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Abstract

Prefetching has been widely used to improve system performance in mobile environments. Since prefetching consumes system resources,

such as bandwidth and power, it is important to consider the system overhead when designing prefetching schemes. In this paper, we propose

a cache-miss-initiated prefetch (CMIP) scheme to address this issue. The CMIP scheme relies on two prefetch sets: the always-prefetch set

and the miss-prefetch set. The always-prefetch set consists of the data that should always be prefetched if it is possible. The miss-prefetch set

consists of the data that are closely related to the cache-missed data item. When a cache miss happens, instead of sending an uplink request to

only ask for the cache-missed data item, the client requests several data items, which are within the miss-prefetch set, to reduce future cache

misses. Note that the client can ask for more than one data item by an uplink request with very little additional cost. Thus, prefetching several

data items in one uplink request can save additional uplink requests. We propose novel algorithms to mine the association rules and use them

to construct the prefetch sets. Detailed experiments are used to evaluate the performance of the proposed scheme. Compared to the UIR

scheme [G. Cao, A scalable low-latency cache invalidation strategy for mobile environments, IEEE Transactions on Knowledge and Data

Engineering 15(5) (2003)] and the UIR scheme without prefetch, our CMIP scheme can greatly improve the system performance in terms of

cache hit ratio, reduced uplink requests and additional traffic.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

With the rapid growth of wireless communication

technology such as IEEE 802.11 and 3G, mobile devices

such as personal digital assistants (PDAs), WAP phones

become more and more popular. This creates a wide range

of data dissemination-based applications such as stock

quotes, news, real-time weather/traffic reporting systems,

etc. Many commercial companies are offering such services

based on 802.11 or cellular networks. One difficulty of data

dissemination is that many clients have to share a server

such as the access point in 802.11 or the base station in

cellular networks, which may create bottlenecks and

degrade the system performance.

Data broadcasting has been shown to be an effective

dissemination technique [1,15,17,18,21] by utilizing
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the inherent asymmetric nature of the wireless channel,

large downlink (server-to-clients) bandwidth, but less

uplink (clients-to-server) bandwidth. With this technique,

clients access data by simply monitoring the broadcasting

channel until the requested data items appear on the

channel. It has good scalability since the bandwidth

consumption is independent of the number of mobile clients

in the system. Although data broadcasting has many

advantages, it also introduces some problems. For example,

waiting for a data item to appear on the broadcast channel

may increase the query latency. One way to alleviate this

problem is to cache frequently accessed data on the client

side. In this way, the clients can serve many requests from

the local cache without sending uplink requests. This not

only reduces the average data query latency but also reduces

the uplink and downlink bandwidth consumption.

To further reduce the query latency, prefetching

techniques can be used. In this case, when the server

broadcasts data on the broadcast channel, clients can

prefetch interested data without increasing the bandwidth
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Fig. 1. The relationship between i1 and {i2,i3,i4}.
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consumption. Further, if the requested data item is not

prefetched earlier, the client has to send an uplink request to

ask for the data item when a query comes. This not only

increases the query latency but also increases the uplink

bandwidth requirement. Since the uplink bandwidth is very

expensive in mobile environments, prefetching should be

frequently used. However, prefetching consumes a lot of

system resources. For example, although prefetching can

make use of the broadcast channel, the clients still need to

consume power to process the prefetched data. Since most

mobile clients are powered by batteries, it is important to

prefetch the right data when designing prefetching schemes.

In this paper, we propose a cache-miss-initiated prefetch

(CMIP) scheme to help the mobile clients prefetch the right

data. The CMIP scheme relies on two prefetch sets: the

always-prefetch set and the miss-prefetch set. The always-

prefetch set consists of the data that should always be

prefetched if possible. The miss-prefetch set consists of the

data that are closely related to the cache-missed data item.

When a cache miss happens, instead of sending an uplink

request to only ask for the cache-missed data item, the client

requests several items, which are within the miss-prefetch

set, to reduce future cache misses. Note that the client can

ask for more than one data item by one uplink request with

little additional cost, and then prefetching several data items

in one uplink request can save uplink bandwidth. We

propose a novel algorithm to mine the association rules and

use them to construct the prefetch sets in two steps. First, we

mine the access history of the clients to obtain the

association rules. Then, we use the confidence parameter

of the rules to construct the prefetch sets. Detailed

experiments are used to evaluate the performance of the

proposed scheme. Compared to the UIR scheme [7] and the

UIR scheme without prefetch, our CMIP scheme can greatly

improve the system performance in terms of increased cache

hit ratio, reduced uplink requests and negligible additional

traffic.

The rest of the paper is organized as follows. In Section

2, we present the cache-miss-initiated prefetch (CMIP)

scheme. Section 3 evaluates the performance of our CMIP

scheme. Section 4 reviews previous work on prefetching

and association rule mining. Section 5 concludes the paper.
2. The cache-miss-initiated prefetch (CMIP) scheme

Our scheme is motivated by two observations. First, a

mobile client may query some data items frequently. If the

requested data items are in the cache, the mobile clients can

save bandwidth and power by not sending uplink requests.

Thus, it is important to always prefetch these frequently

accessed data. Second, data items queried during a period of

time are related to each other. Hence, cache misses are not

isolated events, and a cache miss is often followed by a series

of cache misses. For instance, suppose data item i1 is cache

missed and data items {i2,i3,i4} are closely related to i1. Fig. 1
illustrates such a relationship between i1 and {i2,i3,i4}, where

i1 is a hyperlink pointing to page 2, and {i2,i3,i4} are

embedded objects on page 2.

