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Abstract

Reconfigurable architectures are being increasingly used
for their flexibility and extensive parallelism to achieve ac-
celerations for computationally intensive applications. Al-
though these architectures provide easy adaptability, it is
so with an overhead in terms of area, power and timing,
as compared to non-reconfigurable ASICs. Here, we pro-
pose a low overhead reconfigurable multiprocessor, which
provides both parallelism and flexibility. The architecture
has been evaluated for its energy efficiency for a computa-
tional intensive algorithm used in elliptic curve cryptogra-
phy (ECC).

Typically, algorithms in ECC exhibit task-level par-
allelism and demand large amount of computational re-
sources for custom implementations to achieve a significant
speedup. A finite field multiplication in GF (2233) was cho-
sen as a sample application to evaluate the performance
on the QuadroCore reconfigurable multiprocessor architec-
ture. A three-fold performance improvement as compared to
a single processor implementation was observed. Further,
via reconfiguration to suit the application, power savings of
about 24% were noted in UMC’s 90nm standard cell tech-
nology.

1 Introduction

Quantifying the characteristics of a processor implies

comparing its area, operating frequency and power with

other existing processor architectures. For reconfigurable

processors, the performance is mainly judged by measuring

the overhead incurred on account of reconfiguration, i.e. the

additional area, timing and the impact on power. For run-

time reconfigurable processors, the time required to recon-

figure is also a performance overhead. Further, the perfor-

mance of an application when mapped on to this architec-

ture influences application specific characteristics such as

execution time, total power consumption and energy con-

sumption. Typically, reconfigurability is introduced to re-

duce the time to market and to introduce architectural flex-

ibility. Primarily, runtime reconfigurability is employed for

quick design modifications and also to reuse the reconfig-

urable area. Here, runtime reconfiguration is used as a

method to alter power or energy characteristics. We propose

a scheme of reconfiguration that allows our QuadroCore re-

configurable multiprocessor to switch between a fixed set of

reconfigurable operating modes. These modes allow alter-

ing the architecture to suit the method of synchronization,

communication and type of parallelism, as required by the

different parts of a single application. The advantages of

these reconfigurable operating modes include power and en-

ergy savings. Also, the proposed method of reconfiguration

is quick and hence time efficient.

Many applications require secure communication in or-

der to exchange sensitive information. To establish a secure

communication channel, typically public-key cryptography

is used. In this work, we focus on public-key cryptogra-

phy based on elliptic curves over binary extension fields

GF (2m). Compared to the frequently used RSA algorithm,

elliptic curve cryptography (ECC) achieves the same secu-

rity level as RSA with significantly shorter key sizes. How-

ever, algorithms for ECC are computational intensive. Es-

pecially multiplication in finite fields represents one of the

most critical operations [1]. As a case study, we explore

an algorithm based on ECC on our QuadroCore architec-

ture. Therefore, we map a parallelized finite field multipli-

cation to the processors of our QuadroCore. While apply-

ing different reconfiguration modes, the performance of the

distributed multiplication is analyzed in terms of execution

time and power consumption. Here, the execution time also

includes the reconfiguration time involved.

The rest of the paper is organized as follows: Section 2

provides a brief description of existing implementation of

ECC-based algorithms. Next, a comparison between exist-

ing reconfigurable processor architectures and our Quadro-

Core architecture is provided. Section 3 details the archi-

tecture of our QuadroCore and the modifications required

to introduce runtime reconfiguration. The implementation

scenario in terms of algorithmic details and modifications
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to the algorithm to suit the QuadroCore are mentioned in

Section 4. Section 5 provides the detailed results in terms

of timing and power reports. Finally, the conclusions are

discussed in Section 6.

2 Existing Multiprocessors

A lot of research considers the efficient implementation

of ECC algorithms on processor-based systems. Predom-

inantly, the execution time is optimized by applying spe-

cialized algorithms on general purpose uni-processors [5].

Hardware accelerators have also been used in ECC to re-

duce the total execution time. Here, either dedicated co-

processors have been used or instruction set extensions have

been added to the base processor [12]. However, in all

these implementations the power consumption is usually

not analyzed. Here, we propose to introduce reconfigura-

bility within the QuadroCore multiprocessor organization

to allow co-operative operation of the processing elements,

which results in energy savings.

