
Power-aware Dynamic Placement of HPC Applications

Akshat Verma
IBM India Research Lab

akshatverma@in.ibm.com

Puneet Ahuja
IIT Delhi

puneet1986@gmail.com

Anindya Neogi
IBM India Research Lab

anindya_neogi@in.ibm.com

ABSTRACT

High Performance Computing applications and platforms have
been typically designed without regard to power consump-
tion. With increased awareness of energy cost, power man-
agement is now an issue even for compute-intensive server
clusters. In this work, we investigate the use of power manage-
ment techniques for high performance applications on mod-
ern power-efficient servers with virtualization support. We
consider power management techniques such as dynamic con-
solidation and usage of dynamic power range enabled by low
power states on servers.

We identify application performance isolation and virtual-
ization overhead with multiple virtual machines as the key
bottlenecks for server consolidation. We perform a compre-
hensive experimental study to identify the scenarios where
applications are isolated from each other. We also establish
that the power consumed by HPC applications may be appli-
cation dependent, non-linear and have a large dynamic range.
We show that for HPC applications, working set size is a key
parameter to take care of while placing applications on virtu-
alized servers. We use the insights obtained from our exper-
imental study to present a framework and methodology for
power-aware application placement for HPC applications.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Miscellaneous

General Terms

Performance
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1. INTRODUCTION
Power management in server clusters is an area of increasing

interest from research viewpoint as it is backed up by real con-
cerns on energy usage by modern computing systems. Power
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management in High Performance Computing (HPC) clus-
ters is still a new concept as it is deemed contradictory to the
performance demands from such applications. In this paper,
we investigate the possibilities enabled by the platform power
management and virtualization mechanisms coupled with the
savings opportunities present in typical HPC cluster work-
loads.

Server virtualization presents new opportunities for power
management using workload characteristics as controllers can
perform power-aware dynamic application placement. Ear-
lier, virtualization had proliferated the desktop segment as it
enabled users to run multiple operating systems on the same
box and helped the average user overcome OS-specific usabil-
ity issues. Similarly, till recently power management was rel-
evant only to personal mobile devices with focus on battery
and display technologies. Recently, virtualization and power
management technologies have both penetrated the server
platforms and present a fresh perspective on resource man-
agement in cluster computing space.

Server virtualization has a number of advantages. It sim-
plifies the way we manage a set of machines with common
management controls. It is easier to manage software stack
deployment and lifecycle management through images and the
ability to power-on/off, archive, migrate containers and their
workloads. Virtualization allows consolidation of a number of
smaller physical server workloads into partitions of a larger
server. Since the virtualization layer provides a high degree
of isolation among partitions, the user achieves the same level
of performance and security, but at a lower management cost
and possibly lower hardware cost. Virtualization also pro-
vides finer grain control of resource allocation. The dynamic
resource allocation requirements of a workload can be satis-
fied by altering the capacity of a virtual machine at runtime.
In fact, a virtualization layer also provides live migration ca-
pabilities. This enables the resource manager to work around
resource bottlenecks and faults by migrating a virtual machine
onto a new physical server with a small transient impact on
runtime performance.

Even though virtualization has become common in commer-
cial transactional and batch workloads in data centers, it is
only very recently that researchers have started to consider
HPC workloads on virtualized platforms. HPC applications
can benefit from all the advantages of virtualized environ-
ments. In addition, such applications often require OS-level
customization for maximizing performance. It is easier to
deploy and manage multiple OS images and instances on vir-
tualized clusters. However, the key concern about running
HPC workloads inside virtual machines is the performance
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impact of accessing system resources through the Virtual Ma-
chine Monitor (VMM). Modern virtualization platforms pro-
vide enough optimizations such that most of the instructions
and access to system resources can execute efficiently. How-
ever, all privileged instructions issued from a guest VM have
to be trapped and handled by the VMM for ensuring system
integrity. Even though CPU and memory accesses can be ef-
fectively virtualized, I/O virtualization poses additional chal-
lenges as most of the accesses are to resources shared across
VMs. There are various research efforts to create efficient
mechanisms, such as bypass paths, to enhance the I/O per-
formance in virtualized environments. Huang et al. [12] have
recently implemented efficient access to network resources so
that the HPC applications can communicate at near-native
performance. Thus it is possible for HPC applications to now
use virtualized platforms without a large performance impact.

