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Power and pitfalls of computational 
methods for inferring clone 
phylogenies and mutation orders 
from bulk sequencing data
Sayaka Miura1,2, Tracy Vu1,2, Jiamin Deng1,2, Tiffany Buturla1,2, Olumide Oladeinde1,2, 
Jiyeong Choi1,2 & Sudhir Kumar1,2,3*

Tumors harbor extensive genetic heterogeneity in the form of distinct clone genotypes that arise 

over time and across different tissues and regions in cancer. Many computational methods produce 
clone phylogenies from population bulk sequencing data collected from multiple tumor samples 

from a patient. These clone phylogenies are used to infer mutation order and clone origins during 
tumor progression, rendering the selection of the appropriate clonal deconvolution method critical. 
Surprisingly, absolute and relative accuracies of these methods in correctly inferring clone phylogenies 
are yet to consistently assessed. Therefore, we evaluated the performance of seven computational 
methods. The accuracy of the reconstructed mutation order and inferred clone groupings varied 
extensively among methods. All the tested methods showed limited ability to identify ancestral clone 
sequences present in tumor samples correctly. The presence of copy number alterations, the occurrence 
of multiple seeding events among tumor sites during metastatic tumor evolution, and extensive 
intermixture of cancer cells among tumors hindered the detection of clones and the inference of clone 

phylogenies for all methods tested. Overall, CloneFinder, MACHINA, and LICHeE showed the highest 
overall accuracy, but none of the methods performed well for all simulated datasets. So, we present 
guidelines for selecting methods for data analysis.

Somatic mutations play a crucial role in cancer progression1–3. Early models proposed that clones with driver 
mutations sweep through the population, which is the linear progression model of clone evolution4. Now, it is 
clear that tumors are not monoclonal and that the clonal evolution generally follows a branching model (i.e., 
incomplete clonal sweep) even within a tumor4–10. Similarly, clonal evolution in metastatic tumors follows a 
branching pattern11,12. �e evolutionary relationship of clones found in primary and metastatic tumors is repre-
sented by patient-speci�c phylogenies13–16 (e.g., Fig. 1g,h). �e reconstruction and analysis of such clone phylog-
enies have become standard practices in cancer genomics16–26.

At present, clone phylogenies are most o�en inferred using bulk sequencing data16,27–30. Bulk sequencing of 
tumor samples is cost-e�ective and can accurately identify single nucleotide variants (SNVs)31,32. �e resulting 
data consists of SNV frequencies of cancer cell populations within each tumor sample27,33. Several computational 
methods have been developed to infer individual clone genotypes from SNV pro�les and to predict clone phy-
logenies13,34–39. �ese clone genotypes and phylogenies are then employed to infer relative ordering of somatic 
mutations and to build migration maps of metastatic tumors40,41.

Computational methods for clone prediction and phylogeny inference are operationally di�erent from each 
other (Table 1). Cloe is a Bayesian method that employs a phylogenetic latent feature model in which clone geno-
types are directly inferred by analyzing similarities of observed SNV frequencies39. PhyloWGS, another Bayesian 
method, clusters together SNVs at similar frequencies and then orders them to infer clone genotypes and phy-
logeny37. Metastatic And Clonal History INtegrative Analysis (MACHINA) method follows a process similar to 
PhyloWGS but incorporates a multi-objective optimization algorithm to jointly infer clone genotypes and a history  
of cancer cell migration among tumor sites (seeding events) a�er clustering observed SNV frequencies13. �e 
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Lineage Inference for Cancer Heterogeneity and Evolution (LICHeE) approach generates SNV clusters de�ned 
by the pattern of presence and absence of SNVs among tumor samples while considering SNV frequencies34. 
CloneFinder is a molecular phylogenetic approach that uses presence and absence of SNVs among tumor samples 
to reconstruct ancestral clones and decompose hybrid clone genotypes in inferring clone genotypes35. Treeomics 
�rst computes reliability scores for observed SNV and uses only those with high-reliability scores to construct 
tumor genotypes36. �en, it analyzes con�icting mutation patterns in candidate phylogenies of tumor samples and 
resolves these evolutionarily incompatible patterns in the process of transforming tumor genotypes (presence/
absence of mutations) into clone genotypes36. MixedPerfectPhylogeny (MixPhy) analyzes only tumor genotypes, 

Figure 1. Simulated clone phylogenies and tumor composition. (a,b) Phylogeny and frequencies of seven 
clones in seven tumor samples (T1-T7) derived from EV005 tree (G7 datasets)43. (c,d) Phylogeny and clone 
frequencies of twelve clones and eleven tumor samples (T1-T11) derived from RK26 tree (G12 datasets)43. (e,f) 
One of thirty phylogenies and its tumor composition from P10 datasets35. (g,h) One example of MA datasets 
(out of the 60) with primary (PSec. 1 and PSec. 2) and metastatic tumors (M1–M5)13. Note that tumor purities 
are 100% for all the samples.
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ignoring SNV frequencies by using a heuristic algorithm based on co-comparability graphs38. It addresses the 
minimum con�ict-free row split problem, where row is tumor genotypes, and observed tumor genotypes are 
split into clone genotypes. Ultimately, all of these methods deconvolute individual clones from population bulk 
sequencing of multiple tumor samples acquired over time and/or di�erent locations in a patient.

Surprisingly, absolute and relative accuracies of clone phylogenies produced by these computational meth-
ods have not been assessed using the same collection of datasets, i.e., their performances are yet to be bench-
marked. Such benchmarking is critical because of the biological relevance of the downstream inferences derived 
by using the results produced by these methods. For example, the accuracies of the order of driver mutations 
and the interrelationship of clones depend on the performance of current methods in accurately deconvoluting 
individual clone genotypes and reconstructing evolutionary events13,34,36. Accurate clone phylogenies are also 
critical for inferring migration paths. No previous study has evaluated the relative accuracy of clone phylogenies, 
because their focus has been on introducing and assessing the strengths of the new clone prediction method pro-
posed13,34–39. Besides, the robustness of these computational methods to the complexity of clonal structures and 
evolutionary histories from di�erent tumor sites is mostly unknown.

�erefore, we evaluated the accuracy of clone phylogenies produced by seven methods to predict clone geno-
types from bulk sequencing data. We simulated a large number of bulk sequencing datasets under various tumor 
evolutionary scenarios. Simulated datasets included small and large numbers of persistent ancestral clones as well 
as metastatic tumors that arose from polyclonal seeding events. Our assessments are based on simulation studies 
because correct phylogenies are known and because computer simulations have emerged as a standard approach 
for evaluating the performance of statistical methods in cancer genomics34,35,37,42. We evaluated the quality of 
inferred clone phylogenies by using four di�erent measures, including measures that score the correctness of the 
order of mutations and those that score the accuracy of the branching order in the reconstructed clone phyloge-
nies. As a result, we have identi�ed limitations of each method and proposed guidelines for researchers to select 
the most appropriate methods for their data. We have also developed a pipeline (ClonePhyTester; https://github.
com/SayakaMiura/ClonePhyTester) that will be useful to test new clone prediction methods by using the perfor-
mance metrics and simulated data employed in this study.

Results
We analyzed 330 simulated datasets of tumor bulk sequencing data in which the number of tumor samples ranged 
from 6 to 11. Tumors and clone sequences were simulated with distinct models of branching evolution (G7, G12, 
and P10), migrations (MA), and tumor growth (TG). Model clone phylogenies simulated are shown in Fig. 1 for 
G7 and G12 datasets, and Fig. 3 in ref. 35, Supplementary Figs. S1 and S2 for P10, MA, and TG datasets. �ese 
simulated clone phylogenies were modeled a�er those reported in the empirical data analysis35,43 (G7 and G12 
datasets) or were randomly generated by simulating the birth and death processes of cell lineages (P10, MA, and 
TG datasets). More details of these simulated datasets are included in the Methods section. We inferred clone 
phylogenies for each simulated dataset by using seven di�erent methods (Table 1). We used multiple metrics to 
assess the accuracy, including measures that score the correctness of the order of mutations and the branching 
order within the reconstructed clone phylogenies.

