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Abstract—In this paper, we consider the cognitive satellite
uplink where satellite terminals reuse frequency bands of Fixed-
Service (FS) terrestrial microwave links which are the incumbent
users in the Ka 27.5-29.5 GHz band. In this scenario, the
transmitted power of the cognitive satellite terminals has to be
controlled so as to satisfy the interference constraints imposed
by the incumbent FS receivers. We investigate and analyze a set
of optimization frameworks for the power and rate allocation
problem in the considered cognitive satellite scenario. The main
objective is to shed some light on this rather unexplored scenario
and demonstrate feasibility of the terrestrial-satellite co-existence.
In particular, we formulate a multi-objective optimization prob-
lem where the rates of the satellite terminals form the objective
vector and derive a general iterative framework which provides
a Pareto-optimal solution. Next, we transform the multi-objective
optimization problem into different single-objective optimization
problems, focusing on popular figures of merit such as the sum-
rate or the rate fairness. Supporting results based on numerical
simulations are provided which compare the different proposed
approaches.

I. INTRODUCTION

The demand for broadband satellite services is growing at

unprecedented rates and the licensed spectrum of 500 MHz for

exclusive use, both for uplink and downlink, in the Ka band

has been shown to be insufficient to meet the forthcoming

demands [1], [2]. In this regard, the application of Cognitive

Radio (CR) technology has emerged as a promising solution to

enhance the satellite spectrum utilization [3]–[6]. In this paper,

we focus on the cognitive Geostationary Orbit (GEO) satel-

lite uplink where Return Channel Satellite Terminal (RCST)

transmitters reuse the Ka-frequency bands of incumbent Fixed

Service (FS) terrestrial microwave links. In this scenario, the

primary goal is to provide good throughput to the RCSTs while

protecting the FS links from harmful interference.

Very few works have investigated the cognitive satellite

uplink scenario [7]–[10]. The applicability of CR in the

aforementioned scenario was discussed in [7], concluding that

both satellite and terrestrial systems could potentially operate

in the same band without degrading each others’ performance.

The same cognitive satellite uplink paradigm was considered

in [8]. Specifically, [8] proposes a novel power control based

on the inverse Signal-to-Interference plus Noise Ratio (iSINR).

However, [8] neglects the aggregate interference caused by

multiple RCSTs. It is important to note that, although a

Multi-Frequency Time Division Multiple Access (MF-TDMA)

scheme is employed in the DVB-RCS2 standard for the return

link [11], it may happen that more than one RCST (while

operating on different carrier frequencies) produce aggregated

interference to the FS microwave network because the carrier

bandwidth of the FS microwave links is usually higher than

that of the RCSTs [12]. In our previous work [9], we took

this into account and proposed a sub-optimal joint power

and carrier allocation technique for the cognitive satellite

uplink and terrestrial FS co-existence scenario. The technique

presented in [9] was compared to different transmit power

allocation strategies in [10], depending on the amount of side

information available at each satellite terminal.

The cognitive satellite uplink can be cast as an underlay

CR network, where cognitive users’ transmit power is limited

by interference constraints imposed by the primary system

[13]. Power control policies for cognitive underlay networks

differ from conventional ones considering that they have severe

transmit power limitations that arising from the spectrum

sharing scenario. The use of game theory has proliferated as an

important mathematical tool for distributed resource allocation

and to model the primary-secondary users’ interaction [14],

[15]. However, game-theoretic approaches usually lead to

complex optimization problems. Simpler decentralized power

control algorithms for wireless cellular systems can be found

in [16], [17].

Herein, we investigate and analyze a set of optimization

frameworks for power and rate allocation in cognitive satellite

uplink networks over a specific set of carriers pre-assigned

to the users. Our goal is to shed some light on this rather

unexplored scenario and possibly pave the way for future

research in this area. More precisely, we propose and solve

different optimization problems depending on the objective

function to be optimized. We start formulating a multi-

objective optimization problem [18] where the rates of the

RCSTs form the objective vector. For this, we derive a general

iterative framework which provides a Pareto-optimal solution

of the problem. However, there is no single optimal solution

for multi-objective optimization problems. In practice, a single

optimal alternative must be identified for engineering designs.