Power and cooling costs are a subject of growing concern
in systems research and need to be addressed in the design
of clusters that run HPC applications [23]. Power manage-
ment techniques in server clusters may be implemented at
various levels, such as the processor, virtualization layer re-
source manager, the cluster resource manager etc. Modern
processors, such as the Intel quad-core Xeon [31] and the
IBM Power6 [7], have various on-chip power management
techniques built into the processor. Feedback-driven pipeline
throttling mechanisms are used to reduce the instruction flow
and reduce power consumption. Use of multiple power do-
mains inside the CMOS processor enables dynamic voltage
and frequency scaling of a processor. Since power is propor-
tional to frequency and is a quadratic function of the supply
voltage, reduction in voltage with accompanying reduction in
frequency has a large impact on the power consumed by the
chip. Modern processors also support an additional low power
state which does not idle waiting for work to arrive. This
leads to a higher wake-up time but between 10-20% reduction
in power consumption compared to idle mode. Since power
consumption in the memory subsystem is significant in high-
end servers [15] the on-chip memory controller supports logic
to turn off memory banks when there is no activity or throttle
the memory bandwidth to cap the power consumption. A de-
scription of power/thermal capping and performance-sensitive
power savings solutions implemented in Power6 is provided in
[7].

Processor level power saving techniques provide a large enough
workload-dependent dynamic power range to be exploited by
intelligent workload placement controllers. In addition, vir-
tualization enables such a placement controller with flexible
means to resize resource allocations and migrate workloads
dynamically. In this paper, we consider a server cluster which
implements virtualization, live VM migration, and hardware
level power management technologies that provide significant
dynamic power range depending on workload. We assume
that HPC applications are submitted as jobs to the cluster,
which need to be executed inside VMs and placed on physical
servers dynamically by the placement controller. We describe
the design issues in building such a power-aware VM place-
ment controller for the server cluster.

The paper is one of the first to propose power management
in HPC clusters and in the process makes the following key
contributions:

• Scope of Power Management in HPC Workloads:

We first study traces of large server clusters running
HPC applications to investigate if there is scope for

power management. We look at variability in the num-
ber of jobs running in the system to see if some servers
can be switched to low power states or completely switched
off. In particular, we look for medium to long term pe-
riods of low activity so that the overhead of bringing
the server back does not become prohibiting. Further,
we look at resource usage distribution to investigate the
feasibility of dynamic range based power management.
We determine that there is enough variability for both
techniques to be applied.

• Power models: We experimentally create power mod-
els of some benchmark HPC applications on a specific
platform to show that there is scope of exploiting the
dynamic power range by a power-aware resource man-
ager. These power models not only show variation of
power consumed with CPU utilization but also some in-
teresting observations can be made from the variations
of power with memory usage. We show that variation in
resource usage, as established by our trace-based study
leads to a dynamic power range that can be exploited
for power management.

• A study of Virtualization issues due to Consol-

idation: The virtualization layer is expected to pro-
vide perfect isolation among the various workloads run-
ning in different partitions. However, in our experiments
with the multiple HPC benchmarks that share the same
physical machine, we show through experimental valida-
tion that such isolation actually depends on the memory
footprint and cache usage characteristics of the applica-
tions. This is the key contribution of this work and leads
to a redesign of an earlier placement controller [30].

• Placement controller: The knowledge of power mod-
els and impact of virtualization on various types of HPC
applications is used to design a power-aware application
placement controller. The controller needs to take into
account CPU as well as memory and cache usage charac-
teristics of an application for placement purposes, lead-
ing to a multi-dimensional packing problem. We show
how to build on an existing CPU-based controller pMap-
per [30] with the help of a case study using benchmark
HPC applications.

The rest of the paper is organized as follows. We first inves-
tigate the scope for power management on a large HPC cluster
in Section 2 using a trace-based study. Section 3 investigates
the feasibility of power management for HPC applications,
such as power models and virtualization issues. Section 4
describes the power management architecture and a method-
ology for VM placement with an HPC case study. Section
5 discusses the related work and concludes the paper with a
summary and description of future work.