Accuracy of ordering mutations. A clone phylogeny can be viewed as a mutational tree44 in which all 
the mutations are mapped along branches (e.g., Fig. 2). At �rst, we evaluated the accuracy of the predicted order 
of mutations by using the MLTED score; a smaller score shows greater similarity between the true and inferred 

CloneFinder MACHINA TreeOmics LICHeE MixPhy PhyloWGS Cloe

Algorithm

SNV frequency analysis Yes Yes (clustering)
Yes (�ltering 
SNVs)

Yes (clustering) No Yes (clustering) Yes

Binary SNV* analysis Yes No Yes Yes (clustering) Yes No No

Analysis of evolutionary 
relationship of tumor sites

Yes (pattern of 
binary SNV)

Yes (migration 
of cells)

Yes (pattern of 
binary SNV)

Yes (pattern of 
binary SNV)

No No No

Feature

Inclusion of SNVs a�ected 
by CNAs

No No No No No
Yes (CNA loci 
information required)

Yes

One solution Yes No Yes Yes Yes No Yes

Accuracy

MLTED** 3.80 3.08 4.22 4.23 5.69 6.36 NA***

TreeVec** 0.14 0.13 0.14 0.16 0.28 0.32 NA***

RF** 0.26 0.25 0.40 0.28 0.55 0.47 NA***

Computation time**** <1 min 2 min**** <1 min  < 1 min  < 1 min 8 hours 8 min****

Table 1. Summary of clone prediction methods. *Presence or absence of SNV in a tumor sample. **Average 
across all datasets (G7, G12, P10, and MA). Smaller values are better. ***Cloe did not converge for MA datasets. 
****A G7 dataset was used. Computational time of MACHINA depends on the number of solutions produced. 
For this dataset, it produced small number of solutions (4 solutions). �e computational time of Cloe depends 
on the number of iterations used. For this dataset, a small number of iterations (10,000) was su�cient for the 
convergence.
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mutational tree (see the Methods section for details). We begin with results for G7 and G12 datasets that were 
modeled a�er the predicted evolutionary histories of two patients (EV005 and RK26, respectively) (Fig. 1a–d)35,43. 
Each tumor sample may contain one or a few evolutionarily closely-related clones, assuming a localized genetic 
heterogeneity4,6. �at is, the migration of cancer cells to another section of a tumor was assumed to be rare. In 
total, we obtained 60 simulated datasets (replicates) with 34–89 SNVs per dataset. G7 datasets contained seven 
tumor samples with seven clones per dataset, while G12 datasets contained eleven samples with twelve clones.

For the G7 datasets, all seven methods showed relatively small MLTED scores (Fig. 3). Cloe produced much 
lower MLTED scores than the other techniques for G7 datasets. However, it did not perform well for bigger 
datasets (G12 datasets). Overall, CloneFinder, MACHINA, Treeomics, and LICHeE outperformed PhyloWGS, 
MixPhy, and Cloe (Fig. 3). �e four best-performing methods consider the evolutionary relationship of tumor 
samples in making clone predictions (Table 1). �ese results suggest that the clone prediction methods perform 
much better when the clone and tumor evolution are coupled and data from many tumor samples are available.

We next examined P10 and MA datasets in which the clonal structures of tumors were more complicated 
than that in G7 and G12 datasets. In P10 datasets, ancestral clones were present alongside their descendants in 
tumor samples (Fig. 1e,f). Similar to G7 datasets, MLTED scores of P10 datasets were relatively small for all the 
methods, but the performance of MixPhy, PhyloWGS, and Cloe was considerably worse than others and showed 
a large di�erence among datasets (Fig. 3). Notably, these three methods do not consider evolutionary relationship 
of tumor samples directly during their inference procedures (Table 1).

�e MA datasets were generated by simulating the evolution of primary and metastatic tumors such that 
more than one founding (seeding) clone migrated from another tumor site(s), which made the clonal structure of 
metastatic tumors of some datasets more complex (e.g., Fig. 1g,h). For the MA datasets, MLTED scores of all the 
methods were generally worse (higher) than the other datasets, and MLTED scores varied extensively among the 
datasets (Fig. 3). Cloe failed to converge even a�er many days of computations, resulting in a lack of performance 
values for MA datasets with many clones (see Methods for the detail). MixPhy and PhyloWGS showed slightly 
worse performance, and MACHINA showed marginally better performance than the other methods. MACHINA 
is intended for the analysis of primary and metastatic tumors, so it is best suited for MA datasets.

Accuracy of predicting branching patterns (topology of clone phylogeny). We next evaluated the 
accuracy of inferred branching patterns by computing TreeVec and RF distances (see the Methods section for 
details). �ese distances measure errors of clone groupings in inferred phylogenies. �e results were consistent 
with those from the analysis of MLTED scores (Fig. 3). For example, in the case of G7 datasets, all the meth-
ods generally showed relatively small TreeVec and RF as compared to the other datasets. Indeed, the topologies 
of reconstructed clone phylogenies were quite similar to the correct phylogeny for these data (Supplementary 
Fig. S3).

Accuracy in detecting concurrent, sequential, and parallel mutations. Mutational trees can also be 
used to test whether a pair of mutations have occurred concurrently, sequentially, or in parallel (Fig. 2). �erefore, 
we next evaluated error rates of ordering sequential, concurrent, and parallel mutations. We generated all possible 
pairs of SNVs (mutations) and classi�ed them into concurrent, sequential, and parallel categories. In each group, 
we computed the proportion of actual mutation pairs that were not present in the inferred tree and the percentage 
of all incorrect mutation pairs. �e average of these two proportions was used to assess the error rate of ordering 
each type of mutation (see the Methods section for details). For example, the error rate of inferring parallel muta-
tions was computed by using mutations that were classi�ed into parallel mutations.

Overall, error rates of predicted mutation orders (Table 2) showed trends consistent with the results from 
MLTED, TreeVec, and RF analysis (Fig. 3). However, we found that di�erent types of mutations showed distinct 
error trends. For G7 and G12 datasets, error rates were similar for all three mutation types, except for MixPhy 
(Table 2). MixPhy showed an excellent performance in inferring concurrent mutations for G12 datasets, but it 
performed poorly for sequential and parallel mutations (38% and 15% error rates, respectively). �is pattern 
was caused by the fact that the inferred clone phylogenies were star-like as most of the inferred clones originated 
from germline cells that did not have any somatic mutations (e.g., Supplementary Fig. S4). Lack of evolutionary 

Figure 2. A mutational tree with concurrent (e.g., C and D), sequential (e.g., A and B), and parallel (e.g., E and F) 
mutations. Dots depict mutations. Order of mutations on a branch (e.g., C and D) cannot be determined based on 
the clone phylogeny alone.
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structure in the clone phylogeny makes it impossible to detect sequential mutations that spuriously appear as 
parallel mutations.

For P10 and MA datasets, sequential and concurrent mutations were generally inferred with lower accuracy 
than the parallel mutations (Table 2). For example, the error rate of inferring parallel mutations was only 4–7% in 
CloneFinder, MACHINA, Treeomics, and LICHeE analyses for MA datasets, while the error rates for sequential 
and concurrent mutations were 11–20%. �ese patterns were observed because many undetected ancestral clones 
along with a few other recently derived undetected clones were the major errors for P10 and MA datasets, respec-
tively (see later for more detail). �ese errors would not drastically increase the error rates of parallel mutations 
but have a strong impact on sequential and concurrent mutations.

Impact of persisting ancestral clones. A unique feature of P10 datasets is the coexistence of ances-
tral clones with their descendant clones in tumors. We found that fewer than 50% of the ancestral clones were 
detected by current methods (Fig. 4). Treeomics rarely found any ancestral clone, even in datasets containing as 
many as six ancestral clones. MixPhy did not do well, either. It is likely because these two methods do not use 
SNV frequencies in clone predictions, focusing only on the presence/absence of mutations in tumors (Table 1). 
SNVs found in ancestral clones are expected to show higher SNV frequencies than their descendants, a property 
that is o�en used to identify ancestral clones. �erefore, clone prediction methods that do not use observed SNV 
frequencies (Treeomics and MixPhy) are expected to have di�culty in detecting ancestral clones.

All tested methods performed well in ordering mutations for a dataset that contained only two ancestral 
clones (Fig. 5a). However, the accuracy of ordering mutations declined when datasets contained tumors with a 
large number of ancestral clones. In general, the error rate of predicting parallel mutation did not increase signif-
icantly with an increasing number of ancestral clones, but the error rates in predicting sequential and concurrent 
mutations increased signi�cantly (Fig. 5a). As a result, the overall error rates of parallel mutations were lower than 
the sequential and concurrent mutations for P10 datasets (Table 2). �is pattern can be caused by the inability 
to detect ancestral clones, which will misclassify sequential mutations to be concurrent mutations. Indeed, the 
missing ancestral clones were the primary di�erence between the inferred and actual clone phylogenies (e.g., 
Supplementary Fig. S5). Also, overall TreeVec scores (errors in grouping clones) for P10 datasets were relatively 
small among the datasets (Fig. 3), indicating that evolutionary relationships of inferred clones were generally 
accurate.

