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Abstract

Motivation: The variation in community composition between microbiome samples, termed beta

diversity, can be measured by pairwise distance based on either presence–absence or quantitative

species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of

variance to a matrix of pairwise distances, partitions within-group and between-group distances to

permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled

microbiome. Within-group distance and exposure/intervention effect size must be accurately mod-

eled to estimate statistical power for a microbiome study that will be analyzed with pairwise dis-

tances and PERMANOVA.

Results: We present a framework for PERMANOVA power estimation tailored to marker-gene

microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method

for distance matrix simulation that permits modeling of within-group pairwise distances according

to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within

the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power

from simulated distance matrices; and (iv) an R statistical software package that implements the

above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality

and incorporate group-level effects, which are quantified by the adjusted coefficient of determin-

ation, omega-squared (x2). From simulated distance matrices, available PERMANOVA power or

necessary sample size can be estimated for a planned microbiome study.

Availability and implementation: http://github.com/brendankelly/micropower.

Contact: brendank@mail.med.upenn.edu or hongzhe@upenn.edu

1 Introduction

Microbiome studies often compare groups of microbial communities

with different environmental exposures, or to which different inter-

ventions have been applied. For example, a study may evaluate the

difference between the respiratory tract microbial communities of

human subjects with exposure to different antibiotic treatments.

The fundamental measure in such a study is the count of community

members (species or operational taxonomic units—OTUs), typically

accomplished via sequencing a marker gene such as the 16S riboso-

mal RNA gene for bacteria. Pairwise distance metrics facilitate

standardized comparison of community membership between indi-

vidual study subjects by addressing the problems of differential
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membership and mutual absence. To assess differences between

groups of subjects (i.e. the explanatory power of a grouping factor,

such as antibiotic exposure), pairwise subject-to-subject distances

must be arrayed in a square distance matrix. Group-level differences

can then be analyzed by ordination methods such as principal coord-

inates analysis or by a significance test such as PERMANOVA

(Anderson, 2001; Legendre and Legendre, 2013; McArdle and

Anderson, 2001).

The design of microbiome studies demands consideration of stat-

istical power—an adequate number of subjects must be recruited to

ensure that the effect expected from the exposure or intervention of

interest can be detected. Here, we focus on the power of 16S tag

sequencing studies that are analyzed using pairwise distances (specif-

ically, UniFrac and Jaccard distances) and PERMANOVA. UniFrac

is a distance metric based upon the unique fraction of branch length

in a phylogenetic tree built from two sets of taxa. Comparison of

microbiome samples can be performed via unweighted UniFrac,

which considers strictly the presence or absence of taxa, or weighted

UniFrac, which also considers relative abundance (Lozupone and

Knight, 2005; Lozupone et al., 2007, 2010). Jaccard distance, a

non-phylogenetic measure of difference between two sample sets, is

calculated as one minus the ratio of the intersection to the union; it

can also be calculated in unweighted (‘binary’) or abundance-

weighted fashion (Chao et al., 2005; Levandowsky and Winter,

1971).

The power of PERMANOVA, like the power of traditional ana-

lysis of variance, depends on the number of exposure or intervention

groups (degrees of freedom), the number of subjects per group (re-

sidual degrees of freedom), the within-group distances (within-group

sum of squares) and the size of the effect (the difference between the

between-group sum of squares and within-group sum of squares).

Type II error increases and statistical power decreases with more

groups, fewer subjects, greater within-group distance and lesser ef-

fects (Zar, 1999). However, the pseudo-F ratio is not distributed

like Fisher’s F-ratio under the null hypothesis, so standard methods

of power estimation for parametric ANOVA do not apply to the

studies analyzed by PERMANOVA (Anderson, 2001). Furthermore,

the relationship between microbiome community structure and

within-group distances is often obscure, and the effect size to be ex-

pected from anticipated exposures or planned interventions upon

the microbiome is often uncertain.