2. SCOPE OF POWER SAVINGS IN HPC

APPLICATIONS
A dynamic placement controller is useful only when the

workload of the cluster has the right amount of variability.
A very high degree of variability makes dynamic placement
a very expensive proposition. Low variability makes a case
for static placement. We investigated several HPC cluster
computing workloads and existing literature on analysis [20,
21] to find out if there exists the right amount of variability
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Figure 1: OSC trace showing large variability in the

number of jobs during an average day.
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Figure 2: LPC trace showing large variability in the

number of jobs during a month. The number indicate

the number of jobs in a time bucket of 90 mins.

in shared HPC clusters to require a power-aware placement
controller. More specifically, we investigate if the aggregate
workload is low for a sufficiently long time to justify switch-
ing off servers or to switch them to a low power idle state.
Further, we study if there is enough resource usage variability
at finer grained intervals that may lead to a large dynamic
power range.

Figure 1 shows job arrival and processor usage results from
a representative server cluster at the Ohio Supercomputing
Center [16]. It is apparent from the 24-hour averages that
significantly higher number of processors are required to ser-
vice jobs arriving towards the middle of the day. Thus at other
times, a large portion of the workload can be consolidated to
a few active servers and the rest of the servers can be switched
to low power state. Analysis on LPC traces [17], captured in
Figure 2, shows an even larger variation in jobs handled by
the cluster during the month. We also observe distinct ‘on’
and ‘off’ periods of reasonable durations, thus providing an
option to completely switch off many servers during ‘off’ pe-
riods. Similarly, Planetlab traces have been analyzed to show
that the 10th and 90th percentiles of memory usage and load
averages have almost a ten fold variation [21]. We now drill
down further in the LPC trace, which captures a 70 node clus-
ter that is part of a larger grid executing parallel jobs. We
observe that the resource usage for various jobs shows huge
variability (Fig. 3). Hence, one can expect a large variability
in resource usage even for systems that service deterministic
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Figure 3: Variability in resource usage with time for

LPC trace

batch jobs as well. We observe that the mode and the average
of CPU as well as memory are a factor of 10 away. Thus, one
can safely assume resource variability even if jobs arrived in
a fixed periodic manner.
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Figure 4: Power Savings with Time for the LPC trace.

Servers are switched off if they are not used for 5

successive time windows.

The variability in job arrivals coupled with resource variabil-
ity of the jobs in terms of CPU and memory leads to a very
high variability in the actual resource consumption on the
servers. Figure 3 shows that the resource utilization varies
with time, thus providing enough scope for dynamic work-
load consolidation. Figure 4 shows simulation of a dynamic
consolidation algorithm over the trace length and projected
power savings achieved by turning off servers in the cluster
of 70 physical servers. There is a distinct period of low ac-
tivity towards the start when large number of servers can be
turned off for hours. We further drill down in the periods
of low and high activity and observe that there is scope for
further reduction using dynamic workload-dependent range in
the power models. We note that even within the ‘off’ period,
one can observe a reasonably long duration variance by a fac-
tor of 2. The same is true for the ‘on’ period, establishing
the feasibility of switching servers to low power state or us-
ing dynamic power range based techniques (assuming power
depends on resource consumption) at finer granularities. Our
experiments thus establish that there is sufficient variability
in resource consumption for power management techniques to
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be applied. We next study the performance implications of
power management techniques on a real system.

3. POWERMANAGEMENT FOR HPC

APPLICATIONS
We now investigate the feasibility of applying power man-

agement techniques to HPC applications. Power management
techniques include running a set of power-efficient servers at
an operating point that takes advantage of the dynamic range
in the server power models and consolidation of workloads on
fewer servers during off-peak hours. In this section, we study
the power model for some benchmark HPC applications and
study the impact of virtualization on application placement.
We start with the description of our experimental testbed.

3.1 Experimental Testbed
Our experimental testbed consists of an IBM HS-21 Blade-

center with X-series blades. The blades use an Intel Xeon 5148
quad-core processor, with 2.33 GHz core frequency 4MB L2
cache. The blades share a single datastore of size 160 GB and
3.4 GB RAM. The blades run VMWare ESX 3.0 hypervisor for
virtualization support. There are 10 Virtual Machines on each
blade with CPU and Memory reservation tailored towards the
purpose of individual experiments. Each VM running Fedora
6 as the guest operating system is allocated a storage of 8 GB.