In most multiprocessors, suggestions for application par-

titioning and load distribution depend entirely on the pro-

grammer. This process of partitioning an application to

multiple processors involves inter-processor communica-

tion. Further, establishing communication between proces-

sors necessitates use of predetermined methods of synchro-

nization. The methods of synchronization and communi-

cation depend largely on the granularity of processing, i.e.,

instruction, data or task-level parallelism. Multiprocessor

architectures are usually suited for a fixed granularity. For

example, architectures such as Ambric [4], Tilera [11] and

multicore network processors are well suited for data par-

allel applications. Hence, the synchronization and commu-

nication mechanisms are asynchronous streams of instruc-

tion and data. Consequently, a multiprocessor environment

is most often a collection of uni-processors operating inde-

pendently. Unlike these architectures, the QuadroCore can

be adapted according to the applications’ parallelism. This

is achieved by reconfiguring the processors at runtime to

suit instruction level, data level or task level parallelism, as

per the application mapped. Another architecture that con-

figures to varying granularities and parallelism as per work

loads, called TRIPS, is presented in [10]. The architecture

is composed of large coarse-grained components, which are

partitioned and modular in the processor and memory sub-

systems. Point to point communication channels allows ex-

posure to software for optimization. Unlike TRIPS, our

QuadroCore is based on introducing reconfigurability to

legacy processors when used for co-operative multiprocess-

ing. Flexibility is achieved by adding a reconfigurable in-

terconnect to the multiprocessor architecture. In addition,

this limited modification allows retaining the same instruc-

tion set architecture. Further, co-operative multiprocessing

is achieved by switching between a fixed set of reconfig-

urable operating modes, as suggested by the application.

3 QuadroCore Architecture
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Figure 1. QuadroCore Architecture

A high-level representation of the QuadroCore reconfig-

urable multiprocessor is shown in Figure 1. It is composed

of 32-bit RISC-based processors, described in [3], typically

targeted for network processing applications. A combina-

tion of four processors forms a cluster. The default mode of

operation is the MIMD mode, where each processor oper-

ates independently. Further, this hierarchy of processors in

a cluster can be extended to multiple clusters interconnected

by a network on chip.

3.1 Reconfiguration Mechanism

Reconfiguration in this context refers to runtime archi-

tectural alterations between a fixed set of modes to intro-

duce enhanced performance during the execution of an ap-

plication. This scheme of reconfiguration is scheduled dur-

ing compilation, where the compiler inserts special recon-

figuration instructions to mark the boundaries between the

predetermined modes. The details of the compiler initi-

ated methods can be found in [6]. When encountered with

this special instruction, the reconfigurable interconnect is

switched to suit the mode. The main advantages of this ap-

proach are the automatic management of reconfiguration via

the compiler, fast single cycle reconfiguration and saving in

configuration space achieved by embedding the configura-

tion information in the instruction stream. Table 1 lists the



Table 1. Reconfigurable Operating Modes

Operating Mode Application Characteristics

Asynchronous MIMD Coarse grained, Task level parallelism

Synchronous MIMD Fine grained, Instruction level parallelism

SIMD Low Power, Data level parallelism

Fast Memory Access Large amount of data exchange, Data level parallelism,

Communication via Shared Register File Few, frequent register exchange, Fine grained

possible reconfigurable operating modes and the variations

between them.

As seen from the table, based on these operating modes,

QuadroCore supports parallelism at variable granularities.

This feature demands a procedure to vary the method of

communication and synchronization, as and when required

by the application. These variations in granularity could be

within different blocks of an application or between multi-

ple applications. The following section describes the mech-

anism of these operating modes, viz., synchronization, com-

munication, Multiple Instruction Multiple Data (MIMD)

and the Single Instruction Multiple Data (SIMD) modes.
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Figure 2. SIMD Mode

3.1.1 MIMD

In this mode of operation, all the processors operate on in-

dependent instruction and data streams, hence termed mul-

tiple instruction multiple data mode. This mode is suited

for applications with coarse grained (like task level paral-

lelism), with independent instruction and data streams. De-

pending on the frequency of data exchange, a synchroniza-

tion scheme can be chosen to suit the application.

