

Power and Slew-aware Clock Network Design for Through-Silicon-Via (TSV) based 3D ICs

Xin Zhao and Sung Kyu Lim School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia, U.S.A.

Outline

- Introduction
- Problem formulation
- 3D clock tree synthesis
- Simulation and discussions
- Conclusions

Related works

- Through-silicon-via (TSV)
 - Fabrication and characterization
 - Reliability issues [Ramm, etc. ECTC'08] [Wright, etc. ECTC'08]...
- Low-power 3D clock network
 - A fabricated 3D clock distribution network [Pavlidis, etc. CICC'08]
 - A separate layer of clock distribution network for power reduction [Arunachalam, etc. VLSI'08]
- 3D clock network design and optimization
 - Thermal-aware 3D clock design, 3D clock routing algorithm [Minz, etc. ASPDAC'08]
 - Pre-bond testable 3D clock synthesis [Zhao, etc. ICCAD'09]

Contributions

- The major goals
 - Clock skew minimization
 - Clock slew control
 - Clock power reduction
- Investigate the impact of design techniques on 3D clock network

Electrical model and TSV usage

Electrical model

- Wire
- TSV
- Clock buffer

TSV upper bound

- Maximum number of TSVs allowed between adjacent dies
- TSV count (#TSVs)
 - Total number of TSVs used in 3D tree
 - Stacked-TSV

Problem formulation: 3D clock tree synthesis

Input

- Sink set (N dies), clock source location
- Upper bound of TSV usage
- Slew constraint

Output

- Zero-Elmore-skew 3D clock tree
- Object
 - Zero-Elmore-skew
 - Minimize wirelength, clock power
- Constraint
 - Maximum slew
 - Upper bound of TSV usage

3D clock tree design flow

Input:

- a set a sinks on N die
- Upper bound of TSV

Upper bound of TSV = 3, clock source locates on die-0

3D clock tree design flow (cont.)

• Step-1:

- Recursive top-down partition
- 3D Method of Means and Medians (3D-MMM)
- 3D abstract binary-tree generation

3D clock tree design flow (cont.)

Step-2:

- Merging and slew-aware buffering, embedding
- 3D clock tree with multiple TSVs
- Unique property of 3D clock tree
 - A complete tree + many sub-trees

3D abstract binary tree

3D clock routing algorithm

3D-MMM and 3D abstract tree

3D-MMM and 3D abstract tree (cont.)

- 3D abstract tree for the N-die stack
 - N-colored binary tree
 - Clock source location

3D clock tree in multiple-die stack

A complete tree + many sub-trees

Four-die 3D clock tree, src on die-4

Four-die 3D clock tree, src on die-3

Clock source location

- Clock source on middle die tends to reduce #TSVs and wirelength
- Theoretical maximum TSV usage:
 - M sinks evenly distribute on N dies, clock source locates on die-s

$$\frac{M}{N} \times \left(\sum_{i=1}^{s-1} (s-i) + \sum_{i=s+1}^{N} (i-s)\right)$$

Buffering and merging

Goal

- Slew control Maximum loading capacitance (CMAX) of clock buffers
- Wirelength reduction
- **Object**
 - Zero-Elmore skew
 - Clock power minimization

Detail experiment settings

45nm technology:

- Frequency = 1GHz, V_{dd} = 1.2V
- Clock slew < 10% of clock period (CMAX = 300fF)
- Clock skew < 3%~4% of clock period
- Wire: $R = 0.1 \Omega/um$, C = 0.2 fF/um
- Buffer: R_d =122 Ω, C_L = 24 fF, t_d = 17 ps
- TSV: R_{TSV} = 0.035 Ω, C_{TSV} = 15.48fF
 - 10 um X 10 um, via-last
 - Thinned-die height = 20 um
- Results are from SPICE simulation
 - Skew, slew, power
- We use two cases: four-die and six-die

Circuits	# Sinks
r1	267
r2	598
r3	862
r4	1903
r5	3101

Sample 3D clock trees

r5, six-die

#TSVs = 20

Impact of TSV bound on wirelength and power

r5, six-die

Point A: 20% power saving, TSV bound ≥ 70% of #sinks

Multi-TSV vs Single-TSV: four-die stack

Multi-TSV vs Single-TSV: six-die stack

Clock skew in four- and six- die stack

Spatial distribution of clock delay

r5, six-die

Impact of TSV bound on slew distribution

[11.4ps, 86.2ps] Avg. 53.9ps #Bufs: 2933

[10.9ps, 79.6ps] Avg. 42.6ps #Bufs: 2638

Impact of CMAX on slew variations

Impact of clock source location on power and wirelength

r5, six-die

A uses 33% fewer TSVs than B

Distribution of stacked-TSV heights

r5, six-die

#TSVs = 3720

#TSVs = 2791

Conclusions

- Explored design optimization techniques for reliable, low-power, low-slew 3D clock network design.
- Using multiple TSVs helps to reduce wirelength and power. Multi-TSV also has better control on slew variations.
- Smaller CMAX efficiently lowers the clock slew.
- Clock source location affects wirelength, power and TSV usage of the 3D clock network. Middle-die sourcing policy reduces the TSV usage under the same power budget.

Thank you