We use three different workloads for our experimental study.
The daxpy routine from an HPC suite [5], leads to the high-
est power consumption amongst all the HPC workloads tested
by us and is used as a representative of typical power-hungry
HPC workloads. We also use a Linpack benchmark called
HPL [1] that has been extensively used in many performance
studies. We use HPL in two modes to create two more work-
loads. The first mode is single-threaded with large problem
sizes. In the second mode we use HPL with a 4 × 2 process
grid that solves multiple medium-sized problems. The multi-
process HPL uses mpirun for managing the multiple processes.
We call the two HPL workloads as HPL1 and HPL8 respec-
tively in this paper.

We investigate the feasibility of applying workload-aware
power capping or application placement techniques for power
management in HPC applications. Towards this purpose, we
experimentally determine if HPC applications have a reason-
able dynamic range for a Power Manager to play with. In
order to study the applicability of server consolidation for
HPC applications, we investigate the impact of multiple HPC
applications sharing the same blade and the impact of perfor-
mance with multiple VMs on the same server. We start with
modeling the power drawn by our HPC workloads.

3.2 Power Models for HPC Applications
We have observed resource usage variability on many real

workloads (Section. 2). However, platforms need to have
power management techniques built in to cause a variation
of power drawn with change in workload resource usage pa-
rameters. For e.g. IBM Power5 based systems consume a
fixed amount of power independent of the workload inten-
sity. However, IBM Power6 and Intel Xeon-based platforms
are capable of workload-sensitive power reduction at proces-
sor level. We first study the scope of dynamic power range
based savings in our testbed setup with change in resource
usage.

Fig. 5 captures the power drawn by daxpy, HPL1 and
HPL8 at various utilizations. For this experiment, we power-
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all applications

on only one VM and use the CPU reservation feature to limit
the workload to the desired utilization. We observe that the
daxpy application has a dynamic power range of about 75W
that can be used by a placement or capping techniques. Fur-
ther, we observe that the power model of each application is
different, with HPL1 showing strong non-linearity. This non-
linearity can be used for power savings by load unbalancing
using a spillage-based workload manager, that loads a server
to full utilization before loading any other server. To take
an example, if 1.1 load (normalized by server capacity) needs
to be placed on 2 servers, a spillage-based workload manager
would load the two servers at 1.00 and 0.1 respectively. This
would draw a power of 187W and 158W respectively (total
345W by Fig. 5), whereas a load-balanced placement would
draw a total of 185 ∗ 2 = 370W . Similarly, we observe the
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impact of increasing the memory footprint of a workload (by
increasing the matrix or array size for the various applica-
tions) on the power drawn by a server. Results are captured
in Fig. 6. We observe that the problem size of the HPC appli-
cation does not seem to affect the power drawn by the server.
At first glance, the observation seems to contradict a gener-
ally accepted belief that power drawn depends on the memory
bandwidth drawn by an application. However, we note that
the memory footprint does not always determine the memory
bandwidth or the number of pages of memory touched by an
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Figure 7: Power and Performance of daxpy with In-

creased Memory

application per unit time. This is especially true for applica-
tions that work on large matrices or arrays where the working
set window may be relatively small and independent of the
problem size. Hence, even though a large memory footprint
application would touch more memory pages in its lifespan,
the number of pages touched per second by an application is
independent of the footprint. This hypothesis is validated by
our study.

We also note that for a linear O(N) application like daxpy,
the working set is dependent on the size of the array, at least
for small to medium array sizes. Hence, as the size of the
array increases, an application like daxpy may touch more
pages of memory and consume more power. We observe this
behavior in Fig. 6 for small sized arrays. However, we observe
a seemingly strange behaviour at larger memory sizes where
the power consumed fell with increase in memory size.

