
Power-Aware Scheduling for AND/OR Graphs
in Real-Time Systems

Dakai Zhu, Student Member, IEEE, Daniel Mossé, Member, IEEE Computer Society, and

Rami Melhem, Fellow, IEEE

Abstract—Power aware computing has become popular recently and many techniques have been proposed to manage processor

energy consumption for traditional real-time applications. In this paper, we are concerned mainly with the AND/OR model of real-time

applications that have different execution paths consisting of different tasks. The contribution of this paper is twofold. First, we propose

a greedy slack stealing algorithm to deal with applications represented by AND/OR graphs and prove its correctness in terms of

meeting the timing constraints. Then, using statistical information about the applications, we propose a few variations of speculative

scheduling algorithms that intend to save energy by reducing the number of speed changes (and, thus, the overhead) while ensuring

that the application meets its timing constraints. Some practical issues are also considered, such as shared memory access contention

and idle energy consumption. The performance of the algorithms is analyzed with respect to processor energy savings. The results

surprisingly show that the greedy slack stealing scheme is better than some speculative schemes and that the greedy scheme is good

enough when a reasonable minimal speed exists in the system or when there are only a few (four to six) voltage/speed levels.

Index Terms—Power-aware scheduling, AND/OR, real-time systems.

�

1 INTRODUCTION

POWER-AWARE computing has recently become popular
not only for hand-held devices that have limited energy

supply, but also for large systems consisting of multiple
processors (e.g., complex satellite and surveillance systems,
data warehouses, or Web server farms), where the cost of
energy consumption and cooling is substantial. Since
processors consume substantial energy in most systems,
many techniques have been proposed to reduce the
processor energy consumption, such as low-power proces-
sor design [3] and dynamic voltage scaling (DVS) [14], [15].
Based on DVS techniques, many works have been proposed
to manage the processor energy consumption when
executing the traditional AND-model applications in real-
time systems [26], [28], where a task is ready to execute
when all its predecessors complete execution [11]. But, this
traditional AND-model cannot describe many applications
encountered in practice, where a task is ready to execute
when one or more of its predecessors finish execution, and
one or more of its successors become ready to be executed
after the task finishes execution. A real-life example that
falls within this AND/OR model is an automated target
recognition (ATR) application, which is widely used and
requires real-time processing [24]. The control flow of most
practical applications also has OR structures, where execu-
tion of the subpaths depends on the results of previous
tasks. In some applications, the probability of the paths to
be executed is also known a priori or can be obtained from
profiling. To represent all these features, we extend the
AND/OR model developed in [11].

In this paper, we extend the work in [28] and consider the
AND/OR model applications. We propose the greedy slack
stealing algorithm that incorporates the AND/OR features
and prove its correctness with respect to meeting applica-
tions’ timing constraintswhenexecutingona sharedmemory
N-processor system. While achieving some energy savings,
the greedy algorithm carries out many voltage/speed
changes. Considering the timing and energy overhead of
voltage/speed adjustment, alongwith the statistical informa-
tion about the applications, we study a few variations of
speculative scheduling algorithms that intend to save more
energy by reducing the number of voltage/speed changes
(and, thus, the overhead), while ensuring that the applica-
tions’ timing constraints will not be violated. We take into
account shared memory access contention, energy spent in
idle periods, speed adjustment overhead, and the effects of
discrete voltage/speed levels.

The performance, with respect to processor energy
savings, is evaluated through simulations. The results
surprisingly show that the greedy scheme is better than
some speculative schemes, especially when the system has a
reasonable minimal speed or when there are only a few
(four to six) voltage/speed levels. Less surprisingly, the
effects of voltage/speed adjustment overhead increase
when the size of application decreases or the amount of
available slack decreases.

1.1 Related Work

For uniprocessor systems, Yao et al. described an offline
scheduling algorithm for independent tasks running with
variable speed, assuming worst-case execution time [27].
Based on the dynamic voltage scaling (DVS) technique,
Mossé et al. proposed and analyzed several schemes to
dynamically adjust processor speeds using slack reclama-
tion, where statistical information about task’s runtime was
used to slow down the processor speed evenly and save
more energy [21]. In [25], Shin et al. set the processor’s

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004 849

. The authors are with the Computer Science Department, University of
Pittsburgh, Pittsburgh, PA 15260.
E-mail: {zdk, mosse, melhem}@cs.pitt.edu.