Following the cache miss of item i1, there may be

multiple cache misses because of accessing i2, i3, and i4
sequentially. Thus, the client should prefetch items i2, i3,

and i4 after the cache miss of item i1. After the cache miss of

item i1, the client needs to send an uplink request.

Piggybacking the requests for items i2, i3, and i4 consumes

little additional uplink bandwidth, but saves three future

uplink requests. Furthermore, the access latency can be

greatly reduced. Based on these two observations, we

propose to mine the access history of the clients, find the

relationship among data items, and prefetch based on the

discovered relationship.

Association rule based data mining techniques [3–5]

have been proposed to find relationships among data items

by analyzing a large collection of data. We propose to use

these techniques to discover the association rules in the

access history and use the rules to construct two prefetch

sets: the always-prefetch set and the miss-prefetch set,

motivated by the above two observations respectively. As

the name suggests, the always-prefetch set consists of the

data that should always be prefetched if possible. The miss-

prefetch set consists of data items that will be prefetched

accordingly when a cache miss happens. In the following

sections, we will present our cache-miss-initiated prefetch

(CMIP) scheme based on these two prefetch sets.
2.1. Mining the access trace to obtain association rules

In this section, we present the algorithm that generates

the association rules from the access trace. Section 2.1.1

formalizes the problem, which is inspired by [3,4]. Sections

2.1.2 and 2.1.3 present the algorithm that generates

association rules.
2.1.1. The problem statement

Suppose a client’s access trace S consists of a set of

consecutive parts: {p1,p2,.,pi,.,pn}. Let GZ{i1,i2,.,im}

denote the set of data items accessed by the client. Let Si

denote the data items contained in part pi. Si is called



Fig. 2. The algorithm to generate frequent itemsets.
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a session and Si3G. We say a session Si contains X if SiJX,

where X3G. An association rule is defined as an

implication of the form X0Y, where X3G, Y3G, and

XhYZ: X is called the antecedent of the rule and Y is

called the consequent.

A set of data items is called an itemset. The number of

data items in an itemset is called the size of the itemset. An

itemset of size k is called a k-itemset. The support of an

itemset X, support(X), is defined as the percentage of

sessions that contains X in the client’s access trace S. The

support of an association rule R, support(R), is defined as

the support of the itemset that consists data items in both the

antecedent and the consequent of the rule. For instance, the

support of an association rule R:X0Y is

supportðRÞ Z supportðfX;YgÞ

The confidence of an association rule R, confidence(R), is

defined as the support of the rule divided by the support of

the antecedent. For example, the confidence of the

association rule R:X0Y is

confidenceðRÞ Z
supportðfX; YgÞ

supportðXÞ
!100%

Given an access trace S, the problem of mining

association rules is to find all the association rules that

have support and confidence greater than the user-specified

minimum support (minsup) and minimum confidence

(minconf), respectively.

The problem of discovering association rules can be

decomposed into two subproblems [4]:
1.
Tab

Not

k-it

Fk

fi, f

fj.it

c

Find all the itemsets with minimum support: sup-

port(X)Rminsup. Itemsets with minimum support are

called frequent itemsets.
2.
 Use the frequent itemsets to generate association rules

with minimum confidence.
2.1.2. The algorithm to generate frequent itemsets

In this section, we present the algorithm of generating

frequent itemsets from the client’s access trace. Table 1

shows the notation used in the algorithm.

Fig. 2 illustrates the main steps of our frequent itemsets

generation algorithm. The algorithm accepts an access trace

S and a minimum support (minsup) as parameters. Line 1 is

the first step. In this step, S is analyzed to generate the

frequent 1-itemsets. This is done by calculating the support
le 1

ations

emset An itemset with k items

The set of frequent k-itemsets (those with minimum

support)

j Any of the frequent (kK1)-itemsets within FkK1

emm Itemset fj’s m-th item

A new frequent k-itemset got by combining a frequent

(kK1)-itemset with one item
of each data item and comparing it to the minimum support.

Every data item that has minimum support forms one

frequent 1-itemset.

The second step is to find all the frequent 2-, 3-,.,k-

itemsets. This is done by using a loop shown from line 3 to

line 21. Each iteration of the loop, say iteration k, generates

frequent k-itemsets based on the (kK1)-itemsets generated

in the previous iteration. The loop stops when no larger

frequent itemsets can be generated. Inside the second step,

lines 3–15 generate all the new candidate frequent k-

itemsets out of the frequent (kK1)-itemsets. Lines 16–19

remove those candidate frequent k-itemsets that do not have

minimum support. In line 22, the algorithm returns all the

frequent itemsets generated in that iteration.
2.1.3. The algorithm to generate association rules

The proposed algorithm generates association rules

based on the frequent itemsets Only two simple kinds of

association rules are generated for our purpose: one is of the

form ‘0ij’ and the other is of the form ‘ij0Y’, where ij2G

and Y3G.

Table 2 shows the notations used in our algorithm. Fig. 3

illustrates the main idea of the algorithm. The algorithm

accepts the frequent itemsets and a minimum confidence

(minconf) as parameters. The rules are generated in two
Table 2

Notations

R The set of association rules

I The set of items that could be the antecedent of a rule

Fk The set of frequent k-itemsets

N The largest size of the frequent itemsets

fj Any of the frequent k-itemsets within Fk

fj.itemi Itemset fj’s i-th item



Fig. 3. The algorithm to generate the association rules.
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steps. Lines 1–6 are the first step. This step generates the

first kind of rules, which are of the form ‘0fj.item1’, where

fj.item12fj and fj2F1. These rules are generated from the

frequent 1-itemsets F1 in this way. For each 1-itemset fj, the

support of fj.item1, which is the only one data item contained

in fj, is compared with the minimum confidence. If the

support of fj.item1 is not less than the minimum confidence,

we generate a rule of the form: ‘0fj.item1’. The first step

also initializes the set I. Set I is used to optimize the process

of generating rules in the second step. Set I consists of data

items that have potential to generate rules where they are the

antecedent of the rules.