Here, we present a framework for PERMANOVA power and

sample size estimation tailored to marker-gene microbiome studies

that will be analyzed with pairwise distances. We first describe a

novel method for distance matrix simulation that permits modeling

within-group pairwise distances according to pre-specified popula-

tion parameters. We then demonstrate how to incorporate effects of

different sizes within the simulated distance matrix. Building on the

capacity to accurately model within- and between-group distances,

we present a simulation-based method for estimating

PERMANOVA power. Finally, we outline an R statistical software

package (The R Foundation for Statistical Computing, www.r-proj

ect.org—R Core Team, 2014) that implements the above, and pro-

vide examples of its use.

2 Methods

2.1 PERMANOVA and effect size
In many microbiome studies, one is interested in testing the null hy-

pothesis that there is no difference in overall microbiome compos-

itions of p bacterial taxa among the a exposure groups. Consider the

simple case that we have a exposure or intervention groups and n ob-

servations in each group with a total of N¼na observations. The

microbiome composition between two subjects i and j determines

their distance dij. We focus on UniFrac and Jaccard distances because

they are widely used and conveniently implemented in bioinformatic

analysis packages (Caporaso et al., 2010; Schloss et al., 2009).

Distance-based multivariate analysis of variance therefore provides a

non-parametric test of the null hypothesis of no differences in overall

bacterial compositions among the a exposure groups.

PERMANOVA is a non-parametric method of multivariate ana-

lysis of variance based on pairwise distances (Anderson, 2001). It

extends traditional analysis of variance to a square matrix of pair-

wise distances with significance testing performed by permutation.

Let dij be the distance of microbiome between observation i and j,

and �ij takes the value 1 if observation i and j are in the same group

and 0 otherwise. For pairwise distances, the within-group sum of

squares (SSW) is defined as the sum of the squares of distances within

groups divided by the number of subjects per group,

SSW ¼
1

n

XN�1

i¼1

XN

j¼iþ1

d2
ij�ij;

and the total sum of squares SST is defined as

SST ¼
1

N

XN�1

i¼1

XN

j¼iþ1

d2
ij:

The between-group sum of squares (SSA) is defined as the

difference between the total sum of squares SST and SSW,

SSA¼ SST � SSW. The PERMANOVA test statistic, termed the

pseudo F-ratio, is analogous to Fisher’s F-ratio; it is based upon the

ratio of the sum of the squared between-group distances to the sum

of the squared within-group distances

F ¼ SSA=ða� 1Þ
SSW=ðN � aÞ ;

where a� 1 are the degrees of freedom defined by the grouping fac-

tor and N� a are the residual degrees of freedom. The significance

of the pseudo F-ratio can be assessed by permutations.

As with the conventional ANOVA, the effect size of the pseudo

F-ratio can be quantified as the coefficient of determination (R2),

which is one minus the ratio of the within-group sum of squares to

the total sum of squares. This is equivalent to the ratio of the be-

tween-group sum of squares to the total sum of squares,

R2 ¼ 1� SSW

SSW þ SSA
¼ SSA

SST
:

However, the R2, which is the proportion of distance accounted for

by the grouping factor, is biased because it depends solely on the

sums of squares of the sample, without adjustment to estimate the

effect size in the general population. Omega-squared (x2) provides a

less biased measure of effect size for ANOVA-type analyses by ac-

counting for the mean-squared error (Olejnik and Algina, 2004;

Ziegler and Bühner, 2009) of the observed samples,

x2 ¼
SSA � ða� 1Þ SSW

N�a

SST þ SSW

N�a

:

The power of PERMANOVA depends on the sample sizes, the alter-

native hypothesis that can be specified by different population-level

microbial compositions among a groups, and their variances. These

parameters determine the pairwise distances and their variances, the

between-group sum of squares SSA and the total sum of squares SST.
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In planning microbiome studies, the key to sample size/power calcu-

lation is to specify these key quantities. We present in the following

sections a novel way of generating the pairwise distances that can be

used to calculate the within- and between-group sums of squares

and the effect size x2. This provides a valid method for simulation-

based sample-size/power calculations.

2.2 Simulating within-group pairwise distances by

random subsampling from OTU counts
Many different distributions of community members may yield the

same distance between two microbiome samples. PERMANOVA

testing operates on distances, not species or OTU counts. Therefore,

multiple different species distributions may serve to model micro-

biome community structure for the purposes of PERMANOVA test-

ing so long as the species distributions accurately recapitulate the

distribution of distances. We developed a technique to simulate a

pre-specified distribution of pairwise distances based upon random

subsampling from a simple, uniform OTU vector.