To this end, we transform the multi-objective optimization

problem into different single-objective optimization problems,

whose main goal is to provide the best solution by finding the

minimum or maximum value of a single objective function



Fig. 1: Satellite-terrestrial co-existence network with K = 2
RCSTs and L = 4 FS stations

that lumps all different objectives into one. In this sense, we

focus this paper in popular figures of merit for measuring the

performance of a communication system such as the sum-rate

or the rate fairness. These popular objective functions, which

have been widely investigated for conventional communication

networks, have never been examined for cognitive satellite

uplink communications. It should be noted that the cognitive

GEO satellite uplink differs from the conventional interference

channel in that the interference from the FS terrestrial system

to the satellite can be neglected due to large distance between

them as well as the directivity and limited EIRP of the Ka band

terrestrial communications [19]. Regarding fairness, we derive

a simple and efficient algorithm which provides the optimal

solution in terms of Max-Min fairness. Finally, we compare

all the proposed transmit power allocation derived from the

different optimization strategies through numerical simulation

experiments.

The remainder of this paper is organized as follows. In

Section II we present the problem description and formula-

tion. Section III focuses on the multi-objective optimization

problem. In Section IV we transform the multi-objective opti-

mization problem into different single-objective optimization

problems. In Section V we provide supporting results based

on numerical data. Finally, Section VI concludes the paper.

II. PROBLEM DESCRIPTION

Let us consider a cognitive satellite network consisting of K
RCSTs and L FS microwave stations, as shown in Fig. 1. As

mentioned earlier, although MF-TDMA scheme is employed

in DVB-RCS2 standard, the aggregate interference may occur

at the FS microwave network. We assume that the return

link between each RCST transmitter and the corresponding

satellite is not affected by the terrestrial transmissions due

to the limited EIRP of the terrestrial networks, the large

distance between them and the over-the-horizon directivity of

FS terrestrial communications [19].

Regarding resource management, each satellite network is

coordinated by a Network Control Center (NCC), which, in

current systems, collects Signal-to-Noise Ratio (SNR) values

Fig. 2: Simplified scheme of cognitive satellite uplink network

with K = 2 and L = 3.

from the RCSTs and manages the network resources and rate

demands accordingly. Assume that the NCC has a perfect

knowledge of the interference channel link gains, namely

{ak,l}, between the k-th RCST and the l-th FS station. The

interference channel links of a simplified satellite-terrestrial

co-existence network with K = 2 RCSTs and L = 3 FS

stations are shown in Fig. 2.

Let pk denote the transmit power of the k-th RCST. Let

p = [p1 p2 . . . pK ]
T

represent the power allocation

vector, and pmax denote the maximum power budget that a

RCST can afford, i.e., 0 ≤ pk ≤ pmax. The achievable rate by

the k-th RCST is a function of the corresponding transmitted

power pk and is given by

rk = log2

(
1 +

dkpk
σ2
k

)
[bits/sec/Hz], (1)

where dk denotes the channel power gain of the link from

the k-th RCST to the satellite (including transmit and receive

antenna gains and propagation losses) and σ2
k denotes the noise

power level of the k-th satellite link.

To protect the terrestrial stations against excessive interfer-

ence, the aggregated interference at the l-th station Ia(l) has

to satisfy the Ia(l) ≤ Ithr, where Ithr denotes the maximum

tolerable interference level which is defined by the regulatory

authorities. Typical reference limitations are given by ITU

recommendations such as ITU-R F.758, where the interference

level is recommended to be −10 dB below the receiver noise.

Our goal is to maximize the performance of the cognitive

satellite uplink while protecting the FS links from harmful

interference. Therefore, the user rates rk, k = 1, . . . ,K, are

our objective functions, which cannot be treated separately be-

cause they may be conflicting due to the interference constraint

Ap ≤ Ithr1, where 1 is the all-one vector and the channel gains

{ak,l} between the k-th RCST and the l-th FS station have

been rearranged in a matrix format as

A =



a1,1 · · · aK,1

...
. . .

...
a1,L · · · aK,L


 . (2)

We resort to multi-objective optimization [20]–[22] to consider

an optimization of rates for various RCSTs in the network. In



particular, the associated multi-objective optimization problem

can be formulated as follows:

max
p

r

s.t. Ap ≤ Ithr1

0 ≤ pk ≤ pmax, k = 1, . . . ,K

(3)

where r = [r1 . . . rK ]
T
, and {rk} are as defined in (1).