Lines 7–17 are the second step. In this step, the second

kind of rules of the form ‘ij0Y’, where ij2G and Y3G are

generated from frequent itemsets of size larger than 1. For

each frequent itemset, the rules are generated as follows. Of

all the data items within the frequent itemset, one item

becomes the antecedent of the rule, and all the other items

become the consequent. Thus, a frequent k-itemset can

generate at most k rules. For example, suppose {i1,i2,i3,i4}

is a frequent 4-itemset. It can generate at most four

rules: i10{i2,i3,i4}, i20{i1,i3,i4}, i30{i1,i2,i4}, and

i40{i1,i2,i3}. After the rules have been generated, their

confidences are calculated to determine if they have the

minimum confidence. Only the rules with at least the

minimum confidence are kept in the rule set R. For example,

for the rule i10{i2,i3,i4}, we need to calculate its

confidence: confZsupport({i1,i2,i3,i4})/support({i1}). If

confRminconf, the rule holds and it will be kept in the

rule set R. Using this method, different frequent itemsets

may generate rules with the same antecedent. For example,

suppose there are two frequent itemsets: a frequent 4-

itemset {i1,i2,i3,i4} and a frequent 3-itemset {i1,i2,i3}. Both

of them can generate a rule for i1. The rule generated by the

frequent 4-itemset is ‘i10{i2,i3,i4}’ and the rule generated

by the frequent 3-itemset is ‘i10{i2,i3}’.
Among the rules with the same antecedent, the one

we need should have the largest itemset in the

consequent of the rule. Note that a larger frequent

itemset can generate a rule with the same antecedent but

a larger consequent than that generated by a smaller

frequent itemset. Thus, for a data item, the rules should

be generated from the largest frequent itemsets first. If a

rule has already been generated for a data item from a

frequent itemset, say a k-itemset, there is no need to

generate rules for the data item in any smaller frequent

itemsets, such as (kK1)-itemsets, (kK2)-itemsets and so

on. As in the above example, data item i1 has two rules

and the rule ‘i10{i2,i3,i4}’ has a larger itemset in the

consequent than in the rule ‘i10{i2,i3}’. Since {i2,i3,i4}

contains {i2,i3}, the former rule has a larger view of i1’s

relationships with other data items than the latter one.

Thus, we only need the former rule for data item i1 and

do not need to generate rules, such as ‘i10{i2,i3}’, from

smaller frequent itemsets.

Based on this observation, in our algorithm, the process of

rule-generating starts by analyzing the largest frequent

itemsets, Fn, first, and then FnK1, FnK2,., until reaching

the frequent 2-itemsets F2. In order to prevent the algorithm

from generating rules for those data items that already have a

rule, set I is used. Set I is initialized in the first step and it is

used in the following way in our algorithm. Before

generating a rule for a data item, say ij, the data item ij is

checked to see if it is in set I. If ij is found in set I, a rule is

generated for ij. At the same time, ij is deleted from the set I. If

ij is not in set I, no rule will be generated. By using the set I,

only one rule that has the largest consequent is generated for

each data item.

2.2. Constructing prefetch sets

The two prefetch sets, always-prefetch set and miss-

prefetch set, are constructed using the association rules

generated above. The always-prefetch set is constructed

from the first kind of rules that are of the form ‘0i1’, by

collecting the data items in the consequent of these rules.

Since the data items in the consequent of such rules appear

in most of the sessions, it is a good idea to always keep a

fresh copy of them in the cache. By doing so, we can

improve the cache hit ratio and reduce the number of uplink

requests.

The miss-prefetch set is constructed from the second

kind of rules that are of the form ‘ij0Y’, where ij2G and

Y3G. A miss-prefetch set for the cache-missed data item is

constructed when a cache miss happens. The miss-prefetch

set is constructed in this way: among all the rules, the rule

whose antecedent is the cache-missed data item is located

and all the data items in the consequent of the rule form a

miss-prefetch set of the cache-missed data item. For

example, suppose data item i1 is cache missed and we

have a rule like this: ‘i10{i2,i3,i4}’. The miss-prefetch set

of data item i1 is {i2,i3,i4}.
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Note that the process of constructing the always-prefetch

set and the miss-prefetch set is very fast since we only need

to collect the data item IDs from a small portion of the

association rules. For example, for the miss-prefetch set, we

only need to check the rule of which the antecedent is the

cache-missed data item, and collect the data IDs of the

consequent of such rules. As a result, the construction time

is negligible.

2.3. The cache-miss-initiated prefetch (CMIP) scheme

Our CMIP scheme prefetches data items based on the

two prefetch sets. The following is a description of our

CMIP scheme. Each client maintains an always-prefetch

set. If the data items within the always-prefetch set are not in

the cache, the client will prefetch them when they appear on

the broadcast channel. If they have been updated by the

server and the copies in the cache become invalid, the client

prefetches them from the channel when they become

available. The always-prefetch set is small. Even though

we keep all the data items in the always-prefetch set within

the cache, it consumes little system resources.

When a cache miss happens, the miss-prefetch set for the

cache-missed data item is constructed. In case of a cache

miss, the client needs to send an uplink request to the server

to ask for the cache-missed data item. Instead of requesting

only the cache-missed data item, all the data items within

the miss-prefetch set are requested. When the server

receives the request, it broadcasts all these data items on

the broadcast channel. The client will prefetch and store

them in its cache. By piggybacking the request of items in

the miss-prefetch set, the client can save future uplink

requests and reduce the access latency.