Figure 3. Performance of seven methods measured by MLTED, TreeVec, and RF distances. MLTED scores are 
for the accuracy of inferred mutation orders, whereas TreeVec and RF measure the accuracy of inferred clone 
phylogenies (small values indicate higher accuracy). Cloe results were not computable (NC) for MA datasets, 
because the calculations did not converge.
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All tested methods showed relatively small MLTED scores as well as TreeVec and RF distances when a dataset 
contained only two ancestral clones (Fig. 5). LICHeE, MACHINA, and CloneFinder generally produced smaller 
TreeVec and RF distances for datasets with larger numbers of ancestral clones (Fig. 5b). Overall, no method pro-
duced highly accurate clone phylogenies for datasets containing a large number of ancestral clones due to limited 
ability to identify coexisting ancestral clones.

Impact of polyclonal seeding events during metastatic tumor evolution. �e analysis of MA data-
sets was used to assess the impact of polyclonal seeding of metastatic tumors on clone phylogeny and mutation 
orders. �ese datasets contained primary tumors with four or six metastatic tumors. Up to four metastatic tumors 
per dataset evolved with polyclonal seeding events, i.e., these metastatic tumors were founded by more than one 
seeding clone that came from di�erent clonal lineages (e.g., Fig. 1g,h). In our comparisons, we could not include 
Cloe because its computation failed to converge for large MA datasets (see the Methods section).

None of the tested methods was able to accurately identify a majority of clones within multiple-seeded meta-
static tumors (polyclonal metastatic tumors; Fig. 6a). MACHINA was the only method developed to incorporate 
the metastatic progression model of clone seeding events during its estimation process, and it did outperform 

Branch*

Method

CloneFinder MACHINA TreeOmics LICHeE MixPhy PhyloWGS Cloe

G7 dataset

Concurrent 2% (4%) 4% (5%) 10% (4%) 20% (11%) 10% (4%) 14% (11%) 0% (0%)

Sequential 4% (5%) 7% (5%) 5% (3%) 17% (10%) 9% (2%) 16% (12%) 2% (6%)

Parallel 3% (5%) 5% (4%) 4% (4%) 19% (17%) 9% (4%) 25% (14%) 2% (6%)

G12 dataset

Concurrent 1% (2%) 5% (3%) 12% (5%) 0% (1%) 0% (1%) 27% (7%) 14% (2%)

Sequential 1% (2%) 7% (4%) 6% (3%) 5% (1%) 38% (2%) 37% (6%) 26% (11%)

Parallel 0% (1%) 4% (2%) 4% (2%) 3% (1%) 15% (2%) 34% (12%) 10% (3%)

P10 dataset

Concurrent 11% (7%) 13% (9%) 13% (9%) 10% (7%) 11% (7%) 13% (7%) 10% (6%)

Sequential 10% (10%) 11% (10%) 11% (11%) 7% (6%) 17% (17%) 19% (13%) 14% (9%)

Parallel 3% (5%) 3% (6%) 1% (4%) 1% (2%) 6% (10%) 11% (13%) 5% (7%)

MA dataset

Concurrent 19% (7%) 13% (8%) 20% (8%) 16% (8%) 19% (7%) 21% (7%) NA

Sequential 18% (9%) 11% (7%) 18% (8%) 20% (13%) 34% (19%) 27% (12%) NA

Parallel 5% (5%) 4% (4%) 7% (5%) 5% (5%) 8% (6%) 12% (8%) NA

Average 6% 7% 9% 10% 15% 21% NA

Table 2. Average error rate of seven methods in inferring order of mutations. Standard deviation is shown 
in a aprenthesis. *We generated all possible pairs of mutations (SNVs) and tested if each pair of mutations 
were correctly ordered along mutational tree. �ere are three possible orders of mutations, (1) one mutation 
is placed at ancestral or descendant branch of the other metation (Sequential); (2) mutations are placed at 
di�erent lineages (Parallel); (3) mutations are placed at a same branch (Concurrent). We measured the accuracy 
by computing the error rate, which was the average of the proportion of correct orders not found and that of 
incorrect orders produced. Smaller values are better. Methods were sorted by the overall average across datasets 
and branche categories.

Figure 4. �e average number of ancestral clones detected per dataset for the P10 collection. We grouped P10 
datasets based on the true number of ancestral clones in a dataset. For each dataset, we counted the number 
of ancestral clones identi�ed by a clone prediction method. We then computed the average across the dataset. 
Dashed lines mark correct counts. Error bars represent single standard deviation values.
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other tested methods when datasets contained a large number of multiple-seeding events. However, even for 
MACHINA, on average, fewer than 50% of the polyclonal metastatic tumors were correctly predicted. Overall, 
the poor performance of all the methods in inferring clones resulted in higher error rates of ordering mutations 
and reconstructing clonal branching patterns (Fig. 6b,c).

Even when an MA dataset contained only one polyclonal seeding event in a metastatic tumor, we observed 
more errors in phylogenetic predictions that were mainly caused by unsuccessful inference of clones’ presence 
within that metastatic tumor. For example, Fig. 7 shows inferred clone phylogenies for an example dataset 
(Fig. 1g,h) in which a metastatic tumor (M5) experienced polyclonal seeding events such that two seeding clones 
came from two distinct clone lineages (clone lineage C/D, which contained clone C and D, and lineage M with 
clone M). All the methods, including MACHINA, identi�ed only one out of these two clone lineages (lineages 
C/D or M).

MACHINA produced two solutions (Fig. 7b,c). �e �rst solution contained only clone C, and the second 
solution provided only clone M. In these MACHINA phylogenies, each of these clones was connected with an 
erroneously long branch (Figs. 1g and 7b,c). �is is because those correct clones found within the M5 metastatic 
tumor were combined into one clone genotype in the inferred clone phylogenies. �is same type of error was 
observed in predicted clone phylogenies generated by other methods as well (Fig. 7). Apart from these errors, the 
predicted clone phylogenies were mostly similar to the true clone phylogeny, and the branching patterns were 
generally correct (Figs. 1g and 7). For this example MA dataset, MACHINA, CloneFinder, and LICHeE produced 
more accurate clone phylogenies than other methods. For instance, Treeomics, PhyloWGS, and MixPhy pro-
duced phylogenies with many fewer clones, as these methods failed to detect many ancestral and highly-similar 
clones. We found that these types of errors were more common in datasets with many polyclonal seeding events. 
For example, when a dataset was composed of four metastatic tumors with polyclonal seeding events, inferred 
clone phylogenies contained fewer clones than the true phylogeny (Supplementary Fig. S6). All methods tended 
to predict only one clonal lineage for every polyclonal metastatic tumor in this dataset. �erefore, currently avail-
able methods will tend to underestimate the numbers of polyclonal seedings of tumors.

Interestingly, MACHINA produced 870 phylogenetic solutions for this example dataset. We examined the best 
and worst solutions based on the number of SNV assignment errors per clones. �at is, the best solution had the 
smallest number of SNV assignment errors. We found that the phylogeny of the best solution looked very similar 
to the true phylogeny because it correctly identi�ed most of the clone lineages (Supplementary Fig. S6). However, 
the phylogeny of the worst solution contained a large number of errors, like some other methods. At present, in 
the real data analysis, MACHINA does not provide any way of selecting among the 870 solutions.

Figure 5. Accuracies of ordering mutations and inferring branching patterns for datasets with di�erent 
numbers of ancestral clones. P10 datasets were used and were grouped based on the true ancestral clone count 
in the dataset. Each point shows the average of tree distances across all the datasets in that bin. (a) �e average 
error rate of ordering mutations and MLTED scores. (b) RF distances and TreeVec scores.
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Error rates for ordering parallel mutations tended to be lower than that for sequential and concurrent muta-
tions, regardless of the number of tumors with polyclonal seeding events (Fig. 6c). �is resulted in lower overall 
error rates in detecting parallel mutations (Table 2). We can trace these errors to the long branches leading to tip 
M in Fig. 7, which are caused by the fact that clone M now also contains mutations of two sister clones (C and D 
in Fig. 1g). Such hybrid errors cause sequential mutation to be underestimated and concurrent mutations to be 
overestimated. Also, MA datasets tended to contain a large number of clone lineages (Fig. 1g and Supplementary 
Fig. S1). Consequently, the numbers of parallel mutation pairs in the correct phylogenies were much larger 
than sequential and concurrent mutations (Supplementary Fig. S7). �us, missing one or a few clone lineages 
in inferred clone phylogenies does not signi�cantly a�ect the error rates for identi�cation of parallel mutations 
as compared to sequential or concurrent mutations. Overall, current clone prediction methods cannot reliably 
decompose many clones within metastatic tumors that have experienced polyclonal seeding events.