We began with a uniform vector of species or OTU counts, repre-

senting the microbial community of a single subject. For example, we

generated a vector of 1000 OTUs with a single sequence count in each

OTU bin. We then sampled the OTU vector, randomly selecting a

proportion of the sequences to retain (Hughes and Hellmann, 2005).

We found that random subsampling from two subject vectors at the

same level (i.e. with the same proportion of sequence counts retained)

generated a predictable pairwise distance. Though the subsampling

procedure operates randomly and independently on each subject

vector, its effect upon pair-wise distance is consistent: the fewer se-

quences retained, the greater the distance between subjects.

Figure 1 depicts the relationship between subsampling and pair-

wise distance for four distance metrics. Each point represents a subject

pair, and each panel depicts 10000 pairs. Pairs are identical subject

vectors that were subsampled to randomly generated levels; each sub-

ject in a pair was assigned the same proportion of sequences to be re-

tained, but the retained sequences were randomly chosen for

individual subjects and differed between subjects in a pair. We

observed that, for unweighted and weighted Jaccard and UniFrac met-

rics, the distances between subjects varied according to the proportion

of sequences retained. Where all sequences were retained the distance

was 0, and as fewer sequences were retained, the distance approached

1. (Weighted UniFrac is presented in normalized form for this and all

subsequent analyses.) The pattern of this increase varied among dis-

tance metrics. For weighted metrics, it also varied according to the

number of sequences included in each OTU bin prior to subsampling

(data not shown). Nevertheless, random subsampling applied to uni-

form OTU vectors served to generate a set of pairwise distances

matching any pre-specified mean distance; this was accomplished by

choosing the proportion of retained OTUs from a distance–metric-

specific hash table with the form of Figure 1. Because all distances

were calculated from OTU count data, the simulated pairwise dis-

tances satisfied the triangle inequality. Thus, we were able to simulate

a distance matrix with pre-specified mean distance and any number of

subjects for use in the estimation of PERMANOVA power. For un-

weighted Jaccard, expected distance can be calculated directly from

the proportion of OTUs retained; as shown in Figure 1, the calculated

distances confirm our simulation-based method.

2.3 Simulating within-group distance variance by

specifying the number of OTUs in the simulated vector
Just as the mean pairwise distance of a group of simulated subjects

can be specified by random subsampling from the sequence counts

in OTU bins, we found that the variance of the pairwise distances

can be specified by the number of simulated OTU bins. Repeated

random subsamples from a uniform OTU vector with 5000 OTUs

produced a distribution of distances with less variance than repeated

random subsamples from a uniform OTU vector with 500 OTUs,

which in turn produced a distribution of distances with less variance

than subsampling a uniform vector of 50 OTUs. Figure 2A depicts

the same analysis of unweighted Jaccard distance generated between

subject pairs subsampled to a proportion of retained OTUs as was

depicted in Figure 1, but with subject pairs generated to include dif-

ferent numbers of OTUs per subject. As the number of OTUs per

sample increased, the variance of unweighted Jaccard distances

decreased. The same relationship was observed for weighted Jaccard

distances, unweighted and weighted UniFrac distances.

We found that the relationship between the number of OTUs in

the subsampled OTU vector and the standard deviation of the pair-

wise distances that result from subsampling is linear on a log–log

plot. Figure 2B depicts this relationship for unweighted and

weighted Jaccard and UniFrac distances. The pairwise distances de-

picted were simulated by subsampling to retain 50% of the simu-

lated OTUs. The relationship between the number of OTUs and

standard deviation of pairwise distances was found to also depend

upon the extent of subsampling (Fig. 2A). Therefore, accurate mod-

eling of a pre-specified distance standard deviation can be accom-

plished by choosing the number of OTUs after the proportion of

OTUs to be retained in subsampling was decided (based upon the

pre-specified mean distance parameter). This strategy allows
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Fig. 1. Random subsampling from OTUs permits simulation of specified pair-

