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SUMMARY
Microarray is a technology to screen a large number of genes to discover those differentially
expressed between clinical subtypes or different conditions of human diseases. Gene discovery
using microarray data requires adjustment for the large-scale multiplicity of candidate genes. The
family-wise error rate (FWER) has been widely chosen as a global type I error rate adjusting for
the multiplicity. Typically in microarray data, the expression levels of different genes are
correlated because of coexpressing genes and the common experimental conditions shared by the
genes on each array. To accurately control the FWER, the statistical testing procedure should
appropriately reflect the dependency among the genes. Permutation methods have been used for
accurate control of the FWER in analyzing microarray data. It is important to calculate the
required sample size at the design stage of a new (confirmatory) microarray study. Because of the
high dimensionality and complexity of the correlation structure in microarray data, however, there
have been no sample size calculation methods accurately reflecting the true correlation structure of
real microarray data. We propose sample size and power calculation methods that are useful when
pilot data are available to design a confirmatory experiment. If no pilot data are available, we
recommend a two-stage sample size recalculation based on our proposed method using the first
stage data as pilot data. The calculated sample sizes are shown to accurately maintain the power
through simulations. A real data example is taken to illustrate the proposed method.
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1 INTRODUCTION
Because of the huge dimensionality of microarray data, multiplicity of the statistical testing
is a critical issue in designing and analyzing such type of studies. The family-wise error rate
(FWER) is the probability that one or more false rejections are committed. Despite its well-
known conservatism, Bonferroni test has been one of most popular methods in analyzing
microarray data for controlling the FWER. Although Holm (1979) and Hochberg (1998)
improve upon such conservatism by devising multi-step testing procedures, they do not take
into account the dependency of the test statistics and consequently the resulting
improvement is often minor. Westfall and Young (1989, 1993) proposed a state-of-the-art,
step-down manner using a simulation or resampling method by which dependency among
test statistics is effectively incorporated. Westfall and Wolfinger (1997) derive exact
adjusted p-values for a step-down method for discrete data. Recently, the Westfall and
Young’s permutation-based test was introduced to microarray data analyses and strongly
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advocated by Dudoit and her colleagues, e.g. Dudoit, Yang and Callow (2000), Dudoit,
Shaffer and Boldrick (2003), Ge, Dudoit and Speed (2003).

Suppose that there are two groups to be compared using gene expression data. We assume
that group k(= 1, 2) has nk subjects (n = n1 + n2) and each subject contributes data of one
microarray. For patient i in group k (1 ≤ i ≤ nk; k = 1, 2), we observe expression data from m
genes, (xki1, …, xkim). We assume that, within group k, {(xki1, …, xkim), i = 1, …, nk} are IID
random vectors from an unknown distribution with means μkj = E(xkij), variances

 and correlation coefficients Σ = (ρj,j′)1≤j,j′≤m. The large sample theory requires

.

In order to discover genes that are differentially expressed between two groups, we perform
a statistical test on Hj : μ1j = μ2j vs. H ̄j : μ1j ≠ μ2j for each gene. We consider rejecting Hj (or
discover gene j) if the absolute value of two-sample t-test statistic

is large, where  is the sample mean of group k and

 the pooled variance for gene j.

Let  denote the complete null hypothesis with the relevant alternative hypothesis,

. Multiple testing procedures controlling the FWER choose critical values for T ̄j
so that the probability of rejecting one or more Hj’s is controlled below a specified level
under H0. A single-step procedure uses a common critical value c to reject Hj in favor of H ̄j
when |T ̄j| > c. In this case, the FWER fixed at α is defined as

(1)

In order to derive the critical value c = cα, we approximate the null distribution of max1≤j≤m
|T ̄j| using the permutation method proposed by Westfall and Young (1993). Jung, Bang and
Young (2005) claim that the single-step procedure has exactly the same probability of at
least one true rejections, global power in this paper,

as the Westfall and Young’s (1993) step-down procedure.