The association rules, on which the two prefetch sets are

based, are highly related to the client’s access pattern and

the client’s access pattern may change from time to time.

For example, at one time, the client is interested in stock

quotes. After some time, the user may like to browse the

news. When the client’s access pattern changes, the

relationships among data items also changes. Some new

relationships may show up and some old relationships may

disappear. Thus, the association rules should be re-mined

and updated so that they are in accordance with the client’s

changing access pattern. In the CMIP scheme, we re-mine

and update association rules periodically to keep them fresh.

This is done by adding recent accesses to the access trace

and cutting off the oldest part. After re-mining the

association rules, the always-prefetch set is updated

immediately and the miss-prefetch sets for oncoming

cache misses are constructed using the new rules.

We want to point out that, in our CMIP scheme, the data

within the always-prefetch set will never be replaced or

deleted from the cache, since the client has a high

probability to query them in the future. But there is one

exception: when updating association rules happens, some

of them may become replaceable. For example, if a data
item is within the old always-prefetch set, but not in the new

one, it will be marked as replaceable.

To make our CMIP scheme adaptable, we need to

decrease the number of prefetches when the power becomes

low, since downloading a data item from the channel

consumes power. Our strategy is to reduce the miss-

initiated-prefetch level. In this case, we need to re-mine the

association rules with a higher minimum confidence

(minconf) parameter, and then the rule mining algorithm

can generate fewer and smaller rules. As a result, the miss-

prefetch set becomes smaller and we only need to prefetch

fewer data items from the broadcast channel. Using this

strategy, we can decrease the power consumption and only

prefetch the most important data items. In this paper, we

assume the mobile nodes always have enough power to

prefetch the data.
3. Performance evaluation

3.1. The simulation model and parameters

To evaluate the performance of the proposed method-

ology, we compare the CMIP scheme with the UIR scheme

[7] and the UIR scheme without prefetch (called NOPRE)

under various workload and system settings Our simulation

is based on a simulation trace transformed from a real client-

side web trace provided by Boston University [12].

3.1.1. The simulation trace

The web trace provided by Boston University [12] is

collected for the purpose of understanding client requests

for web documents Traces of actual executions of NCSA

Mosaic have been collected to reflect over half a million

client requests for WWW documents in the Internet. There

are three types of traces: condensed, window and structure.

The condensed trace contains the sequence of object (URL)

requests. Each line of a condensed trace corresponds to a

single URL requested by the user; it contains the machine

name, the time stamp when the request was made, the URL,

the size of the documents and the object retrieval time in

seconds. An example of a line from a condensed trace of a

client is:

cs20 785526142 920156 “http://cs-www.bu.edu/lib/pica/

bu-logo.gif” 1804 0.484092

We utilize the condensed trace in our simulation because

the client/web-server model in the web is very similar to the

client/server model in mobile environments. To fit the web

trace into mobile environments, we use the following

strategies to transform it:
1.
 Clients in the web trace are mapped to mobile clients in

the mobile environment.
2.
 URLs requested by users in the web trace are mapped to

data items requested by mobile clients in the mobile

environment.

http://cs-www.bu.edu/lib/pica/bu-logo.gif
http://cs-www.bu.edu/lib/pica/bu-logo.gif


Table 3

A sample trace

Access time 0 20 140 280 420 500 600 820 920 1000

Data item 0 1 2 422 1 2 423 10369 10370 10371

Access time 2100 2200 2300 2400 2500 3000 3900 4000 4500 6000

Data item 0 1 2 422 1 2 1384 1390 1385 0

Access time 6200 6400 7500 7600 7700 7800 7900 8000 8100 8200

Data Item 1 2 0 1 2 422 1 2 1384 1385

Access time 9300 9400 9500 9600 9700 9800 9900 10000 10800

Data item 0 1 2 422 1 2 1384 9800 8744
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3.
 The access time of a URL in the web trace is mapped to

the query time in our simulation. Let the first requested

URL’s access time in the web trace be zero, other

requested URLs’ query time will be the seconds elapsed

from the first request. For example, one month’s real

time is mapped to 60*60*24*30Z2,592,000 simulation

seconds.

After the transformation, the trace can be used to

simulate the client requests in a mobile environment.

Table 3 shows a sample trace selected from the trace

transformed from the web trace using the above strategies. It

contains 39 data requests. The access time is in simulation

seconds and each data item ID represents a URL request.

In this paper, we assume that the request patterns in

mobile environments have some similarity to that of the

Web traces. Although Web pages in mobile environments

typically have less number of embedded objects than

content-rich Web pages designed for PC access (e.g. Web

pages for mobile users typically have less embedded

images, advertisements, etc.), this may make our association

rule-based prefetch scheme more effective. Let us look at an

example of Web browsing using a PDA. It is true that there

are much less embedded objects on each of the PDA-

friendly Web page. This, however, makes the correlation of

the objects much higher than the Internet. In Internet, each

page may have tens or even hundreds of embedded objects,

such as images and URL links. The correlation of these

objects are pretty low since there are so many objects in one

page and the user may access only a few of them. In the case

of PDA-friendly Web pages, since the number of objects on

one page is very small, it is very possible that the PDA user

will access most of them. Thus, our association rule mining

algorithm can easily find stronger correlation among these

objects, since the access requests are limited to a smaller

group of objects. As a result, the proposed scheme can
Table 4

The sample trace in sessions

Session # Data item requests

1 0 1 2 422 1 2 423 10369 10370 10371

2 0 1 2 422 1 2 1384 1390 1385

3 0 1 2

4 0 1 2 422 1 2 1384 1385

5 0 1 2 422 1 2 1384 9800 8744
prefetch more efficiently and precisely in mobile

environments.