Effect of the intermixture of cancer cells in tumor samples. We further tested how the intermixture 
of cancer cells between tumor sites (or between sections of a tumor) decreases the accuracy of clone phylogeny 
inferences. We generated 90 TG datasets (Supplementary Fig. S2) by simulating tumor growth with three distinct 
evolutionary scenarios that resulted in di�erent degrees of intermixture (see Methods for the detail). We further 

Figure 6. Accuracy of identifying di�erent lineage clones within a tumor for the MA datasets. (a) �e average 
count of metastatic tumors with polyclonal seeding events that were predicted. (b,c) MLTED, TreeVec, RF 
distances, and error rates of ordering mutations. We excluded Cloe because its computations failed to converge.

https://doi.org/10.1038/s41598-020-59006-2
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classi�ed these TG datasets into TG-constant, TG-step, and TG-linear datasets, in which the TG-constant data-
sets exhibited the highest degree of intermixture of cancer cells among the TG datasets because the cell division 
rate was set to be the same for all the cancer cells. In TG-linear datasets, cancer cell populations expanded linearly 
resulting in the lowest degree of intermixture, because new cancer cells are not produced where the other cancer 
cells are already present. �e model used for generating the TG-step datasets produced intermediate degree of 
intermixture of cancer cells, as the rate of cell division was constant while daughter cells were produced only 
when a cell was not all surrounded by the other cells. �ese strategies resulted in clones being widely distributed 
within a tumor for a TG-constant dataset, i.e., the same clones were found within many di�erent tumor sectors 
(samples), or many clones were found only within single sectors of a tumor for the TG-linear dataset (Fig. 8a–c).

LICHeE computation failed for >40% of the TG datasets, and it severely underestimated the number of clones 
(2–4 instead of 10 clones) for TG-constant datasets (Fig. 8d). It performed the best for TG-linear datasets, which 
is reasonable as there was less mixing of clones across samples. �e use of MACHINA generally produced >100 
solutions (even thousands of solutions for a few datasets; Supplementary Fig. S8), with no way of selecting among 
them for all the TG-constant and TG-step datasets. Since analysis of hundreds of equally plausible solutions 
in actual empirical data analysis is not practical, we considered that MACHINA failed on these datasets (see 
Methods). However, it performed well for TG-linear dataset, just as LICHeE did.

Interestingly, CloneFinder produced many more clones than other methods for TG datasets (Fig. 8d), 
even though all the clone prediction methods underestimated clone counts (Fig. 8d compared with Fig. 8a). 
Consequently, inferred clone phylogenies were much smaller than the true phylogenies, which was consistent 
with the results of MA datasets. TG-constant were the most di�cult to analyze (highest MLTED scores; Fig. 8e), 
re�ecting that degree of the intermixture of cancer cells among samples being a signi�cant determinant of the 
success (Fig. 8c). Also, mutation orders were more accurately inferred for TG-linear datasets than TG-step and 
TG-constant datasets (Fig. 8f). �erefore, these results con�rmed that the clone phylogeny inference is challeng-
ing when intermixture of cancer cells is extensive.

Impact of low sequencing depth. We also tested if the clone prediction methods were robust to sequenc-
ing depth. We examined the change in their performance when the sequencing depth was 50x, as compared 
to 200x initially simulated in the MA datasets. We selected MA datasets because a growing number of investi-
gators are performing tumor bulk sequencing to infer clone phylogenies of primary and metastatic tumors in 
patients14,22,45,46.

Figure 7. Clone phylogenies inferred by six methods, excluding Cloe for which convergence was a problem, 
on an MA dataset. True clone phylogeny is given in Fig. 1g. MACHINA produced two solutions (b,c). Inferred 
clones are annotated, and colors correspond to clones in Fig. 1g. All the methods produced either clone lineage 
M or lineage C/D, which were found in the M5 tumor (Fig. 1h). �e �rst solution of MACHINA (b) produced 
clone D, and LICHeE produced clones C and D (e). �e other methods, CloneFinder (a), Treeomics (d), 
PhyloWGS (f), and MixPhy (g) produced clone M.

https://doi.org/10.1038/s41598-020-59006-2


1 0SCIENTIFIC REPORTS |         (2020) 10:3498  | https://doi.org/10.1038/s41598-020-59006-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

We found CloneFinder, Treeomics, and MixPhy to work well for 50x datasets, and MLTED, RF, and TreeVec 
scores generally did not change significantly (Fig. 9). However, MACHINA, LICHeE, and PhyloWGS were 
a�ected considerably by sequencing depth (Fig. 9). For example, MLTED score became worse by 0.03, 0.09, and 
0.08 on average for these methods (p ≪ 0.01), while the other methods showed <0.01 change in MLTED scores. 
Computational methods that were not a�ected by low sequencing depth did not use observed SNV frequencies to 
cluster SNVs in their clone prediction, unlike those that su�ered a decline (Table 1). Observed SNV frequencies 
are less reliable when the sequencing depth is low34,36, which adversely impacts the inference of clusters of SNVs 
that are used by MACHINA, LICHeE, and PhyloWGS as primary building blocks in inferring clone phylogenies.

Impact of CNAs and LOH. �e focus of our investigation is primarily on the use of copy-neutral SNVs, 
because most of the methods cannot handle copy number alterations (CNAs; Table 1). So, except for Cloe39, 
all other methods require pre�ltering steps to exclude SNVs a�ected by CNAs (PhyloWGS requires that SNVs 
a�ected by CNAs be speci�ed; Table 1). We conducted a preliminary investigation of how the inclusion of SNVs 
a�ected by CNAs and the loss of heterozygosity (LOH) impacted various methods, especially because the identi-
�cation of CNAs is still a challenge for bulk sequencing data47–49.

Figure 8. Accuracy of inferred clone phylogenies for TG datasets (linear, step, and constant). (a) �e total 
number of clones in a dataset. (b) �e total number of clones within a tumor sector (sample). (c) �e number of 
tumor sectors that had a clone, which showed the degree of clone sharing among tumor samples. (d) �e total 
number of inferred clones for a dataset. �e number in parenthesis is the number of datasets that a method 
failed to produce a result. (e) �e average MLTED score. A smaller value is better. (f) Error rates of ordering 
mutations.
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We introduced CNAs and LOH in G7 datasets (G7-CNA), which was done because Cloe could be used for 
these datasets when copy-neutral SNVs were used for G7 (see Methods for the detail). On average, seven SNVs 
per clone were a�ected by a CNA and/or LOH. Unfortunately, Cloe did not converge for G7-CNA datasets even 
a�er many days of calculations (see also Methods). As expected, the accuracy of all the methods was relatively 
low for these data, with previously best-performing methods experienced large declines for G7-CNA datasets 
(Fig. 10). MACHINA tended to produce a larger number of solutions for G7-CNA datasets than for G7 datasets 
(9 and 6 solutions per dataset on the average). Overall, the presence of CNA and LOH has a substantial adverse 
impact on well-performing methods. More extensive benchmarking is needed in the future to better understand 
accuracy trends for available methods.

Ensemble approach. We also evaluated the performance of GraPhyC, a new method to build a consensus 
clone phylogeny from multiple clone phylogenies50, to test if an ensemble approach can improve the performance. 
GraPhyC analyzes input mutation trees and produces a consensus tree that shows the highest similarities to all 
the input trees50. In these analyses, we used MA datasets because all the methods showed the most error for these 
datasets. We selected CloneFinder, MACHINA, Treeomics, and LICHeE as input to GraPhyC because these four 
methods produced the lowest mutation distances (MLTED scores; Fig. 3). We found that the MLTED scores of 
GraPhyC consensus trees were slightly worse than the average scores of the four methods, but the consensus 
trees showed slightly better TreeVec and RF scores (Fig. 11). �e lack of extensive improvement is partly attrib-
utable to the fact that a signi�cant source of error in all the methods is their inability to detect correct clones. 
Because GraPhyC does not identify clones but instead builds consensus trees, it is expected only to improve clone 
groupings.