3.1.2 SIMD

As the name suggests, all the processors operate on a sin-

gle instruction stream. Of the four independent instruc-

tion streams, the choice of the ‘master’ instruction stream is

made at run-time and the corresponding ‘master’ processor

performs the instruction fetch and decode for the remaining

processors. Thus, in this mode, the instruction fetch and de-

coding stages for the other instruction streams is unused and

hence is powered off, making a direct impact for power sav-

ings. Also, the required instruction memory space for these

processing elements is reduced, since a single instruction

stream is broadcast to all the elements.

3.1.3 Synchronization

A variable granularity of parallelism demands suitable syn-

chronization schemes, such that the clock-cycle overhead

of synchronization is minimal. Here, two modes of syn-

chronization are supported. For infrequent or coarse-

grained parallelism, synchronization between processors

is achieved via single-cycle barrier synchronization. This

mode is termed as asynchronous MIMD, since the proces-

sors operated independently until encountered by barriers.

For frequent or fine-grained synchronization, the proces-

sors can be configured during runtime to operate in lock-

step fashion. In this mode, all the processors operate syn-

chronously as per the schedule pre-determined by the com-

piler, which avoids explicit synchronization. This mode is

termed as synchronous MIMD and is most suited for in-

struction level parallelism.

3.1.4 Inter-processor Communication

Originally, communication of register contents between

processors was only permitted via a shared external mem-

ory. This involves a large overhead in terms of clock cycles,

since each processor has to request for access and a round-

robin mechanism grants access. To enable quick exchange

of register values between processors a multi-port register

file consisting of 32 registers was introduced, which is ac-

cessible to all the processors simultaneously. This allows

sharing of register values without having to alter the instruc-

tion set architecture.
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Further, since a single external memory is accessed by all

the processors via a common shared bus, a bus contention is

inevitable during simultaneous memory access. To circum-

vent this bottleneck, fast-memory-access was added where

a single processors fetches data for all the processors in

a single wide-word fetch (128-bit). This fetched data is

then distributed internally among the processing elements

(32-bits). This mode of operation bypasses the bus arbitra-

tion and contention incurred during shared data access. To

summarize, the variation in terms of clock cycles observed

within the processor hierarchy is shown in Figure 3. Com-

munication can also be chosen a reconfigurable operating

mode depending on the amount and frequency of data com-

munication between processors.

3.2 Power Savings

Reduction in power when used in a multiprocessor

mode, is as essential as achieving a significant speed up.

The QuadroCore architecture by itself is optimized for both

time and power. Low-power design strategies such as clock

gating, dynamic power optimization have been incorporated

in the synthesis design flow. Although these are methods of

architectural modifications, the optimization of application

dependent dynamic power remains unaddressed. Hence, a

reconfigurable mode was introduced to save power. Here,

switching between these two modes of operations is a two-

step process. In the first step, the interconnect is recon-

figured to allow broadcasting instructions (when switch-

ing from MIMD to SIMD) and this is accompanied by

switching-off the instruction fetch and decode stages. Since

the design uses multiple power rails, the power savings in-

clude both static and dynamic power.

4 Case Study: Multiplication in Binary Ex-
tension Fields

The polynomial basis representation is a common rep-

resentation for the elements of a binary extension field

GF (2m). The elements of GF (2m) can be expressed as

a binary polynomial of degree at most m − 1 as follows:

a(x) =
m−1∑

i=0

ai · xi with ai ∈ {0, 1} (1)

We selected the binary extension field GF (2233) for the

analysis of the multiplication. This is one of the fields

that has been suggested for ECC by the National Insti-

tute of Standards and Technology (NIST) [9]. In order

to reduce the complexity of the polynomial multiplication,

we apply the Karatsuba method [7]. Using the classical

multiplication method, the three coefficients of the product

(a1x + a0)(b1x + b0) = a1b1x
2 + (a1b0 + a0b1)x + a0b0

are computed with 4 multiplications and 1 addition from

the four input coefficients a1, a0, b1, and b0. The Karatsuba

method uses only 3 multiplications and 4 additions:

(a1x + a0)(b1x + b0) = (2)

a1b1x
2 + ((a1 + a0)(b1 + b0) − a1b1 − a0b0)x + a0b0.