Large confirmatory microarray studies are becoming more common recently. Sample size
calculation is a critical step in designing such studies. There have been several publications
on sample size estimation for FWER-based multiple testing procedures without examining
the accuracy of their estimates. Furthermore, they focus on exploratory and approximate
relationships among statistical power, sample size and effect size (often, in terms of fold-
change), and use the conservative Bonferroni adjustment without any attempt to incorporate
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underlying correlation structure, e.g. Witt, Elston and Cardon (2000), Wolfinger et al.
(2001), Black and Doerge (2002), Lee and Whitmore (2002), Pan, Lin and Le (2002), Cui
and Churchill (2003). Showing that an ostensibly similar but incorrect choice of sample size
ascertainment could cause considerable underestimation of required sample size, Jung, Bang
and Young (2005) propose a sample size calculation for the Westfall and Young’s
permutation method under a hypothetical correlation structure called block compound
symmetry. Tsai et al. (2005), Tibshirani (2006) and Shao and Tseng (2007) propose sample
size methods for different multiple testing methods assuming specific correlation structures.
If the specified correlation structure is correct, then their sample size will be accurate.
Because of high dimensionality and complicated dependency of the expression data among
genes genes, it is almost impossible to model the true correlation structure accurately. As a
result, there have been no sample size methods reflecting the true correlation structure of
gene expression data.

In this paper, we propose sample size and power calculation methods for the FWER-based
multiple testing that reflect the correlations among the genes under consideration. If pilot
data are available, we approximate the true correlation structure from the pilot data.
Otherwise, we recommend a two-stage sample size recalculation method using the first stage
data as pilot data. Through simulations, we show that the calculated sample sizes accurately
maintain the specified power. We also propose a new type of statistical power for multiple
testing procedures. A real data example is used to illustrate the proposed methods.

2 POWER AND SAMPLE SIZE CALCULATION
We want to calculate the sample size for a new study whose data will be analyzed by
controlling the FWER. In this paper, we use a large sample approximation based on large n
assuming that nk/n = ak ∈ (0, 1). As Jung, Bang and Young (2005) show, the power of
FWER-based multiple testing methods depends on the standardized effect sizes δj = (μ1j −
μ2j)/σj under Ha and the correlation coefficients of expression data among genes. The
correlation coefficients usually are nuisance parameters in the multiple testing procedures.
We may specify δj for some candidate prognostic genes based on some prior biological
knowledge, but it will be difficult to specify the many correlation coefficients. In order to
tackle this problem, we assume that historical or pilot data are available to provide reliable
estimates of the correlation coefficients.

The required sample size for a future study is calculated based on the the assumption that the
null distribution of the test statistics to be calculated from the future study can be
approximated by that from the pilot data set, {(xki1, …, xkim), i = 1,…, nk, k = 1, 2}. Let X̄kj

and  the sample means and the pooled variances calculated from the pilot data. Let N(= N1
+ N2) denote the sample size of the new study, and ak = Nk/N the allocation proportion for

group k (a1 + a2 = 1). Naturally, we assume Nk > nk. Also, let X̄kj and  denote the sample
means and the pooled variances, respectively, that will be calculated from the new study.

For large N, the t-test statistics that will be obtained from the new study are

where
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and op(1) converges to 0 in probability as N →, ∞. Here, (Z1, …Zm) is the limit of test
statistics (T1, …, Tm) under H0 that will be calculated from the data of the future study. It is
easy to show that (Z1, …, Zm) is a random vector with means 0, variances 1 and covariance
matrix Σ. Note that the asymptotic correlation structure of the test statistics is identical to
that of the raw data, and δj = 0 under Hj. Given FWER = α, the critical value cα satisfies

(2)

from (1).

Suppose that there are m1 (prognostic) genes with non-zero effect sizes and m0(= m−m1)
(non-prognostic) genes with 0 effect sizes. Let  denote the set of prognostic genes. For an
integer γ(∈[1, m1]), we want to calculate the sample size N guaranteeing at least γ true
rejections with probability 1 − βγ by controlling the FWER at α. Then, we need to solve

(3)

with respect to N. Similarly, N for a given global power 1 − β0 can be obtained from

(4)

Note that 1 − β0 denotes the probability of any rejections while 1 • β1 denotes the probability
of any true rejections. Wang and Chen (2004), Jung (2005), Tsai et al. (2005), and Shao and
Tseng (2007) consider the probabilities of γ true rejections for different multiple methods.

In order to solve these equations, we need to approximate the probabilities (2)–(4) involving
the high dimensional random vector (Z1, …, Zm). Lin (2005) proposes an efficient
resampling method to approximate the null distribution of test statistics for multiple testing.
We modify his method to approximate the alternative as well as null distributions of the test
statistics that will be obtained from the future study using pilot data. If a pilot data set {(xki1,
…, xkim), i = 1, …, nk, k = 1, 2} is available and its size is reasonably large for a reliable
estimation of the true correlation coefficients, then the distribution of (Z1, …, Zm) can be
approximated using the historical or pilot data. That is, we approximate the distribution of
(Z1, …, Zm) from the simulated data conditioning on pilot data, (Z ̃1, …, Z ̃m), where
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 and (εki, 1 ≤ i ≤ nk, k = 1,
2) are IID N (0, 1) random variables which are independent of the pilot data. See Appendix
for a proof.