Manuscript received 9 Aug. 2002; revised 19 Mar. 2003; accepted 10 Nov.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 117109.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

speed at branches according to the ratio of the longest path
to the taken path from the branch statement to the end of
the program, but the fine granularity of invoking speed
changes (at each the basic block) incurs high overheads.
Kumar and Srivastava predict the execution time of tasks
based on the statistics gathered about execution times of
previous instances of the same task [17]. Their algorithm is
adequate for soft real time systems with several task
priority levels. Using stochastic data while taking into
account the actual runtime behavior about tasks, Gruian
proposed a two-phase (offline and online) algorithm for
hard real-time systems with fixed priority assignment for
tasks [13]. The best scheme is an adaptive one that takes an
aggressive approach while providing safeguards that avoid
violating the application deadlines [2], [19].

Whenconsidering the limitedvoltage/speed levels in real-
life uniprocessors, Chandrakasan et al. have shown that, for
periodic tasks, a few voltage/speed levels are sufficient to
achieve almost the same energy savings as infinite voltage/
speed levels [6]. Pillai and Shin also proposed a set of
scheduling algorithms (static anddynamic) for periodic tasks
based on EDF/RM scheduling policy. The simulation
(assuming four speed levels) as well as the prototype
implementation show that the algorithms effectively reduce
energy consumption up to 40 percent compared to no power
management [22]. AbouGhazaleh et al. have studied the
effect of the voltage/speed adjustment overhead on choosing
the granularity of inserting power management points in an
application [1].

For multiprocessor systems with AND-model applica-
tions that have fixed task sets and predictable execution
times, static power management (SPM) can be accom-
plished by deciding beforehand the best voltage/speed for
each processor [12]. For system-on-chips (SOCs) with two
processors running at two different fixed voltage levels,
Yang et al. proposed a two-phase scheduling scheme that
minimizes the energy consumption while meeting the
timing constraints by choosing different scheduling options
determined at compile time [26]. Although they considered
the application’s dynamic behavior at the task set level, they
did not consider tasks’ runtime behavior. For AND-model
applications, we previously studied the dynamic voltage/
speed adjustment schemes on multiprocessor systems and
proposed two dynamic management algorithms (called
slack sharing) for independent tasks and dependent tasks
[28]. The effect of discrete voltage/speed levels and
voltage/speed adjustment overhead on the performance
in terms of energy savings of the dynamic management
algorithms is also studied in [28], where we show that the
algorithms can save up to 50 percent energy compared with
SPM, even considering overhead.

The paper is organized as follows: The application
model, power model, and system model are described in
Section 2. The greedy slack stealing algorithm is proposed
for applications represented by AND/OR graph and its
correctness is proven in Section 3. Section 4 proposes a few
variations of speculative algorithms using the applications’
statistical information. Practical considerations, such as
shared memory access contention and processor energy
consumption during idle period, are discussed in Section 5.
Simulation results are given and analyzed in Section 6, and
Section 7 concludes the paper.

2 MODELS

2.1 Application Model: AND/OR Graph

The AND/ORmodel is an extension of the model presented
in [11] and is represented by a directed acyclic graph
GðV ;EÞ, where the vertices in V represent tasks or
synchronization nodes, and the edges E � V � V represent
the dependencies between vertices. The graph represents
both the control flow and data dependence between tasks. If
vi is the immediate predecessor of vj, there is an edge
e :: vi ! vj � E, which means that, in general, vj depends
on vi. In other words, vj becomes ready for execution only
after vi finishes execution.

