in reducing the overall cache energy
consumption, without a notable increase in on-chip power that tra-
ditional techniques present. Furthermore use of a buffer is not mu-
tually exclusive to increasing the cache size/associativity, offering
the possibility of a combined effect. We are currently investigating
further improvements in combined techniques as well as replace-
ment policies. In the results we showed LRU policy was adopted;
we are now studying policies that may be more favorable for reduc-
ing energy consumption.

Acknowledgments
We wish to thank Doug Burger for providing us with the framework
for the SimpleScalar memory model.

References
[1] D. Burger, and T. M. Austin, “The SimpleScalar Tool Set, Version

2.0,” Technical Report TR#1342, University of Wisconsin, June 1997.

[2] D. Burger, and T. M. Austin, “SimpleScalar Tutorial ,” presented at
30th International Symposium on Microarchitecture, Research Trian-
gle Park, NC, December, 1997.

[3] L. Gwennap, “Digital 21264 Sets New Stan-
dard,” Microprocessor Report, October, 1996.
http://www.digital.com/semiconductor/microrep/digital2.htm

[4] T. L. Johnson, and W. W. Hwu, “Run-time Adaptive Cache Hierarchy
Management via Reference Analysis,”ISCA-97: ACM/IEEE Interna-
tional Symposium on Computer Architecture, pp. 315–326, Denver,
CO, June 1997.

[5] N. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA-17: ACM/IEEE International Symposium on Computer Archi-
tecture, pp. 364–373, May 1990.

[6] M. B. Kamble and K. Ghose, “Analytical Energy Dissipation Mod-
els for Low Power Caches,”ACM/IEEE International Symposium on
Low-Power Electronics and Design, August, 1997.

[7] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The Filter Cache:
An Energy Efficient Memory Structure,”MICRO-97: ACM/IEEE In-
ternational Symposium on Microarchitecture, pp. 184–193, Research
Triangle Park, NC, December 1997.

[8] S. Manne, D. Grunwald, A. Klauser, “Pipeline Gating: Speculation
Control for Energy Reduction,” to appear inISCA-25: ACM/IEEE In-
ternational Symposium on Computer Architecture, June 1998.

[9] J. A. Rivers, and E. S. Davidson, “Reducing Conflicts in Direct-
Mapped Caches with a Temporality-Based Design,”International
Conference on Parallel Processing, pp. 154-163, August 1996.

[10] C. Su, and A. Despain, “Cache Design Tradeoffs for Power and Per-
formance Optimization: A Case Study,”ACM/IEEE International
Symposium on Low-Power Design, pp. 63–68, Dana Point, CA, 1995.

[11] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “Managing
Data Caches using Selective Cache Line Replacement,”Journal of
Parallel Programming, Vol. 25, No. 3, pp. 213–242, June 1997.

[12] S. J. E. Wilton, and N. Jouppi, “An Enhanced Access and Cycle Time
Model for On-Chip Caches,” Digital WRL Research Report 93/5, July
1994.

[13] Jeffrey Gee, Mark Hill, Dinoisions Pnevmatikatos, Alan J. Smith,
“Cache Performance of the SPEC Benchmark Suite,” IEEE Micro,
Vol. 13, Number 4, pp. 17-27 (August 1993)