wise distances. Each point represents a pair of uniform OTU vectors ran-

domly subsampled without replacement to the same proportion of retained

OTUs. The relationship between the proportion of OTUs retained in subsam-

pling and the distance between the members of the pair is shown for four dif-

ferent distance metrics: as the proportion retained increases, the distance

decreases from 1 to 0. For unweighted distances, subsampling was applied

to uniform OTU vectors with a single sequence read per OTU bin; for

weighted distances, subsampling was applied to uniform OTU vectors with

10 sequence reads per OTU bin. For unweighted Jaccard distances, a line is

also shown to indicate direct computation of expected distance from the pro-

portion of OTUs retained

Microbiome studies using pairwise distances and PERMANOVA 2463

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/15/2461/188732 by guest on 16 August 2022



specification of pairwise distance variance as well as mean in a simu-

lated square distance matrix.

2.4 Group differences incorporated into simulated

distance matrices by segregating OTU membership
We next sought to incorporate group differences into simulated dis-

tance matrices, a necessary step to allow specification of effect size in

power analysis. Having modeled within-group distances by subsam-

pling OTUs and the variance of within-group distances by specifying

the number of OTUs to be subsampled, we found that groups of simu-

lated subjects could be distinguished by segregating community mem-

bership between groups. For example, for a simulated study of three

exposure groups, with 10 subjects per group, we specified the within-

group distance distribution across all groups by specifying the number

of OTUs in the simulated community and the proportion of OTUs to

be retained per sample in subsampling. We then selected at random a

single group of subjects as the affected group. For this group of sub-

jects alone, we renamed a proportion of OTUs. By renaming the

OTUs only in a single group we preserved the modeled distribution of

within-group distances across all groups, but with greater between-

group distances (i.e. with an effect of the exposure). The effect size

was determined by the proportion of unique OTUs in the affected

group, relative to the unaffected groups.

In this way, a range of effect sizes could be generated: where the af-

fected group included no unique OTUs, the between-group distances

matched the within-group distances, and the effect was near 0; where

the affected group included entirely unique OTUs (i.e. community mem-

bership was completely segregated between affected and unaffected

groups), the effect size was large. As we proceeded to quantify these ef-

fect sizes, we found that the definition of small and large effects is con-

tingent upon the chosen distance metric and sampling site—i.e. upon

the distribution of within-group distances (see Section 2.8).

2.5 Estimation of PERMANOVA power using simulated

distance matrices
In order to estimate statistical power for PERMANOVA testing, we

first simulated a set of distance matrices. The within-group pair-

wise–distance distributions were specified to be the same across the

entire set of distance matrices, but each simulated distance matrix

differed in its simulated effect size (i.e. in the proportion of unique

OTUs that distinguish subjects in a randomly selected affected group

from subjects in the unaffected groups). The set of simulated dis-

tance matrices thus encoded a range of effects, extending from very

small effects (no specified difference in group membership, only the

stochastic differences in group membership that may result from the

subsampling procedure) to very large effects (no common member-

ship between affected and unaffected groups).

We then selected bootstrap samples of subjects from each of the

simulated distance matrices. For example, to analyze the

PERMANOVA power for a study that includes 10 subjects per ex-

posure group, we randomly selected with replacement 10 subjects

from each exposure group in each simulated distance matrix, and

we repeated the selection procedure 100 times. The result of each

bootstrap selection was a small matrix of pairwise distances—a sub-

set of the larger simulated distance matrix. The 100 bootstrap selec-

tions taken from each simulated distance matrix thus served as 100

estimates of the true effects encoded in the larger distance matrices.

We next performed PERMANOVA testing on each bootstrap

distance matrix and compared the PERMANOVA P-value with the

pre-specified threshold for type I error (typically, 0.05). For boot-

strap distance matrices drawn from distance matrices that incorpor-

ate true effects, the proportion of PERMANOVA P-values that

exceed the type I error threshold (i.e. which would be deemed not

statistically significant despite the true group-level effect) is the type

II error. For each simulated effect, PERMANOVA power can be cal-

culated as the proportion of bootstrap distance matrices for which

PERMANOVA P-values are less than the pre-specified threshold for

type I error. Figure 3 depicts the result of this procedure: along the

horizontal axis the x2 values associated with the simulated distance

matrices (true effects) are shown; the vertical axis shows the

PERMANOVA power that corresponds with each simulated effect,

based upon PERMANOVA testing of bootstrap distance matrices.