3.1.2. Session identification

Before applying the association rule algorithm, we first

need to construct sessions out of the simulation trace [11]

uses a timeout to divide the page accesses of each user into

individual sessions. If the time between page requests

exceeds a certain limit, it is assumed that the user is starting

a new session.

In this paper, we determine the session boundaries using

an approach similar to [11], called gap-based approach. In

this approach, we assume that a new session starts when the

time delay between two consecutive requests is greater than

a pre-specified time threshold-gap. In order to find an

appropriate gap to identify the session boundaries, we have

done some study on the web trace. We notice that if the time

interval between two URL requests is larger than 1000 s,

then the later requested data item has little relationship with

the former one. Based on this observation, we use 1000 s as

the gap to identify sessions in our simulation. Table 4 shows

that the sample trace (in Table 3) can be divided into five

sessions.

Table 5 shows the frequent itemsets generated from the

sample trace by applying our frequent itemsets generating

algorithm to the five sessions shown in Table 4. Here, the

minsupZ60%. From Table 5 we can see that the largest

frequent itemset is a 5-itemset.

Table 6 shows the rules generated from the sample trace

by applying our rule generating algorithm to the frequent

itemsets shown in Table 5. Here, the minconfZ80%. As can

be seen, the frequent 2- and 3-itemsets do not generate any

rules. This is because after analyzing the frequent 5- and 4-

itemsets, all the available rules have been generated. Thus,

there is no need to generate any rules from the frequent 2-

and 3-itemsets.
Table 5

The frequent itemsets

1-itemset {0}, {1}, {2}, {422}, {1384}

2-itemset {0, 1}, {0, 2}, {0, 422}, {0, 1384}, {1, 2}, {1, 422},

{1, 1384}, {2, 422}, {2, 1384}, {422, 1384}

3-itemset {0, 1, 2}, {0, 1, 422}, {0, 1, 1384}, {1, 2, 422}, {1, 2,

1384}, {2, 422, 1384}

4-itemset {0, 1, 2, 422}, {0, 1, 2, 1384}, {1, 2, 422, 1384}

5-itemset {0, 1, 2, 422, 1384}



Table 6

The association rules

1-itemset 00(100%)

01(100%)

02(100%)

0422(80%)

2-itemset

3-itemset

4-itemset 00{1, 2, 422}(80%)

10{0, 2, 422}(80%)

20{0, 1, 422}(80%)

4220{0, 1, 2}(100%)

5-itemset 13840{0, 1, 2, 422}(100%)
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3.1.3. The simulation model

The architecture of our simulation model is shown in

Fig. 4. The simulation model is similar to the one used in [7,

16]. It consists of a single server that serves multiple clients.

The Server Model. To insure cache consistency, the

server broadcasts invalidation reports (IRs) every L seconds.

IR contains the update history of the past w broadcast

intervals. To reduce the query latency, a number of
Fig. 4. The syste
replicated updated invalidation reports (UIRs) [7] are

inserted into each IR interval. UIR contains the data items

that have been updated after the last IR has been broadcast.

Other messages are served on a first-come-first-serve basis.

If the server is in the middle of a transmission when an IR or

UIR has to be sent, the IR/UIR broadcast is deferred till the

end of the current packet transmission.

The server generates a single stream of updates separated

by an exponentially distributed update inter-arrival time. All

updates are randomly distributed inside all the data items

and only the server can update the data items. It is assumed

that the bandwidth is fully utilized for broadcasting IRs and

UIRs and serving client requests. The server processing time

is considered to be negligible.

The Client Model. Every client, if active, listens to the

IRs and UIRs to invalidate its cache accordingly. When a

new request is generated, the client listens to the next IR or

UIR to decide if there is a valid copy of the requested item in

the cache. If there is one, the client answers the query

immediately. Otherwise, a cache miss happens and the

client sends an uplink request to the server. Before sending
m model.



Table 7

Simulation parameters

Number of clients 200

Number of data items 13,833 items

Data item size 1024 bytes

Broadcast interval (L) 20 s

Broadcast bandwith 10 KB/s

Cache size 10–300 items

Broadcast window (w) 10 intervals

UIR replicate times (mK1) 4 (5K1)

Rule minimum support (minsup) 60 (%)

Rule minimum confidence

(minconf)

80 (%)
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the uplink request, the requested item is sent to the CMIP

module and a miss-prefetch set, corresponding to the

requested item, is constructed. Then the data items in this

miss-prefetch set are piggybacked to the request. After that,

the uplink request is sent to the server. After receiving the

uplink request, the server broadcasts the requested data on

the broadcast channel. Then, the client can download them

and answer the query.

The client model consists of two parts: the simulation

trace and the CMIP module. The simulation trace consists of

an access trace and a new-request generator. The access

trace is used by the CMIP model to generate association

rules and the new-request generator is used to simulate

clients’ requests. In the CMIP module, the access trace is

divided into sessions. Then the sessions are mined using the

association rule mining algorithms. The association rules

with the minimum confidence (minconf) and the minimum

support (minsup) are saved in the association rule stack. The

always-prefetch set is constructed after obtaining the

association rules. A miss-prefetch set for the cache-missed

data item is constructed using the associated rules when a

cache miss happens.

To keep the association rules fresh, the client updates the

access trace by feeding the recent query history from the

new-request generator, and re-mines the rules periodically.