We conjectured that this may be a result of decrease in
application throughput as cache size may have become a bot-
tleneck. In order to validate this conjecture, we measure the
throughput achieved by daxpy application with increase in
memory size (Fig. 7). We observe that the throughput de-
creases as the array size approaches 4MB. Further, the power
drawn also increases at that point and then starts to decrease
at an array size of 8MB. As noted earlier, the L2 cache has
a size of 4MB and hence, for problem size less than 4MB,
successive iterations are run completely from cache. Hence,
the throughput is high but the memory subsystem draws very
low power. However, as the array size is increased, more mem-
ory pages are touched, initially leading to more power being
drawn. However, this also leads to more instructions wait-
ing for memory access, bringing down the throughput. As a
result of the decreased throughput, the IDS (instructions dis-
patched per second) in instruction pipeline is reduced. Since
the power drawn by the processor subsystem depends on IDS

[8], this leads to a damping effect on the overall power con-
sumed. We observe that the throughput has a very steep
fall around 8MB, and at this point, the decrease in compute
power can no longer be compensated by the increase in the
power drawn by a memory subsystem. Hence, the overall
power drawn by the server decreases with increase in memory
footprint.

3.3 Impact of Virtualization on Performnace of
Applications
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Dynamic application consolidation is a technique used to
achieve power savings on server clusters. Consolidation is fa-
cilitated by dynamic live migration, which requires virtualiza-
tion support. Further, after consolidation, multiple applica-
tions may be hosted on a shared server. Virtualization ensures
isolation of applications at processor and memory level only
and it is imperative to investigate if an application’s perfor-
mance is not impacted by sharing of other server resources,
such as the hardware caches.

If power-aware application placement is used to pack more
than one application on a single server, the virtualization plat-
form needs to provide isolation between the multiple VMs.
We investigate if such isolation guarantees are workload in-
dependent. We use two virtual machines in our study. We
designate one of the virtual machines as a container for the
background application and another for the foreground appli-
cation. We study the impact on the foreground application
with changes in the characteristics of the background appli-
cation. Fig. 8 shows the impact on foreground application
performance with change in background CPU utilization for
a set of foreground and background applications. We observe
complete isolation for the set of foreground and background
applications considered in Fig. 8.
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However, a similar study for a slightly different selection of
foreground and background applications leads to a completely
different result. We observe in Fig. 9 that foreground appli-
cation takes a much longer time to finish as the background
CPU utilization is increased.
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The key difference between Fig. 8 and Fig. 9 lies in the
memory footprint of the background applications. All the sce-
narios in Fig. 8 capture a background application with small
problem size, whereas the background application for the sce-
narios in Fig. 9 have large problem sizes. Observe that HPL1
uses large matrices and is the background for two scenarios.
For other scenarios, we use large arrays and matrices for the
background daxpy and HPL8 applications.

The lack of isolation can be attributed to the shared pro-
cessor cache for which the foreground and background traffic
compete with each other. As the background utilization is
increased, the throughput of background application also in-
creases. This leads to a higher data rate for the background
and consequently, a higher share in the L2 cache. To study
this apparent lack of isolation for large memory applications,
we conduct further studies with changes in application and
memory footprint.
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Background daxpy Application on HPL8

In our next experiment, we investigate if large-memory ap-
plications are also affected by background applications. We
experiment with HPL1 as the foreground application and

daxpy as the background application and study the perfor-
mance of HPL1 with varying array size of daxpy. We ob-
serve, in Fig. 10, that even large applications are impacted
by background applications with large footprint. Hence, the
time taken for the HPL1 job does not change with change
in either foreground utilization or foreground problem size at
small problem sizes. However, as the size of the background
daxpy application approaches around 4MB, the foreground
performance starts to suffer with increase in both background
utilization and problem size. Another interesting observation
is that the impact of background memory footprint stabilizes
beyond 10MB and any further increase in background prob-
lem size has no effect on the performance of the foreground
application.
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We conduct similar experiments to study the impact of
change in memory footprint of the background application on
small memory applications. We observe a similar impact on
these applications as well. A striking similarity in all the three
experiments (Fig. 10,11,12) is the nature of the curves, which
is a step function. The nature of the curves do not change
with change in either the foreground or the background ap-
plication. Further, the step starts at approximately the same
point in all the curves.
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The above observations led us to hypothesize that all ap-
plications are impacted by background workload, as soon as
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the memory footprint of the background application exceeds
a specific value. This is true irrespective of whether the fore-
ground application has a small footprint or a large footprint.
To verify this conjecture, we conduct experiments for different
sizes of the memory footprint of the foreground application.
Fig. 13 compares the impact of background memory footprint
on foreground daxpy application for two different foreground
memory footprints. In one case, the foreground daxpy uses
a very small array, whereas in the second the array size was
30MB. We observe a striking similarity between the two
curves as both are step functions. The value of the step sizes
are different for the two cases, with a smaller memory appli-
cation executing the same number of operations in a much
smaller time.