Fig. 3. Bootstrap sampling of simulated distance matrices allows

PERMANOVA power estimation. An example of PERMANOVA power estima-

tion by bootstrap sampling from simulated distance matrices is shown. The

horizontal axis depicts the effect sizes simulated by segregating OTU group

membership, and the vertical axis represents the power to detect the effect,

as determined by the proportion of bootstrap distance matrices drawn from

the simulated distance matrix for which PERMANOVA P-values were below

the specified type I error threshold. The simulated study includes three ex-

posure groups; the power to detect effects with five, 10 and 20 subjects per

group is depicted in red, green and blue, respectively. Power estimated for a

null effect (i.e. differences between subjects but not between groups) was

equal to PERMANOVA type I error

Fig. 2. The number of OTUs subsampled determines the variance of simu-

lated distances. The variance of simulated distances depends upon the num-

ber of simulated OTUs in the vector to which the random subsampling

procedure is applied. (A) depicts the relationship between the proportion of

OTUs retained and the resulting unweighted Jaccard distance. As in Figure 1,

each point represents a pair of OTU vectors randomly sampled without re-

placement to the same level. The color of points indicates the number of

OTUs in the vector. (B) quantifies the relationship between number of OTUs

in the subsampled vector and the standard deviation of the resulting dis-

tances. The relationship between OTU number and distance standard devi-

ation is linear on a log–log plot, though the relationship differs for the four

distance metrics depicted. All data shown are from subsampling at 50%
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We performed the bootstrap procedure with five, 10 and 20 subjects

per group. As expected, PERMANOVA power increased with the

number of subjects per group.

To confirm the accuracy of our estimation method, the

PERMANOVA power observed under the null hypothesis was cal-

culated from a null distance matrix, which was generated by calcu-

lating pairwise distances from a set of simulated samples in which

all groups of subjects were identical (i.e. without any difference be-

tween groups, only differences between subjects within groups). The

described bootstrap procedure applied to the null distance matrix

produced an estimate of PERMANOVA power equal to the pre-

specified threshold for type I error, as should be the case. We thus

validated our method of power estimation.

2.6 The micropower package permits convenient

estimation of statistical power for microbiome studies
We implemented the strategy described above in a package for R

statistical software in order to facilitate planning of microbiome

studies that are to be analyzed by pairwise distances and

PERMANOVA. The package is freely available under a GPLv2

license and is available online via Github (http://github.com/bren

dankelly/micropower). The package can be installed with the

R commands:

library(devtools)

install github(repo¼“micropower”,username¼“brendankelly”)

2.7 Human Microbiome Project datasets provide

parameters for within-group distances
Having established techniques to simulate pairwise–distance matri-

ces with pre-specified distance mean and standard deviation, we

sought to define the range of these parameters observed in biological

data. The Human Microbiome Project (HMP) dataset provides ex-

tensive 16S rRNA marker gene data from the human microbiome

sampled at multiple body sites. As such, it is a resource from which

population parameters (i.e. mean pairwise distance and distance

standard deviation) can be drawn to specify simulated distance

matrices. We analyzed the distributions of unweighted and weighted

Jaccard and UniFrac distances calculated from 16S rRNA marker

gene samples from 18 human body sites, which provide parameters

for modeling the expected within-group distance distribution (HMP

Consortium, 2012a, b). The within sampling-site distance distribu-

tions observed in the HMP datasets (July 2010 16S data freeze;

NCBI SRA projects SRP002395 and SRP002012; http://hmpdacc.

org/HMQCP/), which comprise 2910 samples from which V1–V3

16S rRNA amplicon sequencing was performed and 4788 samples

from which V3–V5 amplicon sequencing was performed, are de-

picted in Figure 4.