The always-prefetch set will be updated consequently and

the new rules are used to construct miss-prefetch sets for

oncoming cache misses. Most of the system parameters are

listed in Table 7.

3.2. Simulation results

We compare the performance of our CMIP scheme with

two other schemes: the UIR scheme [7] and the UIR scheme

without prefetching (called NOPRE scheme). Four metrics

are used to evaluate their performance: the percentage of

additional traffic, the cache hit ratio, the percentage of

reduced uplink requests, and the percentage of wasted

prefetch.

3.2.1. The cache hit ratio

The performance metrics such as access latency and

the uplink cost have strong relations with the cache hit ratio.
For example, if the cache hit ratio is high, the access latency

can be reduced since many of the requests can be served

within the cache without sending uplink requests to the

server. In our simulation, we evaluate the cache hit ratio of

the three schemes using various cache sizes and different

number of mobile clients.

Fig. 5 compares the cache hit ratio of the CMIP scheme

with those of the UIR scheme and the NOPRE scheme. As

shown in Fig. 5(a), compared to the NOPRE scheme, our

CMIP scheme improves the cache hit ratio greatly. This is

explained as follows. The NOPRE scheme does not prefetch

data items, so less data item requests can be served in the

cache. When the cache is full, it uses LRU scheme to do

cache replacement. However, LRU does not consider the

relationships among data items. Thus important data items

could be replaced by unimportant ones using the LRU

scheme. For the CMIP scheme, since it has mined the

relationships among data items, it knows which data items

have higher future access probabilities. So it will keep these

important data items in the cache longer. In this way, more

client’s requests can be served locally in the cache and the

cache hit ratio is improved. This explains why our CMIP

scheme can achieve a better performance than the NOPRE

scheme in term of cache hit ratio.

Fig. 5(b) also shows that the CMIP scheme is better than

the UIR scheme. This can be explains as follows. The UIR

scheme is based on the cache locality: a client has a large

chance to access the invalidated cache items in the near

future; downloading these data items in advance should be

able to increase the cache hit ratio [7]. However, the UIR

scheme does not differentiate the items in the cache.

Although, the UIR scheme classifies data items into hot data

and cold data and treat them differently during cache

management, they are treated equally in prefetching and

assumed to have the same access probability in the future.

But, as stated above, some of the data items within the cache

are important, while others are not. The CMIP scheme

differentiates the importance of the data items and keeps the

important data items in the cache longer. As a result, the

CMIP scheme can achieve a higher cache hit ratio than

the UIR scheme.

Fig. 5(c) compares three schemes when the number of

mobile clients is 200. In this case, the CMIP scheme is about

15% better than the NOPRE scheme and about 9% better

than UIR in term of cache hit ratio. Although UIR scheme

achieves a better cache hit ratio than NOPRE scheme, later

we will see that the high cache hit ratio of the UIR scheme is

at the cost of high additional traffic.

3.2.2. The percentage of reduced uplink requests

The percentage of reduced uplink requests is defined as

the ratio of the number of saved uplink requests to the total

number of requests. Since the NOPRE scheme does not

prefetch, it is not available for comparison. Fig. 6 shows the

percentage of reduced uplink requests using the CMIP

scheme and the UIR scheme. Generally speaking, using our



Fig. 5. The comparison of cache hit ratio using three schemes. (a) CMIP scheme vs. NOPRE scheme. (b) CMIP scheme vs. UIR scheme. (c) CMIP scheme vs.

UIR scheme vs. NOPRE scheme when clientsZ200.

Fig. 6. The percentage of reduced uplink requests using CMIP scheme vs.

UIR scheme.
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CMIP scheme, the percentage of reduced uplink requests

increases as the cache size increases. After the cache size

reaches 120, the percentage no longer changes. This can be

explained as follows. As the cache size increases, more and

more important data items, which have high access

probability, can be stored in the cache. When the cache

size is still not large enough, the cache hit ratio will increase

sharply as cache size increases. As a result, the rate of

reduced uplink requests is higher than the arrival rate of new

requests. Thus, the percentage of reduced uplink requests

has a trend of increasing in these cases. When the cache size

is big enough to hold all the items within our prefetch sets,

the rate of reduced uplink requests is no long significant

compared to the arrival rate of new requests. Hence, the

percentage of reduced uplink requests no longer changes

after the cache reaches a certain size.

From Fig. 6, we also notice that although the trend of the

percentage of reduced uplink requests is increasing, there

are some ups and downs. For example, with 200 clients, the

percentage of reduced uplink requests reaches the peak

when the cache size is about 50. As the cache size continues

to increase, the percentage begins to decrease a little bit, and

then increase again. This can be explained as follows. As the

cache size increases, more queries can be served within
the cache. So the number of reduced uplink requests keeps

increasing. Depending on the access patterns of the clients,

the number of reduced uplink requests may increase at a rate

higher or lower than the increase of the number of requests.

If the rate is higher, the percentage of reduced uplink
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requests will increase. If the rate is lower, the percentage

will decrease instead. Thus, there are some ups and downs in

the percentage of reduced uplink requests, although the

trend is increasing.