Empirical data analysis. �e application of these clone prediction methods to an empirical dataset (A7 
dataset from a previous study30) showed results consistent with our analyses of simulated data. �e original study 
reported that metastatic rib and lung tumors harbored clones from di�erent clonal lineages (Fig. 12a). �e lung 
tumor contained three di�erent clone lineages, indicating a complicated history of metastatic tumor evolution. 
Di�erent methods predicted clone phylogenies that showed limited similarity to the clone phylogeny reported in 
the original study (Fig. 12b–i). MACHINA produced four similar solutions (Fig. 12b–e). However, only the pre-
dicted evolutionary relationship of clones from liver and kidney tumors agreed with those reported in the original 
study30. �e predicted clone sharing between lung and brain tumors reported by CloneFinder agreed with the 
initial research, but the clone phylogeny di�ered dramatically (Fig. 12f). Treeomics correctly predicted the evo-
lutionary relationship of clones from the liver, kidney, and rib tumors, but did not predict most of the ancestral 
clones (Fig. 12g), a failing that we also observed in our simulation results. PhyloWGS produced two distinct but 
highly similar clone phylogenies (Fig. 12h,i) that indicated the presence of three clonal lineages, instead of the 

Figure 9. Comparison of the performances of clone prediction methods with low sequencing depth (50x). 
Average MLTED (a), TreeVec (b), and RF (c) scores were compared between datasets with 200x and 50x 
coverage. MA datasets were used for those with 200x coverage. We generated 50x datasets by using true clone 
genotypes and clone frequencies of MA datasets. Error bars indicate a single standard deviation.

https://doi.org/10.1038/s41598-020-59006-2


1 2SCIENTIFIC REPORTS |         (2020) 10:3498  | https://doi.org/10.1038/s41598-020-59006-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

two lineages reported in the original study. LICHeE analyses did not produce a solution. MixPhy produced >400 
clones for this dataset. Cloe failed to provide a solution due to the lack of computational convergence. �erefore, 
we anticipate that the application of di�erent computational methods in actual empirical data analysis will result 
in widely varying inferences, making it challenging to reach reliable biological conclusions when the tumor  
evolution is highly complex.

We also tested the impact of CNAs by using two empirical datasets (patient 3 and 9 datasets from high-grade 
serous ovarian cancer51). In these datasets, a large number of SNVs are a�ected by CNAs, because the ploidy of 
cells in a sample was reported to be ~3.551. Application of MACHINA to these datasets was unsuccessful, as the 
computation did not �nish even a�er days of computation. For other methods, the inferred clone phylogenies 
showed many similarities to that reported in the original study, when the structure of clone phylogeny was simple,  
i.e., patient 9 dataset (Fig. 12j–m). For this dataset, only two clones were reported in the original study51, and 

Figure 10. Comparison of the performances of clone prediction methods with datasets that contained CNAs. 
Average TreeVec and RF scores were compared between datasets without CNAs (noCNA) and those with CNAs. 
G7 datasets were used for those without CNAs. We generated G7-CNA datasets by introducing CNAs. Error 
bars indicate one standard deviation. �e number in parenthesis is the average number of solutions per dataset.

Figure 11. Accuracy of consensus trees produced by GraPhyC, for which we used trees produced by 
CloneFinder, MACHINA, TreeOmics, and LICHeE. Average MLTED (a), TreeVec (b), and RF (c) scores of 
GraphyC across datasets are shown together with the average scores from the use of CloneFinder, MACHINA, 
TreeOmics, and LICHeE separately (“Mean”). MA datasets were used. Error bars indicate single standard 
deviations. GraPhyC results are from applying the “path” option, but the other three options (“ancestor-
descendant”, “clonal”, and “parent-child”) produced very similar results.
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each tumor site contained only one of these two clones, except for the le� ovarian site 2, which had both of the 
clones (Fig. 12j). CloneFinder, Treeomics, and LICHeE predicted these two clones, which were con�rmed by 
single-cell sequencing in the original study. Computational methods also predicted the presence of the root clone 
in the patient sample, as well as other clones that were closely related to the two clones reported in the original 
study (clones in clone lineage A and B in Fig. 12k–m). �e original authors only reported two clones, and their 
single-cell sequencing was focused on validating those two clones only. In the future, it will be interesting to learn 
if the new clones predicted by computational methods are found in their samples. For the Patient 3 dataset, the 
original study reported that all of tumor samples contained at least two clones, and many clones were predicted 
to be found more than one tumor site (Fig. 12n). �us, the reported clonal structure was more complex than that 
for patient 9 (Fig. 12j). LICHeE failed to produce any results for this dataset, and CloneFinder and Treeomics 
produced phylogenies that looked very di�erent from those reported in the original study (Fig. 12o,p). �erefore, 
CloneFinder and Treeomics performed poorly on datasets with CNAs, as we found in the computer simulations. 
�erefore, the utility of current methods for datasets with ample CNAs is limited.

Figure 12. Empirical data analysis for the Hoadley et al. (2016) dataset (A7) (a–i), Patient 9 (j–m), and Patient 
3 datasets (n–p). �e color of clones in the phylogeny corresponds to the location of clones’ samples. (a,j,n) 
Clone phylogenies reported by Hoadley et al. (2016) (a) and those by McPherson et al. (2016) (j,n). (b–i) 
Inferred clone phylogenies by using (b–e) MACHINA, (f,k,o) CloneFInder, (g,l,o) Treeomics, (h,i) PhyloWGS, 
and (m) LICHeE. MACHINA and PhyloWGS produced more than one phylogeny for the A7 dataset.
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Computation time. Lastly, we examined the computation time. Methods that produce a single solution per 
dataset are generally faster (CloneFinder, TreeOmics, LICHeE, and MixPhy) than those that produce multiple 
solutions (MACHINA and PhyloWGS) (Table 1). For example, these fast methods required <1 minute for a 
G7 dataset. �e only exception among the methods that produce a single solution for a dataset was Cloe, which 
required a longer computational time than MACHINA for a G7 dataset. It is reasonable because Cloe is a Bayesian 
method, in which a large number of iterations are necessary for each data analysis. PhyloWGS is also a Bayesian 
method, and it was slower than MACHINA for a G7 dataset (Table 1). In the case of MACHINA, the number of 
solutions produced per dataset extensively varied among datasets, some of which produced ≫100 solutions. Since 
MACHINA analyzes the history of migration events for each solution, the computational time tended to increase 
as the increasing number of solutions, e.g., TG datasets (see Methods for the detail).

Discussion
Predictions of accurate clone phylogenies are essential to infer the order of driver mutation occurrences and the 
evolutionary relationship of clones. We tested the accuracy of published methods in reconstructing clone phy-
logenies as a �rst step in identifying the patterns of errors in clone phylogeny inference. We observed that clone 
phylogenies produced by some methods (CloneFinder, MACHINA, Treeomics, and LICHeE) were o�en more 
accurate than the other methods, i.e., lower MLTED, TreeVec, RF, and the error rate of ordering mutations. �ese 
results were consistent with the accuracy of inferred clone genotypes, i.e., the number of SNV assignment errors 
per clone (Supplementary Table S1)35. Based on the results of our simulation studies, we propose a few useful 
guidelines for applying computational methods in practical data analysis of SNVs obtained from bulk sequencing 
data of multiple tumor samples.

To begin with, we suggest the use of CloneFinder, MACHINA, Treeomics, or LICHeE, because they o�en per-
formed the best in ordering mutations and inferring phylogenies (Fig. 3 and Tables 1 and 2). All of these methods 
bene�t from the use of the intrinsic evolutionary relationship of tumor clones (Table 1). �e evolutionary infor-
mation provides resolution beyond inferences primarily based on the dissimilarities of observed SNV frequencies 
because low read depths will cause SNV frequencies to be less accurate and clone predictions based on only the sim-
ilarities of observed SNV frequencies will become error-prone. Also, the intrinsic phylogenetic information among 
tumor samples is likely to be higher for datasets with larger number of samples, so these four perform even better 
(e.g., G12 datasets). Importantly, datasets with a very small number of samples will underestimate the genetic het-
erogeneity of a tumor site, and therefore, the use of a large number of samples per patient is o�en recommended6,52.

When tumor sectors or sites are anticipated to exchange cancer cells frequently (e.g., frequent polyclonal 
seeding events for metastatic tumors), most of the clones will be shared among samples, e.g., serially sampled 
chronic lymphocytic leukemia53. In this case, one may choose to use MACHINA and LICHeE, because these 
methods are marginally preferable over CloneFinder and TreeOmics (MA datasets). In particular, techniques 
that strongly depend on the observed patterns of presence/absence of mutations among tumor samples (e.g., 
Treeomics and CloneFinder) will have di�culty detecting clones correctly35, resulting in less accurate clone phy-
logenies. However, when intermixture is substantial, none of the clone prediction methods are likely to predict 
clone phylogenies accurately (TG datasets). A previous study also reported that the inferred clone genotypes are 
inaccurate on such datasets35. Since MACHINA tended to produce a large number of solutions and/or required a 
very long computational time for datasets with an extensive intermixture of clones among samples (TG datasets), 
this condition can be used to identify datasets, in which inferred clone phylogenies are potentially erroneous.