2.8 Effect sizes based on published microbiome

datasets
We cataloged the effect size in several published microbiome studies,

representing a variety of sampling sites, exposures and interventions

(Charlson et al., 2010, 2012; Peterfreund et al., 2012; Wu et al.,

2011). Table 1 depicts the results of this analysis, with observed x2

values calculated from unweighted and weighted Jaccard and

UniFrac distances. We restricted our analysis to comparisons within

distance metrics because the choice of distance metric is a decision

to be determined by a priori hypotheses regarding the most import-

ant features of community membership.

Comparison of x2 values across different studies demonstrated

the range of effect sizes observed. For weighted UniFrac, x2 values

ranged from 0 to 0.646; for unweighted UniFrac, from 0.0001 to

0.201. For weighted Jaccard, x2 values ranged from 0 to 0.230; for

unweighted Jaccard, from 0 to 0.117. (By convention, negative x2

values are treated as 0.) The scale of effects was different for the dif-

ferent distance metrics, but the rank order of effect sizes observed

for different interventions was largely consistent.

The HMP data described above provided a helpful comparator,

by which we judged large and small effects. The large effect

observed with clindamycin treatment exceeded even the effect of

human anatomy—i.e. the difference observed between two distinct

sampling sites (grouping samples from anterior nares versus stool

yields x2 of 0.567 using weighted UniFrac distance). And, though

the observed effects of smoking upon the microbial communities of

the human nares and oral cavity were small (x2 from 0.007 to

0.042), they did exceed the presumably stochastic effect observed

between left and right retroauricular crease skin microbiome sam-

ples (x2 from 0 to 0.0001).

3 Application and results

Here, we provide two examples of applications of the micropower

package in order to demonstrate its use.

3.1 Example 1: power calculation based on unweighted

Jaccard distances
For the first example, we estimated statistical power for a study of

the impact of antibiotic exposure upon the human stool micro-

biome. The study includes three antibiotic exposure groups, with a

primary outcome of community structure difference between groups

Fig. 4. HMP data provide parameters for modeling the distribution of within-

group distances. The distribution of within-sampling-site distances is shown

for 18 different human microbiome sampling sites. Four different distance

metrics are depicted as applied to data from two different 16S rRNA ampli-

cons (V1–V3 and V3–V5). The colored boxes delineate the interquartile range

(IQR), and the whiskers extend to 1.5� IQR. Outliers are depicted as points.

The HMP data provide parameters according to which the within-group dis-

tance distribution can be modeled to estimate power for planned microbiome

studies
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to be analyzed by unweighted Jaccard distances and

PERMANOVA. Given the study plan, we began by simulating a set

of matrices of pairwise distances for which within-group distances

match the distribution of distances observed in the HMP stool sam-

ple set analyzed by unweighted Jaccard distance (see Fig. 4). In order

to determine the level of subsampling and number of OTUs neces-

sary to model the expected within-group distances, we applied the

hashMean and hashSD commands: simulating 100 OTUs and sub-

sampling to retain 23% of OTUs generated the desired mean

within-group distance of 0.87 and within-group distance standard

deviation of 0.05. A set of OTU tables, incorporating a range of

between-group effects in addition the desired within-group-distance

distribution, was then generated using the simPower command. For

unweighted Jaccard distances, the calcUJstudy function was applied

to simPower output to compute pairwise distances from simulated

OTU tables within R. Having calculated pairwise distances for each

simulated OTU table, we proceeded with power analysis using the

bootPower command, which produced a data frame that relates

power to simulated x2. We applied the bootPower command three

times, to assess PERMANOVA power with either five, 10 or 20 sub-

jects per group. We found that five subjects per group allows 90%

power to detect a x2 of 0.05; 10 subjects per group allows 90%

power to detect an x2 of 0.02; and 20 subjects per group allows

90% power to detect an x2 of 0.008. The effect detectable with the

targeted statistical power, typically 90%, was estimated by LOESS

regression of the power and simulated x2 variables from the

bootPower dataframe. From Table 1, an x2 of 0.02 is smaller than

the effects observed in studies of antibiotic exposure that were ana-

lyzed by unweighted Jaccard distances; therefore, a sample size of

10 subjects per group (30 total subjects) likely affords adequate stat-

istical power for the primary outcome measure.