There are three different kinds of vertices in this model:
computation nodes, AND nodes, and OR nodes. As shown
in Fig. 1, a computation node, Ti, is represented by a circle
and labeled by its two attributes, ci and ai, which are the
maximum and average computation requirement (in terms
of number of cycles1), respectively, of Ti. An AND node is
represented by a diamond; an AND node depends on all its
predecessors (that is, it can be executed only after all its
predecessors finish execution) and all its successors depend
on it (that is, all its successors are executed after it finishes
execution). It is used to explore the parallelism in the
application as shown in Fig. 1a. An OR synchronization
node is represented by a double circle, which depends on
only one of its predecessors (that is, when any one of its
predecessors finishes execution, it is ready for execution)
and only one of its successors depends on it (that is, exactly
one of its successors is executed after its execution). It is
used to explore the different execution paths in the
application as shown in Fig. 1b. To represent the probability
of taking each branch after an OR synchronization node, a
number is associated with each successor of an OR node.
The AND/OR nodes are considered as dummy tasks with
the number of required cycles being 0. For a synchroniza-
tion node with a nonzero computation requirement, it is
easy to transform it to a synchronization node and a
computation node. The application represented by the
AND/OR graph has a deadline D.

For simplicity,weonlyconsider thecasewhereanORnode
cannot be processed concurrently with other paths. In other
words, all the processors will synchronize at anOR node.We
define segment as a set of tasks that are separated by two
adjacent OR nodes. There are several segments, one for each
of the branches, between two adjacent OR nodes.

850 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

1. For a specific architecture, we assume that the number of cycles to
execute a task is independent of the processor speeds. This assumption was
justified experimentally in [19].

Fig. 1. The AND and OR Structures with the maximum and average
length for each computation node. (a) AND structure and (b) OR
structure.

For loops in the AND/OR model, assuming that we
know the maximum number of iterations, m, and the
corresponding probabilities to execute specific number of
iterations, we can either treat the whole loop as a single task
that has ci and ai (computed as the maximum and average
number of cycles needed to execute the entire loop,
respectively), or we can expand the loop as several tasks.
Based on the dependency between the iterations in a loop,
there are two ways to expand the loop. If there is a
dependency between iterations (i.e., iteration iþ 1 depends
on iteration i, i ¼ 1; � � � ;m� 1), the loop can only be
expanded serially (Fig. 2a), where each branch represents
the case of a specific number of iterations to be executed. If
there is no dependency between iterations (two parallel
lines across the back edge of the loop are used to depict this
property), to explore the parallelism, the loop can be
expanded in parallel (Fig. 2b). In Fig. 2, the probability pj
of having j iterations is associated with the corresponding
successor of the OR node.

2.2 Power Management Points

In [21], we proposed that the user or the compiler inserts a
power management point (PMP) at the beginning of each
program segment. At each PMP, a new speed is computed
based on the time taken so far and an estimation of the time
for future tasks. If the new speed is different from the
current processor speed, the speed/voltage setting proce-
dure is invoked.

For the AND/OR model proposed above, we assume
that there is a PMP before each node. �c is the maximum
schedule length (in cycles) when all tasks in the application
run for ci on a specific system. The average schedule length
(in cycles), �a, is defined analogously. Both �c and �a are
associated with the PMP before the first node in the graph.
For example, in Fig. 1a, �c ¼ 8 if the number of processors
(N) equals 3, while �c ¼ 9 if N ¼ 2 due to a smaller degree
of parallelism. Assuming that there are m branches after an
OR node, for the PMP before the OR node, two values, �i

c

and �i
a, are associated with each branch bi (i ¼ 1; . . . ;m).

These values represent the remaining maximum and
average schedule length (in cycles), respectively, when
branch bi is taken. We assume that all these values are
obtained from profiling.

2.3 Power and System Models

The power consumption for CMOS processors is dominated

by dynamic power dissipation Pd, which is given by: Pd ¼

Cef � V
2
dd � f , where Cef is the effective switch capacitance, Vdd

is the supply voltage, and f is the processor clock frequency.

Processor speed, f , is almost linearly related to the supply

voltage: f ¼ k � ðVdd�VtÞ
2

Vdd
, where k is constant and Vt is the

threshold voltage [3], [7]. In this paper, we do not consider

processor static power dissipation. The processor energy

consumed to execute task Ti is given as Ei ¼ Cef � V
2
dd � Ci,

where Ci is the actual number of cycles needed to execute Ti.