In this paper, we propose different alternatives to tackle the

optimization in (3).

III. PARETO-OPTIMAL USER RATE MAXIMIZATION

Inspired by the literature on economics, Pareto optimality

describes a state in optimization problems in which resources

are distributed such that it is not possible to improve a

single objective without causing at least one other objective to

become worse than before the change [23]. The set of Pareto

optimal points is typically referred to as the Pareto boundary.

All other feasible combinations form the Pareto feasible set

which is enclosed by the Pareto boundary.

We note that as {rk} in (3) are monotonically increasing

functions of the corresponding {pk}, the multi-objective prob-

lem in (3) is equivalent to

max
p

p

s.t. p ∈ Ω
(4)

where Ω denotes the set of feasible vectors p satisfying the two

constraints of (3). Following the notation in [18], we define

the Pareto feasible set as P = {p : p ∈ Ω}, which contains all

the combinations of possible values pk that are simultaneously

attainable with the available resources.

To find a Pareto-optimal solution to (4), meaning a solution

that lies on the Pareto-boundary of the problem, we first

propose a general iterative framework and then discuss its

application to (4).

A. General iterative framework for pareto-optimization

Consider the following optimization problem:

max
x

all
y

f (x, y)

s.t. x ∈ Γ
(5)

Proposition 1: Assuming that all Pareto-optimal solutions of

(5) are finite, a Pareto-optimal solution of (5) can be obtained

using the following iterative approach. Given x(t) ∈ Γ,

(t ≥ 0), obtain x(t+1) as the solution to the following (single-

objective) optimization problem,

max
x(t+1)

min
y

{
f
(
x(t+1), y

)

f
(
x(t), y

)
}

s.t. x(t+1) ∈ Γ

(6)

Proof: At x(t+1) = x(t), we have
f(x(t+1),y)

f(x(t),y)
= 1, and

consequently, min
y

{
f(x(t+1),y)

f(x(t),y)

}
= 1. As a result, for the

optimal x(t+1) of (6),

min
y

{
f
(
x(t+1), y

)

f
(
x(t), y

)
}
≥ 1 (7)

which implies that f
(
x(t+1), y

)
≥ f

(
x(t), y

)
, ∀y.

B. Application to the cognitive satellite uplink

Returning to the specific problem of power allocation in

(4), the previous general framework can be employed simply

as follows. Given p
(t)
k ∈ P (t ≥ 0), the power allocation for

the time instant (t+ 1), p
(t+1)
k , is given by the solution of

max
p
(t+1)
k

min
k

{
p
(t+1)
k /p

(t)
k

}

s.t. p(t+1) ∈ Ω

(8)

which requires solving a simple Linear Program (LP) at each

iteration. Note that the value of p
(t+1)
k /p

(t)
k should approach

one as t→∞..

The optimization problem in (8) can be reformulated in

a simpler form observing that α = min
k

{
p
(t+1)
k /p

(t)
k

}
is

equivalent to αp
(t)
k ≤ p

(t+1)
k , k = 1, . . . ,K, for α being the

largest possible real number. In particular, we can rewrite (8)

as

max
p
(t+1)
k

,α

α

s.t. p(t+1) ∈ Ω

αp
(t)
k ≤ p

(t+1)
k , k = 1, . . . ,K

(9)

in which the optimal α would be always larger than or equal

to one. The solution to (9) is always a rate tuple on the Pareto

rate boundary of (3), regardless of the initial point p(t=0). The

only constraint for the initial point is p(t=0) ∈ P .

Remark Due to the convexity of the constraint set in (8) and

(9), the proposed iterative method should converge in exactly

one iteration, as finding the global optimum of (9) implies

that some of the {pk} cannot be increased any further while

p ∈ Ω.

IV. MULTI-OBJECTIVE TO SINGLE-OBJECTIVE

TRANSFORMATION

In the previous section, we have seen that the solution of a

multi-objective optimization problem consists of a set, namely

the Pareto boundary. However, from a practical point of view,

a communication system ultimately requires a single solution

for operation. Picking a desirable point out of the set of the

Pareto boundary requires the incorporation of preferences or

priorities into the problem [24].