The set of prognostic genes and their effect sizes may be prespecified based on prior
biological knowledge or the estimated effect sizes from the pilot data. The sample size
calculation procedure can be summarized as follows.

Algorithm for Sample Size Calculation
I. Input variables:

i. Pilot data {(xki1, …, xkim), i = 1, …, nk, k = 1, 2}.

ii. Number of prognostic genes m1, their identifiers  = {j1, …, jm1}, and
effect sizes (δ j1, …, δjm1). For the remaining m0(= m − m1) genes, effect
sizes are 0.

iii. FWER = α.

iv. Number of minimum true rejections γ (≤ m1), and the probability of γ true
rejections 1 − βγ.

v. Proportion of subjects in each group, a1 and a2 (a1 + a2 = 1).

II. Generate B copies of (Z ̃1, …, Z ̃m), {(z̃b1, …, z̃bm), b = 1, …, B}.

III. Given FWER = α, calculate cα by the upper 100α percentile of ũ1, …, ũB, where ũb
= max1≤j≤m |z̃bj|.

IV. Let

Then, given 1 − βγ, the sample size N* is obtained by solving h(N) = 1 − βγ using
the bisection method.

Note that above method can be used for sample size recalculation in the midst of a study. At
the design stage of a study, we calculate an approximate sample size N̂ based on pilot data
using this algorithm or projected correlation coefficients as in Jung, Bang and Young
(2005). Often, the first stage sample size n is chosen by half of N̂. We collect the first stage
data {(xki1, …, xkim), 1 ≤ i ≤ nk, k = 1, 2}, and calculate the final sample size N using them
as pilot data. If N(= N1 + N2) is smaller than n(= n1 + n2), then we stop the study. Otherwise,
we collect stage 2 data, {(xki1, …, xkim), n1 + 1 ≤ i ≤ Nk, k = 1, 2}, and conduct the multiple
testing procedure using the cumulative data {(xki1, …, xkim), 1 ≤ i ≤ Nk, k = 1, 2}.

3 SIMULATIONS
Extensive simulations were conducted to evaluate the accuracy of our sample size
calculation method that is derived using large sample approximations. Suppose that there are
m = 1000 candidate genes whose expression levels have a multivariate Gaussian distribution
consisting of 100 independent blocks. Within each block, 10 genes have a compound
symmetry correlation structure with a common correlation coefficient ρ(= 0.3 or 0.6). The
marginal distributions have means μ1j = 0.5 for 1 ≤ j ≤ 10, μ1j = 0 for 11 ≤ j ≤ 1000 and μ2j
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= 0 for 1 ≤ j ≤ 1000, and unit marginal variances for both groups σj = 1 for j = 1, …, m. Note
that the standardized effect sizes are δj = 0.5 for  = {1 ≤ j ≤ 10} and δj = 0 for  = {11 ≤
j ≤ 1000}. We consider the sample size calculation based on a pilot data set as discussed
above. At first, we generate pilot data of size n, {(xki1, …, xkim), 1 ≤ i ≤ nk, k = 1, 2}, with
equal allocation (a1 = a2 = 1/2). Using each pilot data set, we estimate the total sample size
N for a power of 1 − βγ = 0.8 for γ= 0, 1, 3, 5 or 7 by controlling the FWER at 5%. For each
pilot data set, B = 5000 sets of (εki, 1 ≤ i ≤ nk, k = 1, 2) are generated for estimating N. We
generate 1000 pilot data sets of size n, so that we will have 1000 estimated sample sizes N,
under each simulation setting.

Figure 1 displays the empirical distribution of the estimated sample sizes N from 1000 pilot
data sets of size n = 20, 50 or 100 for ρ = 0.3 and γ = 5. We observe that the variance of N
decreases as n increases. This outcome is natural since, with a larger n, we have a better
estimation of the true correlation structure of the gene expression data, and consequently we
obtain a more accurate sample size estimate. Furthermore, the center of the distribution of
estimated N’s increases in n.