Fig. 6 also shows that our CMIP scheme outperforms the

UIR scheme nearly all the time, no matter what the cache

sizes or the number of mobile clients is. The percentage of

reduced uplinks using the CMIP scheme is twice as much as

that of using the UIR scheme. In term of percentage of

reduced uplink request, even the worst case of the CMIP

scheme is better than the best case of the UIR scheme. For

instance, the CMIP scheme has the worse performance

when there is only one mobile client and the percentage of

reduced uplinks is about 6% (7.5% at best). But for the UIR

scheme, it achieves its best performance when there are 200

mobile clients with about 3% of reduced uplinks. This is

because the CMIP scheme can better predict the future

access of the clients and prefetch them in advance than the

UIR scheme. Hence, the CMIP scheme can reduce the

uplink requests at a percentage much higher than the UIR

scheme.
Fig. 7. The percentage of additional traffic. (a) Using UIR scheme. (b) Using CMI

200.
3.2.3. The percentage of additional traffic

The percentage of additional traffic is defined as the ratio

of the number of prefetches from the broadcast channel to

the number of requests. We use this metric to measure the

overhead of the prefetch schemes. As we know, down-

loading a data item from the channel incurs overhead to the

system. For example, downloading the data item consumes

system resources such as bandwidth and power. So a

prefetch scheme should not prefetch aggressively. Other-

wise, it will consume too much resources and the overhead

will offset the benefit of prefetching. This is especially

important in mobile environments, where the system

resources are very limited.

Note that this metric, the percentage of additional traffic,

depends on the number of requests. If the number of

requests is too small, the percentage will be high for an

aggressive prefetch scheme that prefetches data without

considering the data requesting load. This turns out to make

our CMIP scheme favorable, since our scheme prefetches

only when requesting data and a cache miss happens.

Thus our scheme is a non-aggressive prefetch scheme and
P scheme. (c) CMIP scheme vs. UIR scheme when the number of clientsZ



Fig. 8. The percentage of wasted prefetch. (a) Using UIR prefetch. (b) Using CMIP prefetch.
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the number of prefetches is proposition to the number of

requests. In addition, this metric, when combined with other

metrics such as the cache hit ratio, can better describe a

prefetch scheme’s efficiency and prediction precision. A

good prefetch scheme should be able to improve the cache

hit ratio without incurring too much additional traffic (or

prefetches) to the system. Fig. 7 compares the two schemes,

our CMIP scheme and the UIR scheme, in term of the

percentage of additional traffic.

Fig. 7(a) shows that the UIR scheme adds much additional

traffic to the system. For example, the percentage of

additional traffic is up to 20% when there are 200 clients.

This is because the UIR scheme is an aggressive prefetch

scheme. Whenever a data item within the cache has been

updated and is broadcast on the channel, the client will

download it and update the cache. But for the CMIP scheme,

the percentage of additional traffic to the system is negligible,

as shown in Fig. 7(b). For example, the percentage is lower

than 0.5% when cache size becomes larger than 100. Why the

percentage of additional traffic is so small is due to the

characteristic of our CMIP scheme. Using the CMIP scheme,

only those data items that are within our prefetch sets are

prefetched. The data items within prefetch sets are got from

association rules with a high confidence and support. So the

set of data items to be prefetch is small and the number of

prefetches is also small. This explains why the percentage of

additional traffic is negligible.

Fig. 7(c) compares the two schemes in term of the

percentage of additional traffic when there are 200 mobile

clients. From Fig. 7(c), we can see that our CMIP scheme

incurs only a fraction of the 20% additional traffic incurred

by the UIR scheme. By far, we can say that our CMIP

scheme is much better than the UIR scheme and the NOPRE

scheme, in terms of increased cache hit ratio, reduced uplink

requests and negligible additional traffic.
3.2.4. The percentage of wasted prefetch

In this section, we evaluate the prefetch schemes

using a metric called the percentage of wasted prefetch.
A prefetch is wasted if the prefetched data item is

evacuated from the cache without being used. The

percentage of wasted prefetch is defined as the ratio of

the number of wasted prefetches to the total number of

prefetches. This metric is used to measure the precision of

the prefetch schemes. If the ratio is high, it implies that

the prefetch scheme is not good and the precision of the

prediction is low. On the contrary, if the ratio is low, the

prefetch scheme predicts future accesses well and, in turn,

can improve the system performance. Fig. 8 illustrates the

percentage of wasted prefetch using two prefetch schemes

(UIR and CMIP). As can be seen, the percentages of

wasted prefetch for both schemes are higher when the

cache size is very small. For example, when the cache

size is five items, the percentage is about 13% in UIR and

10% in CMIP. This high percentage is due to the cache

replacement scheme (LRU). Since the cache size is very

small, it is not big enough to hold all the frequently-

accessed data items. After a data item has been prefetched

but the cache is full, a frequently-accessed data item may

be removed from the cache by using LRU, which results

in a high wasted prefetch percentage. On the other hand,

the figure also shows that the CMIP scheme is a little

better than the UIR scheme. Since the client’s cache size

is much larger in real world, we expect that our scheme

should work well. This has also been verified by the

figure. As the cache size increases, the percentage of

wasted prefetch drops dramatically. When the cache size

becomes larger than 50, the percentage of wasted prefetch

drops to zero for both schemes. This means that almost all

the prefetched data items have been used at least once

before they are evacuated from the cache.
4. Related work

In the literature, prefetch technique is widely employed

to reduce the access latency in WWW environments [9,10,

13,19,20]. Ref. [20] presents a predictive prefetching
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scheme for the World Wide Web in which the server tells

the clients which files are likely to be requested by the user,

and the clients decide whether to prefetch these files or not

based on local considerations (such as the contents of the

local cache). In [19], an adaptive network prefetch scheme

is proposed. This scheme predicts the files’ future access

probabilities based on the access history and the network

condition. The scheme allows the prefetching of a file only

if the access probability of the file is greater than a function

of the system bandwidth, delay and retrieval time. Wcol [9]

is a research prototype available on the Web. It prefetches

embedded hyperlinks top-to-bottom without regard to the

likelihood of use. Embedded images of prefetched pages are

also prefetched. Bandwidth consumption can be controlled

by configuring Wcol to prefetch no more than a certain

number of hyperlinks, and no more than a certain number of

images embedded within the prefetched hyperlinks. In [10],

Cohen and Kaplan investigate three other types of

prefetching in web: pre-resolving host-names (pre-perform-

ing DNS lookup); preconnecting (prefetching TCP connec-

tions prior to issuance of HTTP request); and pre-warming

(sending a ‘dummy’ HTTP HEAD request to Web servers).