We divide this section into two parts. In the first part, we

focus on the weighted sum approach which transforms the

multi-objective optimization problem into a single-objective

optimization problem. The weighted sum is the simplest multi-

criteria decision making method but it is a compensatory

method in the sense that “poor” user rates can be compensated



by “good” ones. Moreover, the relation between weights and

user rate requirements remains unsolved [25].

The second part focuses on the user rate fairness. Rate

fairness essentially tries to avoid undesirable situations in

which a user maximizes its rate at the expense of some other

users. In this case, the rate of all users will be degraded to

match the rate of the user with the lowest quality channel.

A. Maximization of weighted sum-rate

The multi-objective optimization problem introduced in (3)

can be reformulated as maximization of a weighted sum of

user rates, which is one of the most popular figures of merit for

measuring the performance of a communication system. The

maximization of the weighted user rate with adaptive power

control can be expressed using the weighted sum approach as

follows:

max
p

K∑

k=1

wk log2

(
1 +

dkpk
σ2

)

s.t. p ∈ Ω

(10)

where non-negative {wk}, k = 1, . . . ,K are the given weights

assigned to different RCSTs, with
∑K

k=1 wi = 1. Note that

the objective function in (10) is concave with respect to the

power values, so it can be solved numerically using interior-

point methods. To solve (10) we used the CVX package [26],

which makes use of a primal/dual solver to deal with log-based

objective.

B. User rate fairness

With the emergence of heterogeneous networks, fairness

becomes crucially important along with concerns for excellent

throughput. There are many definitions of “fairness” in the

optimization literature [27], hence no consensus about a unique

definition is yet obtained.

Here, we consider the two most used definitions of fairness,

namely Max-Min fairness and proportional fairness.

1) Max-Min fairness: Max-Min fairness can be achieved if

and only if the allocation of available resources is feasible and

an attempt to increase the rate of any participants necessarily

results in the decrease in the rate of some other participants

with the smallest rate. In other words, it maximizes the user

with the minimum rate:

max
p∈Ω

min
k
{rk} (11)

On the downside, this definition of fairness does not perform

well in the presence of bottleneck users: if one user imposes

strong interference constraints it may prevent the others from

improving.

There are several algorithms for computing the Max-Min

fair allocation depending on the area of application. In general,

the most widely used algorithm for obtaining max-min fairness

is the water-filling algorithm (WF) [28]. Intuitively, WF satis-

fies users with a poor conditions first, and distributes evenly

the remaining resource to the remaining users enjoying a good

condition. In our case, we will focus first on assigning the

Algorithm 1 Max-Min Fairness

Require: Interference link gains A, number of FSS terminals

L, interference thresholds Ithr, maximum transmission

power Pmax and step size α.

1: Initialize:

The powers p(t=0) ← 0

The interference constraints I(t=0) ← Ithr1

The RCSTs with updated power Λ(t=0) = ∅
The iteration counter t = 1

2: repeat

3: Identify the worst FS station in terms of received

interference (the bottleneck ) assuming that all RCSTs

transmit with the same power:

lw = min
l

[
I(t−1)

∑K
k/∈Λ(t) al,k

]
. (12)

4: Assuming all RCSTs transmit with the same power,

find the RCTS that contributes the most to the interference

of lw:

kw = max
k/∈Λ(t)

alw,k. (13)

5: Derive what is the maximum transmit power that the

RCSTs can transmit without exceeding the interference

constraint of lw:

pw =
I(t−1)(lw)∑K
k/∈Λ(t) alw,k

. (14)

6: Assign p(t) ← p(t−1), update the the kw-th RCST,

with value pw, i.e, p
(t)
kw

= pw, and update Λ(t) = Λ(t−1) ∪
{kw}.

7: Find new interference constraints:

I(t) = I(t−1) − [A]k∈Λ(t) p
(t)

k∈Λ(t) , (15)

where [A]k∈Λ(t) denotes the matrix formed with the

columns of A indicated by the index set Λ(t).

8: t← t+1 and return to step 1 if the stopping criterion

is not meet.