When decreasing the processor speed, we also reduce the

supply voltage. This reduces processor power consumption

cubically and energy consumption quadratically at the

expense of linearly decreasing the processor speed and

linearly increasing the execution time of a task.
For example, consider a task that executes 104 cycles. At

the maximum speed fmax, it will take 104

fmax
time units. If we

have 2 � 104

fmax
time units allocated to this task, we can reduce

the processor speed and supply voltage by half, while still
finishing the task on time (recall that the number of cycles
needed to execute a task does not vary for different
processor speeds). The processor energy consumption after
reducing the speed would be:

E0 ¼ P 0 � t0 ¼ Cef �
Vdd

2

� �2

�
fmax

2
� 2 �

104

fmax

� �

¼
1

4
� Cef � V

2
dd � fmax �

104

fmax

� �

¼
1

4
� E;

where E is the processor energy consumption with fmax.
From now on, we refer to speed adjustment as both changing
the processor supply voltage and frequency.

For real processors, the supply voltage may not decrease
linearly with reduced processor speed, which is different
from the assumptions in many published papers. In this
paper, we consider two real processor models. First, in the
Transmeta model [15], the voltage/speed settings are given
as in Table 1. There are 16 voltage/speed settings between

ZHU ET AL.: POWER-AWARE SCHEDULING FOR AND/OR GRAPHS IN REAL-TIME SYSTEMS 851

Fig. 2. Expanding Loops: (a) Serially and (b) in parallel.

700MHzð1:65V Þ and 200MHzð1:10V Þ. The second power
configuration is the Intel XScale model [14], with the
voltage/speed settings as shown in Table 2. Note that Intel
XScale has a wider voltage/speed range than the Transmeta
model, but fewer voltage/speed levels. If the 104-cycle task
is executed on an Intel XScale processor and is allocated
20�s instead of 10�s, we can run the task at the speed of
600MHz (notice that the speed of 500MHz does not exist in
the Intel XScale model and the speed is rounded to the next
higher level) instead of 1GHz. Thus, at the reduced speed,
the processor energy consumption is 1:32

1:82 ¼ 52% of that at
1GHz. Compared with ideal processor model, less energy
saving is obtained.

When a processor is not executing a task (i.e., the
processor is idle), we can put it into a lower power state
(e.g., halt or sleep) to save more energy. For the processors
considered in this paper, we assume that they have a power-
saving state for each different speed, which consumes
15 percent of the corresponding power, and the transition
time out of this power-saving state is very short (several
cycles). We also assume a sleep state which consumes
1 percent of the maximal power. However, returning to an
operating state from the sleep state takes thousands of
cycles [10], [15].

We consider systems that have N identical processors
with shared memory. The application characteristics and
state are kept in the shared memory. All tasks are put into a
global queue when they are ready. Each processor executes
the scheduler independently and fetches the tasks from the
global queue as needed. For simplicity, no cache hierarchy
is considered as we concentrate on processor energy
consumption. The shared memory must be accessed in a
mutual exclusive way; we consider memory access conten-
tion in Section 5.

3 GREEDY ALGORITHM FOR AND/OR GRAPH

Since list scheduling is a standard technique used to
schedule tasks with precedence constraints [8], we will
focus on list scheduling in this paper. List scheduling puts
tasks into a ready queue as soon as they become ready and
dispatches tasks from the front of the ready queue to
processors. When more than one task is ready at the same
time, finding the optimal order of the tasks that minimizes
execution time is NP-hard [8]. In this paper, we use the
longest-task-first (LTF) heuristic [28] which adds tasks to the

ready queue in the order of their maximum computation
requirement when the tasks become ready at the same time.
Note that the LTF heuristic is not optimal. That is, the
algorithm may reject an application due to potential
deadline miss even when the application is schedulable.