[13] develops a new method for prefetching Web pages into

the client cache. Clients send reference information to the

Web server, which aggregates the reference information in

near-real-time and then disperses the aggregated infor-

mation to all clients, piggybacked on GET responses. The

information indicates how often hyperlink URLs embedded

in pages have been previously accessed relative to the

embedding page. Based on the knowledge about which

hyperlinks are generally popular, clients initiate the

prefetching of the hyperlinks and their embedded images

according to any algorithm they prefer.

Most of these work were not designed for mobile

environments and did not consider the constraints of mobile

environments. Recently, several prefetch schemes have

been proposed as a client-side technique to reduce the

access latency in mobile environments [2,8,14,22]. In [2], a

simple prefetching heuristic, called PT, computes the value

of a page by taking the product of the probability (P) of

accessing of the page with the time (T) that will elapse

before that page appears on the broadcast again. PT finds the

page in the cache with the lowest pt value and replaces it

with the current broadcast page if the latter has a higher pt

value. However, this time-based prefetch scheme is

expensive to implement since it computes the pt for each

item in the cache at every clock tick. A similar scheme has

been proposed in [14], which uses fv, a function of the

access rate of the data item only, to evaluate the value of

each data item i that becomes available to the client on the

channel. If there exists a data item j in the client’s cache

such that fv(i)Ofv(j), data item j is removed from the cache

and replaced with i.

A prefetch scheme based on the cache locality, called

UIR scheme, was proposed in [7]. It assumes that a client

has a large chance to access the invalidated cache items in
the near future. It proposes to prefetch these data items

whenever possible to increase the cache hit ratio. In [8], Cao

improves the UIR scheme by reducing some unnecessary

prefetches based on the prefetch access ratio (PAR). In this

scheme, the client records how many times a cached data

item has been accessed and prefetched, respectively. It then

calculates the PAR, which is the number of prefetches

divided by the number of accesses, for each data item. If the

PAR is less than one, it means that the data item has been

accessed a number of times and hence the prefetching is

useful. The clients can mark data items as non-prefetching

when PAROb, where b is a system tuning factor. The

scheme proposes to change the value of b dynamically

according to power consumption. This can make the

prefetch scheme adaptable, but no clear methodology as to

how and when b should be changed has been discussed. Yin

and Cao [22] proposed a power-aware prefetch scheme,

called value-based adaptive prefetch (VAP) scheme, which

can dynamically adjust the number of prefetches based on

the current energy level to prolong the system running time.

The VAP scheme defines a value function that can optimize

the prefetch cost to achieve better performance.

These existing schemes ignore some characteristics of

the mobile environments: (1) a mobile client may query

some data items frequently, (2) data items queried during a

period of time are related to each other, (3) cache misses are

not isolated events, and a cache miss is often followed by a

series of cache misses, (4) when a cache miss happens,

piggybacking several requests in the cache-miss-initiated

uplink request consumes little additional uplink bandwidth,

but reduces several future uplink requests and reduces the

access latency. In this paper, we addressed these issues by a

cache-miss-initiated prefetch scheme that prefetches highly

related data items. In order to find the relationships among

data items, we applied association rule based data mining

technique. This technique has been widely studied in a

market analysis context [6]. The problem of finding

association rules among items has been clearly defined by

Agrawal et al. in [4]. Our context, mobile environments, has

different conditions and thus a direct application of existing

association rule mining algorithm [3], is not applicable:
†
 We are interested in rules with only one data item in the

antecedent and several data items in the consequent. Our

motivation is to prefetch several data items that are

highly related to the cache-miss data item within the

cache-miss initiated uplink request. We want to generate

rules where the antecedent is one data item, the cache-

missed data item, and the consequent is a series of data

items, which are highly related to the antecedent. If we

have such rules, we can easily find the data items that

should also be piggybacked in a cache-miss initiated

uplink request.
†
 In mobile environments, the client’s computation and

power resources are limited. Thus, the rule-mining

process should be simple and resource inexpensive.
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It should only take a short time to mine the rules. It

should have low computation overhead. However, most

of the association rule mining algorithms [3,4] are

complex and have high computation, resource, and time

requirements in order to generate association rules.
5. Conclusions

Client-side prefetching technique can be used to improve

system performance in mobile environments. However,

prefetching also consumes a large amount of system

resources such as computation power and energy. Thus, it

is very important to only prefetch the right data. In this

paper, we proposed a cache-miss-initiated prefetch (CMIP)

scheme to help the mobile clients prefetch the right data.

The CMIP scheme relies on two prefetch sets: the always-

prefetch set and the miss-prefetch set. Novel association

rule based algorithms were proposed to construct these

prefetch sets. When a cache miss happens, instead of

sending an uplink request to ask for the cache-missed data

item only, the client requests several items, which are within

the miss-prefetch set, to reduce future cache misses.

Detailed experimental results verified that the CMIP scheme

can greatly improve the system performance in terms of

increased cache hit ratio, reduced uplink requests and

negligible additional traffic. Results also show that the

percentage of wasted prefetch is nearly zero when the cache

size is big enough.
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