By contrast, when the sequencing depth is low (e.g., 50x), we recommend methods that do not primarily 
rely on observed SNV frequencies in clone predictions, such as CloneFinder and Treeomics. However, most 
of the methods are known not to be robust to the presence of incorrect SNV assignments, so one should pro-
ceed with extreme caution when analyzing datasets with high rates of sequence error. We suggest excluding, or 
correct potentially erroneous mutation detections, by using computational tools such as those implemented in 
Treeomics36. Especially, LICHeE may fail to produce any inferences on such datasets, or the accuracy may become 
much lower than other methods (e.g., Treeomics)36. In fact, LICHeE failed to produce any results for our example 
empirical dataset30. Also, SNVs that are a�ected by copy number alterations (CNAs) should be excluded, as most 
of the clone prediction methods require copy-number-neutral SNVs.

Also, we suggest using multiple methods to infer clone phylogenies and examining the consistency among the 
results. We observed that the best performing methods produced similar results when the inferred clone phylog-
enies were accurate. When using Treeomics, it is crucial to be aware that the inferred clone phylogenies will not 
contain most of the ancestral clones. Also, potential errors on clonal lineage deconvolution can be detected when 
MACHINA produces at least two di�erent clone phylogenies (e.g., Fig. 7) or when MACHINA provides hundreds 
of solutions. In general, the inconsistency of inferred clone phylogenies is an indication of the presence of mixing 
of di�erent lineage clones in tumors. Currently, no methods produce accurate clone phylogenies from such data. 
�us, consistency among inferred phylogenies may be useful to validate inferences. Consensus phylogenies by 
using GraPhyC50 may then be helpful to �nd clone groupings that are detected by multiple methods or to compu-
tationally summarize various solutions produced by a clone prediction method.

�e above initial guidelines will undoubtedly evolve as new methods are developed to detect clones and phy-
logenies and new metrics are designed to assess performance. To facilitate comparative benchmarking of these 
new methods with those tested here using the simulated data employed in our investigations, we have made 
available a pipeline (ClonePhyTester; https://github.com/SayakaMiura/ClonePhyTester). ClonePhyTester uses 
the clone sequences output by the new method and calculates all the performance metrics as well as graphical 
visualizations and summaries that will directly compare any new techniques with the seven methods we tested. 
For more advanced analyses, ClonePhyTester can be modi�ed and expanded because it is programmed in widely 
used Python language.
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Conclusions
Analyses of correct clone phylogenies are critical to a better understanding of tumor evolution and the origin and 
extent of genetic heterogeneity in tumors. We can accurately infer clone phylogenies only when tumor evolution 
generally tracks clonal evolution, a relationship that is disrupted when tumors exchange clones. �is disruption, 
along with the persistence of many ancestral clones that persist alongside their descendants within tumors, makes 
it challenging to detect clones and reconstruct evolutionary history of clones and ordering of mutations. �e use 
of multiple methods and consensus inferences have the potential to validate predictions of speci�c methods and 
to detect problematic results. However, there is a strong need for more advanced techniques that can perform well 
for datasets that show intermixing of tumor samples.

Methods
Generation of bulk sequencing data. We analyzed 330 simulated datasets, and all of these datasets were 
available from https://github.com/SayakaMiura/ClonePhyTester. Each dataset contained information on mutant 
and wild-type read counts (with read counting errors).

G7 and G12 datasets. �ese datasets were obtained from ref. 35 and contained seven and twelve clones, respec-
tively, modeled a�er the predicted evolutionary histories of two patients (EV005 and RK2643, respectively) 
(Fig. 1a–d)35, i.e., we used the same topologies of clone phylogenies that were reported in the original study. 
Each tumor sample may contain one or a few evolutionarily closely-related clones, assuming a localized genetic 
heterogeneity due to branching evolution4,6. �us, the migration of cancer cells to another section of a tumor was 
assumed to be rare in these datasets. In total, we obtained 60 simulated datasets (replicates) with 34–89 SNVs per 
dataset.

P10 datasets. P10 datasets were also obtained from ref. 35. In these datasets, various numbers of clones persisted 
within a sector (sample) of a tumor a�er the origin of descendant clones. Ten random clone phylogenies were 
simulated, with the consideration of the birth and death process of cell lineages, in which a random number of 
mutations were assigned at each branch of a phylogeny54. Every tumor sample was populated with one tip clone 
and its ancestral clones35, following the “localized sampling process” in ref. 34 (Fig. 1e,f). Each of P10 datasets 
contained 2–6 ancestral clones (30 datasets). A selection of simulated clone phylogenies is shown in Fig. 3 of 
Miura et al.35.

MA datasets. �ese datasets were obtained from the MACHINA website (https://github.com/raphael-group/
machina) and were generated by modeling the evolution of primary and metastatic tumors (four or seven meta-
static tumors per dataset)13. Metastatic tumors were founded by cancer cells (seeding clones) that migrated from 
another tumor site (primary or another metastatic tumor). Under a simple metastatic tumor evolution scenario, 
each metastatic tumor received a single founder (seeding) clone from another tumor site, and a metastatic tumor 
contained only clones that evolved from a single seeding clone. Clonal structures of metastatic tumors became 
more complicated when a metastatic tumor was seeded by more than one clone (polyclonal seeding events). In 
MA datasets, a metastatic tumor received a maximum of two seeding clones, and any dataset may contain more 
than one metastatic tumor with polyclonal seeding events. �us, the observed genotypes of these metastatic tum-
ors represented two convoluted clone lineages, and clone prediction methods were required to correctly identify 
such tumors and decompose them into two distinct clone lineages (e.g., Fig. 1g,h). Each MA dataset contained up 
to four metastatic tumors with polyclonal seeding events. Each clone phylogeny was unique (60 MA datasets). All 
the clone phylogenies are shown in Supplementary Fig. S1.

TG datasets. We simulated three-dimensional tumor growth by using tumopp so�ware55. We used a hexagonal 
lattice to arrange the location of cancer cells in space. �e shape parameter (k) for the gamma distribution of 
waiting time for cell divisions was set to 10, and we used the default potential cell division rate = 1. �ree di�erent 
models were used for cell division, (a) linear-function model, in which the birth rate of a new cancer cell was 
proportional to the emptiness of its surrounding space, (b) step-function model, in which cell division occurred 
only when a cell was not surrounded by the other cells, and (c) constant-rate model, in which the birth rate was 
constant regardless the presence of other cells at the surrounding space. Based on these models, we classi�ed TG 
datasets into linear, step, and constant datasets, respectively. Each simulation was terminated when the number of 
extant cancer cells became 10,000. We used the default values for the other parameter settings, i.e., all cells were 
assumed to be stem cells, push model was randomly assigned, the cell death rate and migration rate were zero, 
and driver mutations were not introduced. We then randomly selected eight sections (sectors) of a tumor that 
were uniformly located. From each sector, 100 cancer cells were sampled. All cells in a tumor were assumed to be 
cancerous, as tumopp did not simulate normal cells. Please note that an actual tumor and a sample should contain 
much larger number of cancer cells than we generated in this simulation.

To generate cancer cell sequences (genotypes), we introduced mutations during cell divisions such that the 
number of mutations per cell division was sampled from the Poisson distribution with a mean of 1. We then 
extracted SNV sites that were found in >5% of cancer cells sampled from di�erent sectors of a tumor. Cancer 
cells were classi�ed into the same clone if their genotypes were identical to each other. Clone frequencies in each 
tumor sector were obtained by counting the number of cells that comprise that clone.

By using these clone genotypes and clone frequencies, we generated mutant and wild-type read counts for 
each SNV that were input to clone prediction methods. We �rst computed expected SNV frequencies, in which 
we summed clone frequencies of clone genotypes with mutant bases at an SNV site and then divided it by two. 
Assuming that sequencing depth was 100, we generated total read count, by randomly drawing an observed total 
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read count (x) from a Poisson distribution with a mean of the expected read count (100). We then sampled from 
a Binomial distribution with x trials and the expected SNV frequency to generate mutant read count. In total, we 
generated 90 TG datasets (30 datasets for each of linear, step, and constant model). True clone phylogenies were 
reconstructed by using maximum parsimony method in MEGA-CC56; all of these true phylogenies are shown in 
Supplementary Fig. S2.