3.2 Example 2: power calculation based on weighted

UniFrac distances
As a second example, we analyzed the same study—but with the pri-

mary outcome to be measured by weighted UniFrac distances rather

than unweighted Jaccard distances. To do so we used the same com-

mands to perform our power analysis, but we specified a sequence

depth >1. Because the micropower package only includes tools to

compute Jaccard distances, we then exported the simulated OTU

tables for pairwise distance computation by applying the

writeOTUlist function directly to the output of simPower. This pro-

duced tab-delimited OTU table files that are compatible with bio-

informatics analysis pipelines capable of computing many pairwise

distance metrics (Caporaso et al., 2010; McMurdie and Holmes,

2013; Schloss et al., 2009). To compute UniFrac distances also re-

quires a phylogeny. We used the simTreeList command to produce a

phylogeny to match the OTU tables produced by simPower; the ape

package, which loads with micropower, includes a write.tree com-

mand to export this simulated phylogeny in Newick tree format

(Paradis, 2012). The matrices of pairwise distances produced from

the OTU tables and phylogenetic tree can be read with the

readDMdir command, and bootPower can be applied to the result-

ing list. In the case of analysis by weighted UniFrac distances, the

mean within-group distance was simulated as 0.2, and the standard

deviation of within-group distances as 0.07 (see Fig. 4). We found

that five subjects per group afford 90% power to detect an x2 of

0.17, 10 subjects per group an x2 of 0.08, and 20 subjects per group

an x2 of 0.04. From Table 1, an x2 of 0.04 is smaller than the effect

observed in a studies of antibiotic exposure that were analyzed by

weighted UniFrac distances; therefore, a sample size of 20 subjects

per group (60 total subjects) likely affords adequate statistical power

for the primary outcome measure if weighted UniFrac distances are

used.

4 Discussion

The accurate estimation of statistical power for planned microbiome

studies demands a detailed accounting of the steps involved in data

analysis. We focused on the 16S rRNA gene sequencing studies that

are analyzed using pairwise distances (specifically, UniFrac and

Jaccard distances) and PERMANOVA. To ensure adequate statis-

tical power for such studies, one must quantify the expected within-

group variance and the effect to be expected from the planned

exposure or intervention. We built a framework for PERMANOVA

power estimation that depends upon prior knowledge of these two

essential parameters. The planned sampling site and chosen pairwise

distance metric influence both within-group variance and range of

possible effect sizes (as quantified with x2). We analyzed datasets

from the HMP and other published studies to provide references

from which the within-group distance distribution and expected ef-

fect can be estimated. These tools, combined with the micropower R

package described above, permit power estimation for planned

microbiome studies.

Since the UniFrac distances depend on the phylogenetic tree of

the OTUs, we reviewed the phylogenetic trees generated from the

HMP project’s V1–V3 and V3–V5 16S rRNA gene sequencing data,

and we observed that the distribution of phylogenetic tree branch

Table 1. Effect sizes observed from various exposures/interventions in studies of various microbiome sampling sites are shown as meas-

ured by omega-squared (x2) statistics, together with the P-values from PERMANOVA test

Site Comparison groups x2/P-value

Control Exposure Weighted Unweighted Weighted Unweighted Reference

UniFrac UniFrac Jaccard Jaccard

Nares Non-smoker (33) Smoker (29) 0.042/0.001 0.009/0.001 0.023/0.001 0.007/0.001 Charlson et al. (2010)

Oral Non-smoker (33) Smoker (29) 0.032/0.001 0.008/0.001 0.024/0.001 0.007/0.001 Charlson et al. (2010)

Gut Before feeding (10) After feeding (10) 0.056/0.138 0.013/0.986 0/0.989 0.014/0.985 Wu et al. (2011)

Oral No azithromycin (42) Azithromycin (6) 0.063/0.01 0.039/0.001 0.099/0.004 0.032/0.001 Charlson et al. (2012)

Lung No azithromycin (34) Azithromycin (6) 0.065/0.005 0.038/0.001 0.019/0.089 0.033/0.001 Charlson et al. (2012)