By applying the Karatsuba method to larger polynomials

the costs of extra additions is negligible compared to the

saved multiplications. This way, the Karatsuba method

achieves an asymptotical complexity of O(m1.58) com-

pared to the complexity of O(m2) for the classical method.

4.1 Implementation Scenario

The finite field multiplication in GF (2233) is used to

benchmark the QuadroCore architecture. The word width

of our uni-processor comprises w = 32 bit. Therefore,

the input polynomials a(x) and b(x) are divided into eight

32 bit words:

A(x) =
n−1∑

j=0

Aj · Xjw, B(x) =
n−1∑

j=0

Bj · Xjw (3)

with n = 8, w = 32. The coefficients of higher degree than

the considered binary field (233 · · · 255) are padded with ze-

ros. By applying the Karatsuba method iteratively, the mul-

tiplication of binary polynomials of degree 232 can be cal-

culated with 27 finite field multiplications at word-level (see

Table 2). The word-level multiplications are distributed to

the four processors PE1 · · · PE4 of the QuadroCore archi-

tecture. In this way, always four partial products can be pro-

cessed in parallel using SIMD mode. Here the instruction

stream is the same for all the processors. For each partial



word-level multiplication the processors calculate the sum

of the words j of the input polynomials A(x) and B(x).
In binary fields, the sum of the input coefficients is easily

calculated by an XOR operation. For example the fourth

row of Table 2 shows that processor element 1 calculates

the word-level multiplication

C = (A0 + A2) · (B0 + B2). (4)

The multiplication at word-level itself is performed us-

ing shift-and-XOR instructions [8]. The product C will

be a polynomial of double word length, which is stored in

two registers containing the high (H) and low (L) word of

the product, respectively. Finally, the partial products are

added, i. e. XORed, to the corresponding word segments ci

of the result (cf. Table 2).

Table 2. Parallelized Karatsuba multiplication
for QuadroCore

c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0
0 H LH LH LH LH LH LH LH L

0,1 H L H L H L H L
1 H LH LH LH LH LH LH LH L

0,2 H LH L H LH L
0,1,2,3 H L H L

1,3 H LH L H LH L
2 H LH LH LH LH LH LH LH L

2,3 H L H L H L H L
3 H LH LH LH LH LH LH LH L

0,4 H LH LH LH L
0,1,4,5 H L H L

1,5 H LH LH LH L
0,2,4,6 H LH L

0,1,2,3,4,5,6,7 H L
1,3,5,7 H LH L

2,6 H LH LH LH L
2,3,6,7 H L H L

3,7 H LH LH LH L
4 H LH LH LH LH LH LH LH L

4,5 H L H L H L H L
5 H LH LH LH LH LH LH LH L

4,6 H LH L H LH L
4,5,6,7 H L H L

5,7 H LH L H LH L
6 H LH LH LH LH LH LH LH L

6,7 H L H L H L H L
7 H LH LH LH LH LH LH LH L

PE
1

PE
2

PE
3

PE
4

partial words of the resulting productsum of input
words j

PE

5 Results

Table 2 shows the distribution of the multiplications on

the four processors (PE1, PE2, PE3 and PE4). The com-

puted partial words by each of the processors are stored

in the external shared memory to be accessible by all the

other processors. Since the inter-processor communication

is minimal, the asynchronous mode of operation was cho-

sen. In the first case (asynchronous MIMD) all the proces-

sors operated independently on their own local instruction

and data streams. In the MIMD-SIMD mode, the processors

execute blocks of code in SIMD mode whenever possible.

In case of data dependent variations to the control path, the

mode is switched back to MIMD. The processors (PE2, PE3

and PE4) are reconfigured to operate based on the instruc-

tion stream of the ‘master’ (PE1), when executing the same

function, e. g. the word-level multiplication. Each time,

reconfiguring between modes consumes one clock cycle.