Datasets with CNAs and LOH. We use G7 datasets and added copy number gains, losses, and LOHs to produce 
G7-CNA datasets. We used the same number of SNVs, clone phylogenies, and clone frequencies as the original 
G7 datasets. For each chromosome, we generated paternal and maternal chromosomes and selected 30 randomly 
sampled SNVs on either the paternal or the maternal chromosome. Sometimes a chromosome may contain fewer 
than 30 SNVs. We assigned copy number gains, copy number losses, and LOHs for each chromosome and also 
selected paternal or maternal chromosomes a�ected by a CNA event.

For each CNA event, the timing of occurrence was determined by randomly selecting a branch of the true 
clone phylogeny. �e location of somatic mutations on sites and branches was also recorded on the true clone 
phylogeny. For each branch, the order of CNAs and somatic mutations were assigned randomly. Along this pre-
de�ned history, we evolved the chromosomes and recorded the number of mutant and wild type copies at each 
SNV site. For example, at the time of a copy number gain event, we duplicated the a�ected chromosome. In the 
copy number loss case, the a�ected chromosome was deleted. For LOH, we deleted the a�ected chromosome and 
duplicated the other chromosome.

By using clone frequency (Fig. 1b) and copy number information of mutant and wild type bases at each SNV 
position, we calculated expected SNV frequencies sensitive to the CNAs and LOH. For example, at a position with 
one wild-type base copy and two mutant base copies, the multiplier to generate SNV frequency from the clone 
frequency would be 0.67 (2/3). �is value was computed for each clone for a tumor sample with more than one 
clone, and the expected SNV frequency was computed as the summation of these values.

We also adjusted the expected total read counts for SNVs that were a�ected by CNAs. �e expected total 
read count without CNAs was set to be 100. Since all of the clones may not have the same CNAs, we computed a 
weighted total read count for each clone by multiplying 100 with the clone frequency and the total copy number 
divided by two. We similarly computed a weighted total read count for normal cells, and we summed all of these 
values to generate an expected total read count for an SNV position.

By using these adjusted expected SNV frequencies and total read count, we generated the observed read counts. 
To introduce noise into the expected total read count, we randomly drew an observed total read count (x) from 
a Poisson distribution with a mean of the expected read count. We then sampled from a Binomial distribution  
with x trials and the expected SNV frequency to produce the �nal mutant read count.

Selection of clone prediction methods and parameter settings. We selected clone prediction meth-
ods that have performed well in predicting clone genotypes from observed SNV frequencies or read counts of 
bulk sequencing data35. �at is, we excluded methods that produce highly incorrect clone genotypes because such 
clone genotypes do not produce correct clone phylogenies. By this criterion, we excluded CITUP57, BayClone258, 
Clomial59, Canopy60, cloneHD61, and AncesTree54 (see Supplementary Table S1 for the average number of SNV 
assignment errors per clone). We did not include methods that require prior information on the composition of 
SNV clusters (e.g., TrAp62) or those that require the use of another so�ware to produce clone genotypes by order-
ing predicted clusters (e.g., PyClone63 and SciClone64). Lastly, we did not include methods that were designed 
for the analyses of single-cell sequencing data (e.g., SCITE65 and BEAM66), because clone deconvolution is not 
necessary for this type of data, while these methods focus on imputing missing data and minimizing SNV assign-
ment errors in the inference of cell phylogenies31,32. �ese considerations resulted in the selection of seven clone 
prediction methods13,34–39. Each method was used with its default or recommended parameter settings. In MA 
datasets, we found many similar clone genotypes, so we used parameter settings that can di�erentiate similar 
clone genotypes. �is modi�cation was applied only for LICHeE and CloneFinder, as only these two methods 
include options for this purpose.

MACHINA. We used the PMH-TI mode in the MACHINA so�ware, which infers clone genotypes from read 
count data13. �e MACHINA so�ware requires a priori identi�cation of tumor sites as primary or metastatic 
for each sample. Since G7, G12, P10, and TG datasets were simulated without the consideration of primary and 
metastatic tumor evolution, we assumed that the primary tumor contained the root clone (e.g., clone A for G7 
and G12 datasets) (Fig. 1a,c). When a root clone was not present in a dataset, we selected the clone that was most 
closely located to the root of a simulated phylogeny (P10 and TG datasets). If a root or closely related root clone 
was found within more than one tumor site, we randomly selected one of them to assign a primary tumor. For 
MA datasets, we provided the correct tumor site (primary or metastatic site, in which distinct metastatic tumor 
sites were accordingly distinguished). Note that MACHINA o�en produced a large number of solutions (>10 
solutions per dataset) for G7, G12, MA, and TG datasets. In those cases, we �rst identi�ed the best and worst 
solutions for each dataset, which were determined based on the average number of SNV assignment errors per 
clone. We reported the average error rate (see below) of the best and worst solutions.

For the analysis of TG datasets, we set the time limit for the search of solutions to be 10 seconds, because we 
found that 10 seconds were su�cient for MACHINA to �nd >1,000 candidate solutions (excluding the time to 
complete the whole analysis for each solution). Since the analysis of an extremely large number of solutions is not 
feasible in actual empirical data analysis, we considered that MACHINA was failed to produce a result when the 
number of solutions was >100. For datasets with <100 solutions, we further �ltered into datasets that MACHINA 
completed the whole analysis of a single solution within 30 minutes because datasets that required >30 minutes 
per solution were rare among the other G7, G12, P10, and MA datasets. MACHINA did not complete the analysis 
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for all of the TG-constant datasets, and we were able to obtain results only for �ve TG-step datasets. �erefore, 
we considered MACHINA failed for TG-constant and TG-step datasets. Next, we set three hours’ time limit to 
complete the analysis of all the solutions for a TG-linear dataset. �is criterion removed only one linear dataset, 
which was considered as a failed dataset.

LICHeE. Following the default settings, we set the variant allele frequency (VAF) error margin the value 0.134. 
SNVs were considered robustly present in a sample at VAF > 0.005 (robust SNVs), and the others were considered 
absent in a sample. SNVs with VAF > 0.6 were excluded. LICHeE groups SNVs based on the pattern of presence/
absence of mutations across the samples and each SNV group was required to contain at least two robust SNVs. 
LICHeE also clusters SNVs by VAF similarities. We required that an SNV cluster contained at least two SNVs 
unless an SNV was sample-speci�c. All the SNV groups/clusters were initially kept in the network. Two groups/
clusters could collapse when mean VAF di�erence was <0.2.

LICHeE did not produce clonal compositions of samples (i.e., clone frequencies). �us, we estimated clone 
frequencies using the relationship ½f × M = V, where f is a two-dimensional matrix of estimated clone frequen-
cies of the samples, M is a matrix of predicted clone genotypes, and V is the observed SNV frequency33. �e 
equation above applies to cases where the variants are free of copy number alterations (CNAs)33, which is the case 
for our datasets. We estimated f through the regression of V to a function of M and f 67. Clone frequencies were 
estimated excluding SNVs with small total read count (<50) and mutant read count (<2), because those observed 
SNV frequencies were not reliable. When ancestral clones were predicted to co-exist with their descendant clones 
within a sample, we tested if these ancestral clones were spurious. Between a pair of ancestral and descendant 
clones, we compared observed SNV frequencies that are unique to the descendant clone and those shared with 
the ancestral clone. We used the expectation of higher observed SNV frequencies on shared (mutations that were 
found in both clones) than on unique mutations (mutations that were found in only a descendant clone; t-test) 
to discover the spurious presence of ancestral clones. When the di�erences between SNV frequencies were not 
signi�cant (P > 0.05), the ancestral clones were removed. Also, we discarded clones present at low frequencies 
(<2%).

In the analyses of MA datasets, only SNVs with zero SNV frequency were considered to be robustly absent 
from a sample, and SNVs with >0.0001 frequency were considered to be robustly present in a sample (robust 
SNVs). All SNVs were examined regardless of their observed frequency. �e minimum number of SNVs per 
cluster/group was set to one. Two SNV clusters were collapsed when mean SNV frequency di�erences were less 
than 1%. We did not discard any ancestral clones.

In the analysis of TG datasets, LICHeE sometimes produced clone phylogenies that did not contain any 
sequential or parallel mutations. �ese inferred clone phylogenies were completely a star-shape or line-shape, 
which was incorrect. Since the error rate of ordering sequential or parallel mutations became in�nite for these 
phylogenies, we considered that LICHeE failed on these datasets.