Skin Left retroauricular (186) Right retroauricular (187) 0.000/0.828 0.0001/0.327 0.000/0.986 0.000/1.000 HMP Consortium (2012b)

Human Anterior nares (161) Stool (187) 0.567/0.001 0.201/0.001 0.230/0.001 0.117/0.001 HMP Consortium (2012b)

The range of observed effect sizes differs according to the metric of pairwise distance chosen for analysis. HMP data are shown to demonstrate a large effect

(the degree of difference between two different human microbiome sampling sites) and a negligible effect (the degree of difference between skin sampling in the

left versus right retroauricular crease)
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lengths was approximately log-normal. To simulate a phylogenetic

tree for a set of simulated OTU tables (the simTreeList function in

the ‘micropower’ package), we first extract all OTU names from the

simulated OTU tables, set each OTU name as a tip of the tree and fi-

nally generate random branch lengths to connect the tips, with the

branch lengths specified according a log-normal distribution. The

final step of random tree generation makes use of the ape package’s

rtree command (Paradis, 2012). We explored other distributions of

branch lengths. The distribution of the branch lengths in the simu-

lated phylogenetic tree does impact the distribution of phylogenetic

(e.g. UniFrac) distances calculated from the simulated OTU table.

For example, simulating branch lengths according to a normal dis-

tribution inflates the distance variance. But we found that all distri-

butions of phylogenetic tree branch lengths preserve the observed

relationship between level of OTU subsampling and mean distance,

as well as the observed relationship between number of OTUs sub-

sampled and distance standard deviation.

La Rosa et al. (2012) recently proposed another method for the

detection of significant between-group differences in microbiome

data based on parametric testing of overdispersed taxonomic data

against the Dirichlet-multinomial (DM) distribution and imple-

mented their method as an R package, HMP. HMP allows the esti-

mation of power or necessary sample size for studies with

microbiome outcome measures, based on the framework of hypoth-

esis testing at the level of the OTU vectors themselves. However, the

DM distribution must be specified, via parameters representing the

degree of overdispersion, the number of taxa and the expected com-

position of taxonomic frequencies in both groups, in order to detect

a significant difference. Under the DM model, the effect size is

defined by how far apart the vector of taxa frequencies are from

each other. Specifying the taxonomic frequencies is often difficult,

especially when many such taxa are considered. In addition, one has

to specify the number of reads, which can also be quite variable

from sample to sample. The micropower package, in contrast, uses

the distribution of pairwise distances to be expected from the chosen

distance metric and planned sampling site, and provides data on em-

pirical distributions for comparison (e.g. Fig. 4 and Table 1). By

using PERMANOVA, our method is non-parametric; by allowing

for the use of different distance metrics, our method allows incorp-

oration of phylogenetic relationships among the taxa in power cal-

culation. We have demonstrated that the choice of distance metric

may significantly influence the observed effect, and that the within-

group variance depends upon both the chosen distance metric and

planned sampling site.

By focusing on 16S rRNA sequencing studies analyzed by pair-

wise distances and PERMANOVA significance testing, we have lim-

ited the application to power estimation for global measures of

community structure. In some cases, there are advantages to model-

ing OTU vectors themselves, rather than analyzing community struc-

ture via beta diversity—particularly in cases where categorical

community types and transitions between community types may

match observed biological phenomena (Ding and Schloss, 2014).

Nevertheless, we believe that the presented method will prove useful

given the utility of pairwise distances to the analysis of microbiome

data and the intuitive appeal of an ANOVA-type test in studies with

categorical exposures/interventions and microbiome outcome meas-

ures. One limitation of our method and that of La Rosa et al. (2012)

is that these methods can only perform power calculation for categor-

ical covariates. For a continuous covariate such as age or body mass

index, one can test its association with microbiome composition using

kernel-based regression (Chen and Li, 2013), where the kernel matrix

can be defined based on the pairwise distances. We can then perform

power analysis using simulations or analytical calculation based on

score test. Alternatively, for the purpose of power calculation, one

can discretize the data into categories and apply our proposed

method, which should provide a conservative estimate of power.
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