The results in Fig. 13 combined with our earlier observation
on memory impacting performance (Fig. 7) signify the impor-
tance of overall memory footprint for the performance of the
various applications. We surmise that memory footprint im-
pacts performance, independent of the number of applications
that are run concurrently. Hence, we conduct experiments to
study the impact of increase in size of memory footprint for
the same application. The results, captured in Fig. 14, vali-
date our assertion as the step nature of the curve is exhibited
even when a single application is run. Hence, the impact of
other applications on the performance of a given application
is similar to the impact of increase in the memory footprint
of the application.
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Figure 14: Impact of Change in Memory Footprint

on daxpy application

The above observation leads to an important insight that
needs to be considered while placing HPC applications on
power-managed servers. The performance of small memory
applications will not be impacted as long as they are co-
located with small memory applications and large memory
applications (say, larger than 60MB) will not see an impact
in performance even if they are co-located with other appli-
cations. Hence, isolation on virtualized platforms works for
homogeneous workloads (in terms of size) as long as they are
very small or very large. Hence, if a workload mix has all
applications with small memory footprint then they would be
isolated. Similarly, if all applications have very large mem-
ory footprints then they would also be isolated. We use this
insight in designing placement recommendations in Section 4.

3.4 Virtualization Overhead
Virtualization allows dynamic server consolidation with

workload-dependent isolation as evident from our experiments.
However, virtualization leads to VMM traps on privileged in-
structions. Further, running multiple virtual machines on the
same server leads to fragmentation. Both may lead to de-
graded performance that HPC applications may not tolerate.
Huang et al. [12] show that the performance impact of virtu-
alization can be significantly reduced by using a mechanism
called VMM-bypass [13]. They show that HPC applications
running within a virtual machine can achieve near-native per-
formance, thus making a strong case for running HPC appli-
cations in a virtualized environment.
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daxpy

During dynamic consolidation, a physical server may run a
large number of VMs, which leads to fragmentation of mem-
ory. In order to study if the fragmentation results in degraded
performance on a server running multiple VMs, we design
an experiment that computes a fixed number of operations.
We then run the workload on a single VM and observe the
performance. In subsequent runs, we power on more virtual
machines on the server and equally distribute the workload
amongst multiple VMs. We observe (Fig. 15) that the per-
formance of the workload does not degrade with increasing
number of VMs, indicating that the effects of fragmentation
are not severe. Hence, even though the performance changes
with the number of VMs, there is no visible degradation. We
do observe that performance is better when the number of
VMs is a power of 2. We attribute this performance benefit
to the fact that memory banks as well as cache segments are
typically power of 2. Hence, their division amongst 2i number
of VMs leads to minimal fragmentation, and hence improved
performance.

Our experiments conclude that a placement controller for a
cluster running HPC applications can take advantage of power
and virtualization features in the platform without an adverse
impact on performance. However, as opposed to our earlier
work on placement controller [30] that places VMs on servers
based on CPU utilization only, our experiments with the HPC
applications underline the importance of taking other factors
like cache size and memory footprint into account during dy-
namic placement.

4. POWER SAVING ARCHITECTURE AND

METHODOLOGY
We now present a framework and methodology for power

management of HPC applications.
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4.1 Methodology
In this subsection, we describe the methodology used to

place virtual machines and corresponding workloads onto phys-
ical servers. In pMapper [29] the placement algorithms as-
sumed that the performance of the workloads can be charac-
terized only by CPU utilization. However, the experimental
results on the benchmark applications demonstrate that the
memory usage and the working set size also determine the
performance. We observe that very small applications (in
terms of working set) do not affect the performance of other
applications. Also, we observe that very large applications are
not affected by other workloads running on the same physical
machine.
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Figure 16: Operating regions

Hence, instead of adopting CPU spillage based allocation,
we adopt a placement methodology where CPU and working
set size are both taken into account. We define three clear
operating regions as shown in Figure 16. Small applications
(category 1) are placed in a manner such that the total work-
ing set size of the applications is smaller than the physical
machine’s CPU cache size. These applications will degrade in
performance if they are packed with larger applications be-
cause of thrashing in the CPU cache. Category 2 applications
have a very large working set size whose performance is not
impacted by the CPU cache, and they are packed separately.
In between there is the third set of applications (category 3)
whose working set does not entirely fit into the cache and they
will definitely be impacted by other applications on the same
machine. For this class of applications, we have a choice of
conserving power or maximizing performance.