CloneFinder. We estimated clone genotypes using SNVs with at least 50 reference read counts and two mutant 
read counts, and we discarded clones when estimated clone frequencies were <2%35. To analyze MA datasets, we 
did not combine similar clone genotypes or discard clones. We used all reads.

Treeomics. We used the option of enabling subclone detection36.

PhyloWGS. �e fraction of expected reference allele sampling from the reference population and the variant 
population were 0.999 and 0.4999, respectively37. We set a copy number equal to one (heterozygous mutant allele). 
As PhyloWGS did not produce clone frequencies, we computed clone frequencies using the approach described 
for LICHeE (see above). Since PhyloWGS produced �ve solutions for each dataset, we reported an average score 
over these �ve solutions.

Mixed perfect phylogeny (MixPhy). We performed analyses in MixPhy (v0.1) with the option of a heuristic 
algorithm. As the input �le requires a binary matrix of tumor sample genotypes (presence/absence of mutation), 
we provided correct sample genotypes, assuming that there were no false positive or false negative detections of 
mutations38.

Cloe. We used the option to perform mutation clustering to improve runtime39. We applied Cloe with 100,000 
iterations and used the default four parallel tempered chains. For G7 datasets, we used 10,000 iterations, because 
it converged without performing 100,000 iterations. For the posterior evaluation of MCMC sampled trees, the 
burn-in of MCMC chains was 0.5, and chain thinning was 20. �e maximum number of clones for a dataset was 
set to the true clone count. MA datasets were not analyzed, because Cloe did not converge for a few large datasets 
(17 and 18 clones per dataset), even when we used 400,000 iterations. Similarly, Cloe did not converge for a G7 
dataset with CNAs, even when we tried up to 5,000,000 iterations, which required a few days of computation.

Inference of consensus clone phylogenies. We used GraPhyC with the options of “path”, “parent-child”, 
“ancestor-descendant”, and “clonal”50. We used MA datasets and computed consensus trees of the best-performing 
methods (CloneFinder, MACHINA, Treeomics, and LICHeE; smaller overall MLTED scores than the other 
methods (Fig. 3)). Since MACHINA o�en produced more than one solution, we �rst computed consensus trees 
of these solutions.
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Evaluation of predicted clone phylogenies. We compared each predicted clone phylogeny with the 
respective true clone phylogeny by using the following four metrics.

Multi-labeled tree edit distance (MLTED). A clone phylogeny is o�en viewed as a mutational tree44 in which all 
the mutations are mapped along branches. Mutational trees are useful when the number of tips in the inferred 
clone phylogeny di�ers from the true phylogeny and when the sequences of the inferred clones do not match all 
the true clones. We used the Multi-labeled Tree Edit Distance (MLTED score) for comparing the inferred and 
the true tree, as it has been designed to evaluate clone trees68, available at https://github.com/khaled-rahman/
MLTED. �is algorithm requires that the inferred tree contains the same set of mutations as in the true tree. 
Because of errors in clone sequence predictions, some mutations were not assigned to any branch in the inferred 
tree. �ese mutations were placed at the root of the inferred mutational tree.

�e error rate of ordering mutations. We generated all possible pairs of SNVs (mutations) and classi�ed them 
into three possible types, i.e., concurrent, sequential, and parallel (see Fig. 2 for some examples). Concurrent 
mutations are those that occurred on the same branch (irrespective of their order), whereas sequential and par-
allel mutations are those that occurred on di�erent branches of the clone phylogeny. More speci�cally, two muta-
tions are sequential if one occurred on the ancestral branch and the other on its descendant branch, but multiple 
intervening branches may separate them. Two mutations are parallel if they are found on sibling lineages that 
have descended from their most recent common ancestor. Any true mutation pair not found in the inferred tree 
was classi�ed as “unassigned.”

We estimate the error rate of ordering concurrent, sequential, and parallel mutations, separately. In each cat-
egory, we �rst scored the number of true mutation pairs that were not present in the inferred tree and divided it 
by the total number of true mutation pairs. �en, we scored the number of mutation pairs that were incorrect and 
divided it by the total number of inferred mutation pairs. �en, the average of these two proportions was used as 
the error rate of ordering the given type of mutations. Similar measures have been used to evaluate clone predic-
tion methods in previous studies34.

Advanced Tree vector (TreeVec). We also evaluated the accuracy of branching patterns (topology) in inferred 
clone phylogenies (clonal lineage trees44). For this purpose, we �rst mapped inferred clone genotypes to the true 
clone genotypes, because inferred clone genotypes never perfectly match the true clone genotypes. We mapped 
each inferred clone genotype to its most similar true clone genotype in a two-step process69. First, each true 
clone genotype was compared to all the inferred clone genotypes, and the two clones with the smallest di�erence 
were paired. When the number of inferred clones was greater than the number of true clones, the remaining 
inferred clones were paired with the most similar true clone genotype. For uniformity, we reconstructed inferred 
clone phylogenies by using predicted clone genotypes produced by each method. Because mutations arose only 
once in the computer simulated data, the maximum parsimony analysis was suitable70 and was performed using 
MEGA-CC71. All the clone phylogenies were rooted using germline sequences (normal cells) as outgroups. In 
inferred clone phylogenies, we labeled tips with clone annotations. When an inferred clone genotype had two 
di�erent annotations, we duplicated the genotype in an inferred clone phylogeny, i.e., the corresponding tip 
was duplicated. Also, two inferred clone genotypes might have the same annotation. In this case, two tips in an 
inferred clone phylogeny were labeled identically.

Among various tree distance computation methods for phylogenies72, we selected the advanced TreeVec dis-
tance developed by Kendall et al.69, because TreeVec allowed more than one tip with identical labels. Brie�y, 
TreeVec distance computation �rst collapsed any monophyletic clade(s), i.e., a clade with tips that had an identi-
cal label. �en, the traditional TreeVec distance73 was computed, which counted the number of branches (edges) 
between the root and the node of the most recent common ancestor (MRCA) of a pair of clones. For all pairs of 
clones, the Euclidean metric between inferred and true counts was computed. We used the treespace so�ware74 to 
compute this advanced TreeVec distance.

Robinson and Foulds (RF) distance. We also computed RF tree distance, because it is widely applied in the 
evaluation of species phylogenies75. We used PhyloNET so�ware76 to count the number of partitions that were 
common and di�erent between the true and the inferred phylogeny. �e RF distance is the number of di�ering 
partitions divided by the total number of partitions in the two phylogenies. Note that RF distance computation 
requires that both the inferred and the true clone phylogenies contain the same number of tips (clones). However, 
inferred clone phylogenies may contain more tips than the respective true phylogenies, when more than one tip 
is assigned an identical clone annotation (i.e., more than one inferred clone genotype was similar to a true gen-
otype). When there were too many tips in the inferred tree, we retained only those tips that showed the highest 
similarity to the true clone genotypes, such that each true clone genotype was matched with exactly one inferred 
genotype.

Empirical data analyses. We obtained an empirical dataset (patient A7 dataset30; https://github.com/
raphael-group/machina), which contained 478 copy-neutral SNVs. �is dataset contained SNV frequencies of 
one primary tumor sample (breast) and four metastatic tumors (lung, liver, rib, and brain), for which clone phy-
logenies and clonal composition of each sample were previously reported30. For real data, true clone genotypes 
were not available, so we annotated each clone on the inferred phylogeny based on the sample(s) that contained 
it (Fig. 12a) in order to compare the reported phylogeny30 with those inferred by the clone prediction methods 
listed in Table 1.
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Observed read count information of two empirical datasets (patient 3 and patient 9 datasets) was obtained 
from the Supplementary Information of ref. 51. Patient 3 contained eleven tumor samples from adnexa site, cul 
de sac site, le� fallopian tube �mbriae site, le� ovary site, two omentum sites, right fallopian tube site, three right 
ovary sites, and sigmoid colon deposit site, where the le� ovary site was reported as the primary tumor site in the 
original study51. Patient 9 contained �ve tumor samples from two le� ovary sites, two omentum sites, and right 
ovary site, where the le� ovary site was reported as the primary tumor site51. �e numbers of SNVs were 131 and 
183 SNVs, for patient 3 and patient 9, respectively. �e original study51 inferred clone phylogenies and con�rmed 
them by using single-cell sequencing data. We annotated each clone on the inferred phylogeny based on the sam-
ple(s) that contained it (Fig. 12j,n).

Data availability
�e G7, G12, P10, MA, TG, G7-CNA, and MA-50x datasets and a pipeline to replicate our study (ClonePhyTester) 
are available on the website of the ClonePhyTester so�ware (https://github.com/SayakaMiura/ClonePhyTester).
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