9: until t = K + 1 (all the RCTSs have been updated).

power of the RCST transmitters (the bottleneck RCSTs) af-

fecting the worst FS station, i.e., the FS station which receives

the highest level of aggregate interference. The proposed max-

min algorithm for the cognitive satellite uplink is presented as

Algorithm 1.

2) Proportional fairness: Proportional fairness (PF) is

achieved if and only if the allocation of available resources

is feasible and a transfer of resources between two users is

accepted if the percentage increase in rate of one user is

larger than the percentage decrease in rate of the other user.

According to [29], [30], a vector of rates r is proportinally

fair if it is feasible and if for any other feasible vector r̂

the aggregate of proportional change is zero or negative, i.e.∑
r∈Ω

r̂−r
r
≤ 0. In [30], it is proved that a proportionally

fair allocation of rates is given by maximizing the sum

of logarithmic utility functions. Therefore, in our case, the



problem can be formulated as,

max
p

K∑

k=1

log10(pk)

s.t. p ∈ Ω

(16)

which can be solved using CVX package [26].

V. SIMULATION RESULTS

In order to evaluate the proposed optimization solutions, we

consider a simple scenario with K = 2 RCSTs like the one

depicted in Fig. 2. The parameters are defined as follows,

A =

[
0.4 0.25
0.1 0.3
0.2 0.1

]
, Ithr = 2, pmax = 10, dk = 1, σ2

k = 1, ∀k

(17)

Figures 3(a) and 3(b) illustrate the power and rate Pareto

regions and the corresponding Pareto power and Pareto rate

boundary for the cognitive satellite uplink sharing frequency

resources with the terrestrial network.

Figures 3(c) and 3(d) show the results of the proposed

techniques and compare the result with the gradient-based

power control proposed in [10], [17] with αk = 0.1, ∀k,

and 200 iterations. For comparison, we solved and plotted

the result of max
p

∑K
k=1 wkpk, subject to p ∈ Ω, which

corresponds to the maximization of the sum-power optimiza-

tion. We considered wk = 1, ∀k, both for the sum-rate and

sum-power optimization. For (9), we selected the initial point

randomly over the power Pareto region. Both power and rate

results shown in Fig. 3 have been summarized in Table I and

II, respectively.

In both Figures 3(c) and 3(d), we observe the technique

presented in [10] perfectly matches with the solution of the

maximization of the sum-powers, which goes in line with the

conclusion in [17]. However, this is not the optimal in terms of

sum-rate neither in terms of fairness. As expected, the max-

min fairness gives the same rate to both users. The PF, on

the other hand, allows a small difference between individual

rates to achieve higher sum-rate compared to the max-min.

The Pareto optimal solution lies in the Pareto boundary, but

its value strongly depends on the initial power assignment.

According to the achieved results, PF seems to be the best

solution since it provides a good trade-off between fairness and

overall satellite throughput. Even so, the choice of appropriate

algorithm depends on the design criteria we want to follow.

VI. CONCLUSION

In this paper, we investigated and analyzed a set of opti-

mization approaches to solve the power and rate allocation

in cognitive satellite uplink where RCSTs reuse frequency

bands of Ka-band terrestrial microwave links. We solve and

compare the proposed methods concluding that proportional

fairness is the best solution in terms of the good trade-off it

offers regarding fairness and rate. Results have demonstrated

the potential of power allocation optimization to satisfy the

TABLE I: Power Results [W]

Technique p1 p2 p1 + p2 p1 − p2
[10] 1.0527 6.3158 7.3684 5.2631

Pareto optimal (9) 1.7391 5.2174 6.9565 3.4783
Sum-Rate (10) 2.3126 4.2999 6.6125 1.9874

Max-Min (Algorithm 1) 3.0769 3.0769 6.1538 0
PF (16) 2.5001 3.9999 6.5 1.4998

TABLE II: Rate Results [bits/sec/Hz]

Technique r1 r2 r1 + r2 r1 − r2
[10] 1.0375 2.871 3.9085 1.8335

Pareto optimal (9) 1.4537 2.6363 4.09 1.1826
Sum-Rate (10) 1.7279 2.406 4.1339 0.67802

Max-Min (Algorithm 1) 2.0275 2.0275 4.055 0
PF (16) 1.8074 2.3219 4.1293 0.51451

interference requirements imposed by the incumbent terrestrial

network.
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