Our proposed method can thus be characterized by the fol-
lowing policies:

1. Sort all applications in ascending order by their working
set size. We assume that working set sizes are provided
by the applications, which is the case for most HPC
applications.

2. Category 1 applications are packed such that the total
working set size of all applications packed on a server
does not exceed the cache size of the server. Also, the
CPU limit is never violated.

3. Category 2 applications are only packed based on CPU
limit without regard to application working set size.

4. Category 3 applications can either be placed in the man-
ner of Category 1 application (for no performance degra-
dation) or in the manner of Category 1 applications (for
maximum power savings).

In Figure 16, the boundary between the application cate-
gory 1 and 2 is parameterized by X (0 < X ≤ 1), such that X

may be used to trade-off resource wastage with performance
protection. We can set a high value of X to protect more
applications from any performance degradation or set it close
to 0 and maximize power savings. A lower value of X leads to

more performance impact and less resource wastage. Higher
X leads to less use of virtualization but performance pro-
tection for more applications. The value of Y is determined
experimentally by increasing the footprint of applications till
we find isolation.

4.2 Architecture
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Figure 17: Architecture of performance, power, and

migration aware cluster management using virtual-

ized servers.

We now describe an architecture (Figure 17) to implement
the power-savings methodology described earlier. Our archi-
tecture is based on the pMapper controller described in a ear-
lier paper [29]. As in [29], the performance manager is used
to size the VMs and provide an estimate of the benefit of a
configuration given the size of the VMs. The power manager
supports interfaces to provide power estimates for a given VM
size assuming full utilization. The power manager also pro-
vides a power minimizing allocation for a given set of VM
sizes. The migration manager gives the cost estimate of a mi-
gration and executes a migration, when instructed, by inter-
facing with the specific virtualization layer mechanisms. The
placement controller intelligence lies in the arbitrator which
explores the entire configuration space of VM sizes and loca-
tions to pick the optimal combination.

Our new architecture extends pMapper by the following en-
hancements. We have a job queue to store long-running HPC
jobs, which are also scheduled by the performance cum work-
load manager. Hence, the performance manager is also en-
trusted with the job of scheduling HPC jobs. The second
key difference lies in the characterization of the VMs. In the
pMapper architecture, a VM was characterized only by its
CPU utilization (or size). However, our methodology also
uses the working set window of applications running on a VM
to determine its placement. Hence, a VM is characterized by
CPU, as well as memory and cache requirements. Finally,
we need to take into account characteristics of the resource
pool (CPU, cache sizes, memory sizes etc), which are fed as a
resource catalog information to the arbitrator.

We have implemented the power management methodology
in (i) a runtime application placement middleware that mini-
mizes the power consumed while meeting the applications and
uses IBM Enterprise Workload Manager for estimating VM
sizes and (ii) an Estimation tool that simulates the placement
of applications on servers to minimize the static and dynamic
costs and present estimates of the cost savings.

4.3 Example Study
We now present an example case study to illustrate our pro-

posed power management methodology. We use an HPC ap-
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App Name Type CPU Reqd Memory Reqd
DAX1 daxpy 15 0.1 MB
DAX2 daxpy 20 0.4 MB
DAX3 daxpy 20 1 MB
DAX4 daxpy 25 1 MB
HP1 HPL1 25 2 MB
HP2 HPL1 25 25 MB
HP3 HPL1 25 25 MB
HP4 HPL1 50 40 MB
HP5 HPL1 50 40 MB
HP6 HPL8 20 4MB
HP7 HPL8 50 4MB

Table 1: Input Applications with Characteristics

plication set with characteristics as described in Table. 1. The
set consists of 11 applications with 4 daxpy and 7 Linpack ap-
plications, each with varying memory and CPU requirement.
The applications need to be packed on a server farm with 11
identical servers, having a cache size of 4MB.