Figure 2 displays the quartiles of the estimated N’s for 10 ≤ n ≤ 150 and γ = 1, 3, 5, 7, and 9.
As expected, N increases in γ. The required N under ρ = 0.6 is larger than that under ρ = 0.3
for γ ≤ 5, but the comparison switches to the opposite direction for γ ≥ 7. The quartiles of N
tend to increase in n for small n values, but become stable for large n, say for n > 60. The
interquartile range of N decreases in n as observed in Figure 1 also, and is quite narrow over
a wide range n values implying that the proposed sample size formula provides a stable
sample size estimate with pilot data of a moderate size. In these simulations, a relatively
small m(= 1, 000) was chosen to loosen the computation burden.

Now, we want to check if an estimated N really guarantees the intended power 1 − βγ. We
consider the case with n = 100 and ρ = 0.3 among the previous simulation settings. Given γ,
we choose N by one of the three quartiles from Figure 2, generate 1000 sets of microarray
data with size N under the chosen simulation setting, and apply the permutation-based
multiple testing procedure with α = 0.05 to each simulation data set. For each simulation
data, we estimate the critical value cα from B = 5000 permutations. Empirical power, 1 − β ̂γ,
is obtained as the proportion of simulation data sets with at least γ true rejections. Table 1
summarizes the simulation results. We observe that the estimated N is very stable (the
interquartile range is at most 7 under the simulation settings). The estimated sample sizes
within the interquartile range closely maintain the intended power, 1 − βγ = 0.8, except for γ
= 1. Due to simulation error and the narrow interquartile range, a small increase in N
between Q2 and Q3 does not necessarily lead to an increased empirical power.

4 EXAMPLE
Huang et al.(2003) published DNA microarray data from n = 37 breast cancer patients (n1 =
19 LN− patients and n2 = 18 LN+ patients) to identify the genes that were differentially
expressed by their lymph node (LN) status. The original data, available from //
data.genome.duke.edu/lancet.php, include 12625 probe sets, called genes in this section.
Expression values were calculated using the Robust Multichip Average (RMA) method
(Irizarry et al., 2003). RMA estimates are based upon a robust average of background
corrected PM intensities. Normalization was done using quantile normalization (Bolstad et
al., 2003). We removed all “AFFX” genes and filtered out the genes for which there were
less than 8 present calls among the 37 present/marginal/absent calls. The filtering yielded m
= 6599 genes which were then used in the subsequent analyses.

The estimated standardized effect sizes of top 20 genes are distributed between 1.177 and
1.869 in absolute value. Suppose that we want to calculate the sample size of a new
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microarray study to discover the genes that are differentially expressed by the lymph node
(LN) status of breast cancer patients using the data of Huang et al.(2003) as pilot data. We
specify the set of prognostic genes  by the top 20 genes. In order to reflect the variation in
the estimated effect sizes and for a slightly conservative sample size calculation, the true
effect sizes of the specified m1 = 20 prognostic genes are set at the 75% of the estimated
standardized effect sizes.

Figure 3 displays the estimated N for γ (∞ [0, 20]) true rejections by α = 0.05 multiple
testing with 1 − βγ = 90% of power. We assume a1 = a2 = 1/2, which are close to the group
proportions nk/n in the pilot data, and B = 10, 000 simulations are conducted for the sample
size calculation. In this sample size calculation, we consider the m = 6599 genes that
remained in the pilot data after filtering, but the set of genes included in the final analysis
may be slightly different depending on the results of data preprocessing. From Figure 3, the
required sample size monotonically increases from N = 37 for γ = 1 to N = 192 for γ = 20.
Note that n = 37 of the Huang et al.(2003) data is about the right size for at least one true
rejection, i.e. γ = 1. The expected number of false rejections, defined as Σj∈  P(|Tj| > cα)
and estimated from the B = 5000 simulations, is only about 0.1. As a referee suggested, we
also checked the empirical FWER under H0, and found that it was 0.053, which is close to
the nominal 5%, with n = 37.

It is difficult to make direct comparisons of our sample size with those by other methods
since different methods are based on different kinds of type I error control and different
types of power. Pan, Lin and Le (2002) calculate sample size of Bonferroni test by
specifying the effect size of a prognostic gene and the marginal power. For a prognostic
gene with effect size δ0, the marginal power given N is expressed as

where  and φ(·) is the probability density function of the standard normal
distribution. In order to expand the formula by Pan, Lin and Le (2002), suppose that all m1
prognostic genes have the same effect size δ0. Then, ignoring the possible dependency
among genes, we can calculate the probability of at least γ true rejections by

(5)

Given (m1, δ, γ, 1 − βγ, a1), we obtain the sample size by solving this equation with respect
to N using a numerical method, such as the bisection method. Let’s consider above breast
cancer data example assuming that the top m1 = 20 genes have equal an effect size δ0 = 1
and the remaining m0 = 6579 genes have 0 effect sizes. For γ = 15 and 1 − βγ = 0.9, the
required sample size for Bonferroni method is obtained as N = 118 from (5), while our
formula reflecting the dependency observed from the Huang et al.(2003) data gives N = 102
under the same parameter setting.