Since all the processors need to execute the same instruc-

tion stream, all the processors need to be synchronized be-

fore entering the SIMD mode. Hence, a difference in the

execution times between SIMD and MIMD modes. The re-

configuration functionality was hand-coded in assembly as

a first proof of concept.

5.1 Timing Analysis

Table 3 compares the variation in execution time for

the application in asynchronous MIMD mode and using

MIMD−SIMD reconfigurable mode, for an operating fre-

quency of 200MHz. A single processor implementation

requires 9311 clock cycles, where as the multiprocessor

implementation requires 3077 in the asynchronous MIMD

mode and 3237 clock cycles in the SIMD−MIMD reconfig-

urable mode. The performance improvement and the power

savings in the SIMD−MIMD mode confirms the advantage

of reconfiguration.

In [12] a word-level based multiplication in the binary

field GF (2191) needs 15,344 clock cycles on a SPARC V8-

compliant LEON-2 processor. Moreover, Elliptic Semicon-

ductor Inc. claims to compute a finite field multiplication in

GF (2233) within 7600 clock cycles on a MIPS-based em-

bedded processor [2]. Therefore, a reasonable performance

is achieved with our QuadroCore architecture (cf. Table 3).

5.2 Power Analysis

The design composed of the four processors and their re-

spective instruction and data memory, as shown in Figure 1

was synthesised with UMC’s 90nm standard cell technol-

ogy resulting in a total area of 4.23 sq mm. A 90nm mem-

ory (standard performance and low-K) was used for the lo-

cal data and instruction memory. The final gate-level netlist

was simulated and the switching activity was back anno-

tated within PrimePower from Synopsys Inc., to determine

the actual power values based on the application. A power

savings of 23.4% was noted when used in SIMD mode, as

compared to the MIMD mode. The resulting energy sav-

ings was 15.54%. From the detailed power reports for the

QuadroCore architecture at 200 MHz and 1.0 V supply, it

was seen that the total dynamic power is nearly 90% (62.64

mW) of the total power consumption (64.64 mW). It has to

be noted that the dominant dynamic power is entirely ap-



Table 3. Performance variations with Operating Mode

Operating Mode Execution Cycles Speedup Power Energy

Single Processor 9311 cycles 1 20.38 mW 0.949 μJ

Asynchronous MIMD 3077 cycles 3.03 64.64 mW 0.994 μJ

MIMD−SIMD 3237 cycles 2.88 49.51 mW 0.801 μJ

plication dependent. Hence, power savings for an applica-

tion can be achieved only by further reducing the dynamic

power. Further, it was noted that about 80% of the total

power was contributed by the on-chip memory. Among the

rest (20%), the register file itself had a contribution of about

26%. As compared to the single processor implementation,

the energy savings is higher for the multiprocessor imple-

mentation.

6 Conclusions

The proposed QuadroCore reconfigurable multiproces-

sor architecture adds minimal variations to the base mul-

tiprocessor architecture and allows runtime reconfiguration

for power and energy savings, in addition to a speed-up.

Overall, when comparing the reconfigurable multiprocessor

to the fixed multiprocessor implementation, the maximum

operating frequency was unaltered, but an area increase of

10% was observed. For the multiprocessor implementation

of the finite field multiplication used in GF (2233), a 3.03

times speed-up was observed as compared to a single pro-

cessor implementation. Further, the first results indicate,

power savings of 23.4% using the SIMD mode, as com-

pared to the MIMD mode. This is achieved by reconfiguring

the multiprocessor so that the unused parts are powered-off.

This resulted in an energy savings of 15.54%. In particu-

lar, the proposed scheme of reconfiguration can also be ex-

tended to other processors. A further increase in speed-up

could be achieved by optimizing the algorithmic partition-

ing, which would also result in higher energy savings.

Future work includes extension to incorporating recon-

figurability to allow a wide ALU implementation with a

word-length of 128-bits using the individual 32-bit ALUs,

for improvement in the execution time of the multiplication

algorithm.
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