Server Apps CPU Memory
1 DAX1, DAX2, DAX3, HP6, DAX4 100 6.5 MB
2 HP1, HP2, HP3 75 90 MB
3 HP4, HP5 100 80MB
4 HP7 50 4MB

Table 2: Output allocation by CPU-only Packing

We first use a CPU-spillage based packing (Table 2) that
does not take into account the working set sizes. The place-
ment is able to pack the applications on 4 servers, which is the
minimal number of servers. Hence, the packing methodology
is able to substantially reduce the power consumption (from
11 active servers to 4 active servers). However, the above
packing may have huge performance overhead for a large num-
ber of VMs.

Server Apps CPU Memory
1 DAX1, DAX2, DAX3, DAX4 80 2.5 MB
2 HP4, HP5 100 90MB
3 HP2, HP3 50 90MB
4 HP1, HP6, HP7 95 10 MB

Table 3: Proposed Output allocation

We next present the packing obtained by our proposed method-
ology (Table. 3). We use X as 2 in our case study. We label
all the daxpy applications as Category 1 and pack them on
the same server. Similarly, HP2, HP3, HP4, and HP5 are
labeled as Category 2 applications and packed by CPU-based
spillage only. The remaining applications are labeled as Cate-
gory 3 and we use a power-minimizing strategy to pack them
on as few servers as possible. We observe that we are able
to pack the applications on the minimal 4 servers, using our
methodology as well.

We now study the performance impact on the applications
by consolidating them using virtualization. We observe that
our methodology leads to performance impact only for Cat-
egory 3 applications, whereas existing cache-oblivious strate-
gies lead to performance impact for more than half of the ap-
plications. Hence, cache-obliviousness can lead to a huge per-
formance penalty while minimizing power. On the other hand,
we can quantify the performance impact by being aware of the
cache size. Further, we can use a higher value of X to protect
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even more applications, if required. Our case study thus un-
derlines the strength and flexibility of our proposed cache and
CPU-aware methodology versus cache-oblivious strategies.

5. RELATED WORK AND SUMMARY
Power and migration-aware application placement in virtu-

alized server clusters was first addressed in our earlier work
called pMapper [29]. In this paper, we focus on HPC bench-
mark workloads and show how the nature of power models
and impact of virtualization can be used by the placement
controller logic. It is shown that pMapper needs to use not
just CPU but memory and cache usage characteristics also for
placement of HPC applications.

The viability of HPC applications hosted in virtual machine
containers in tightly coupled systems [12, 18] or in loosely cou-
pled grid environments [9] have been proposed earlier. How-
ever, this is the first attempt at investigating the feasibility of
power management in tightly-coupled virtualized server clus-
ters in the context of HPC workloads. A number of papers
have investigated characterization of applications in terms of
power and resource consumption. Felter et al. create power
models of applications based on CPU and memory usage [8].
There is evidence to show that voltage and frequency set-
ting, that minimizes energy consumption, is dependent on
system characteristics and application-specific usage of CPU
and memory resources [28, 25]

Resource managers in virtualized environments attempt to
either load balance a cluster [27] or only take performance
SLAs into consideration [2] when allocating virtual machine
resources and during dynamic placement of virtual machines
on physical servers using migration facilities. Except pMap-
per, there are no power and migration cost aware cluster
resource managers that work in a virtualized environment.
However, the area of power and performance trade-off has
been addressed extensively. Muse [4] uses an economic model
to perform power-aware resource allocation in a cluster. Kephart
et al. [14] have also implemented a controller architecture,
similar to ours, in which one can specify power-performance
objectives. VirtualPower [19] introduces soft power states
on top of the Xen Hypervisor to capture application specific
power-performance policies.

A large body of work in power management at cluster re-
source manager level actually addresses the problem of re-
quest distribution, where policies can be implemented in a
front-end load balancer to meet performance objectives while
minimizing the power cost [3, 4, 10, 22, 24, 26]. Cooperative
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voltage scaling techniques have been also proposed in tightly
coupled clusters [6, 11].

In summary, in this paper we make a case for power manage-
ment in HPC clusters using platform virtualization, working
with real workload traces. We investigate aspects of modeling
the power consumption of such applications and the impact
of platform virtualization. Finally, we describe a power-aware
application placement controller based on these models. In fu-
ture, we need to refine the power models further for various
workload types and consider more parameters that may affect
power-aware placement in virtualized platforms. We need to
build on pMapper algorithms to use such power models.
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