5 DISCUSSIONS
Our sample size calculation method is based on large sample approximations. So, an
accurate sample size estimation requires pilot data with a reasonable sample size. Even
though a pilot data set may not be large enough, we still may use it in designing a new study
since it will give us a better estimation than a complete projection from no prior information
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on the complicated structure of the gene expression data. From extensive simulations, we
observe that a small pilot data set tends to give an underestimated sample size N. If n is
smaller than 50% of the calculated N, we recommend to increase the final N by 5% to 10%
based on our experience from the simulation studies.

When no pilot data are available, we propose a two-stage microarray study design for
accurate sample size calculation reflecting the dependency among different genes and an
approximation to the number of real effects. Two-stage design methods for gene discovery
have been proposed by many researchers, e.g. Satagopan et al.(2002), Zehetmayer, Bauer,
Posch (2005), Lin (2006), Moerkerke and Goetghebeur (2008). These methods screen a
small number of promising genes based on the significance observed from the first stage
data, and the final testing is conducted at the end of the second stage accounting for the two-
stage testing procedure. In our two-stage design, however, a definitive testing is done only at
the second stage, so that we do not need to adjust the type I error for the two-stage design at
the second stage.

We generate IID random numbers, (εki, 1 ≤ i ≤ nk, k = 1, 2), from N (0, 1) distribution. In
fact, they can be generated from any distribution with mean 0 and variance 1. However, the
normal distribution was shown to provide the best small sample approximation (simulation
results not reported). Note that the approximate normality of the test statistics results from
the asymptotic theory for large number of arrays rather than the normality of gene
expression data.

The proposed sample size calculation method is based on the single-step multiple testing
procedure (SSP). If one wants a sample size for a given global power 1 − β0, then the
required sample size for SSP will be identical to that for a step-down procedure (SDP), since
the two types of procedures have the same global power. Theoretically, SDP has a slightly
larger true rejection probability than SSP, especially with a small m. With a large m and a
relatively small m1 as in most microarray data, however, the true rejection probability is
almost identical between the two types of multiple testing procedures, so that the proposed
sample size method can be used for SDP also. Furthermore, the proposed sample size
estimation method can be easily modified for SDP when the true rejection probability, 1 − β
γ with γ > 0, is specified.

The proposed sample size estimation method is useful for any studies collecting high
dimensional data such as SNP or proteomic studies. It can be easily modified for a FDR-
based multiple testing procedure too.
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Appendix
We want to show that the unconditional distribution of (Z1, …, Zm) can be approximated by
the conditional distribution of (Z ̃1, …, Z ̃m) given the pilot data  = {(xki1, …, xkim), i = 1,
…, nk, k = 1, 2} with a large n. In the following proof, we assume a nearby alternative

hypothesis with respect to n(< N), so that we use approximations,  and

. Under , by the central limit theorem for large N,
(Z1, …, Zm) is approximately normal with marginal means 0 and variances 1, and correlation
coefficients ρjj′.

Now, we derive the conditional distribution of (Z ̃1, …, Z ̃m) given the pilot data for large n.
Suppose that (εki, 1 ≤ i ≤ nk, k = 1, 2) are IID N (0, 1) random variables independent of .
Since Z ̃j are linear combinations of (εki, 1 ≤ i ≤ nk, k = 1, 2), (Z ̃1, …, Z ̃m) has a normal
distribution conditioning on . Hence, it suffices to show that, conditioning on , (Z ̃1, …,
Z ̃m) has marginal means 0 and variances 1, and correlation coefficient matrix Σ = (ρjj′)1≤j,j′

≤m. Since , we have

Also,

since  and . For 1 ≤ j ≠ j′ ≤
m,

Here,  and

which equals . This completes the proof.
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Figure 1.
Distribution of the estimated sample size N from 1000 pilot data sets of size n = 20, 50 or
100 under ρ = 0.3 and γ = 5
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Figure 2.
Median (solid line) and the first and third quartiles (broken line) of the estimated sample
sizes N from 1000 pilot data sets of size n with ρ = 0.3 in blue and ρ = 0.6 in red
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Figure 3.
Sample size required for a breast cancer study estimated using the Huang et al. (2003) data
as pilot data
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