Since tasks exhibit a large variation in actual computa-
tion requirement and, in many cases, only need a small
fraction of their maximum number of cycles [9], unused
cycles (i.e., unused time) can be considered as slack. We say
that there is static slack in the system if an application
executes for its maximum number of cycles with fmax, but
still finishes before its deadline. Dynamic slack is generated
when a task of the application executes less than its
maximum number of cycles or the execution of the program
does not follow the longest branch after an OR node. If there
is some slack in the system and a task Tk can use the
processor for longer than its worst-case timing requirement
(i.e., ck

fmax
), the system can appropriately slow down the

processor while executing the task to save energy.

3.1 SPM + Greedy versus Greedy Slack Stealing

In static power management (SPM), all tasks share the static
slack proportional to their maximum computation require-
ment; during execution, a dynamic greedy algorithm is
applied [28] to reclaim the dynamic slack due to less-than-
maximum executions.

In this paper, we propose a greedy slack stealing (GSS)
technique composed of two parts, namely, slack stealing and
dynamic greedy. In slack stealing, the static slack is reclaimed
by the first task on each processor while shifting all other
tasks toward the deadline. During execution, a dynamic
greedy algorithm is applied to reclaim the dynamic slack
both due to less-than-maximum executions and shorter-
branch executions. In Fig. 3, we illustrate the difference
between SPM + Greedy (Figs. 3a, 3b, 3c, and 3d) and Greedy
Slack Stealing (Figs. 3e, 3f, 3g, and 3h). Note that this simple
example assumes a single processor and an application
with no branches (see Figs. 4 and 5).

In the figure, the X-axis represents time, the Y-axis
represents processor speed (in cycles per time unit), and the
area of the box represents the number of cycles needed to
execute the task. First, SPM uses the static slack L0 to
uniformly slow down all the tasks and makes the applica-
tion finish just in time (Fig. 3b). The expected end time
(EETi) for Ti in the schedule after applying SPM is also
labeled. Figs. 3c and 3d show how the dynamic greedy
scheme works over SPM. In contrast, slack stealing shifts all
tasks toward the deadline and uses the static slack L0 for
slowing down the processor when executing T1; the shifted
start time (SSTi) for Ti is labeled (Fig. 3f). The dynamic
greedy after the slack stealing is shown in Figs. 3g and 3h.

In this paper, we will focus on the slack stealing scheme.
First, it is easy to claim L0 and the slack from different
branches after the OR nodes using the same idea of slack

852 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

TABLE 1
Speed and Supply Voltage of Transmeta 5400

TABLE 2
Speed and Supply Voltage of Intel XScale

stealing. Second, SPM can only claim L0 while missing the
slack from different branches after the OR nodes.

3.2 Details of Greedy Slack Stealing (GSS)
Algorithm

In the following, we will further explore the application’s
dynamic characteristics both at the task set level (different
execution paths) and at the task level (less-than-maximum
execution). GSS algorithm considers the characteristics of the
AND/OR model; we show how it is correct with respect to
meeting the timing constraints when executing on an N-
processor shared memory system. The GSS algorithm
consists of two phases: an offline phase and an online phase.

3.2.1 Offline Phase of GSS

The offline phase is used to collect and compute the timing
information about an application running on a specific

system with processor speed set at fmax. It is a two-pass
process. To illustrate the concept and show how the offline
phaseworks,we use the example shown in Fig. 4, where each
node depicts a task (recall that each synchronization node is
considered as a dummy task). The computation nodes are
labeled by ci=ai (in units of 106 cycles). In the first pass, using
list scheduling with LTF heuristic, we generate the canonical
schedule for all the segments, where all tasks execute for their
maximum number of cycles. The maximum schedule length
(in cycles) for the application is computed as �c. For the
branches after an OR node, the maximum remaining
schedule length (in cycles) needed along branch bi is
computed as �i

c. Further, �a and �i
a are computed analo-

gously as the weighted average schedule length needed. The
start time of task Ti in the canonical schedule is recorded as
ST c

i . The execution order of task Ti in the canonical schedule is
recorded as EOi. We maintain the same execution order of

ZHU ET AL.: POWER-AWARE SCHEDULING FOR AND/OR GRAPHS IN REAL-TIME SYSTEMS 853

Fig. 3. Greedy algorithms with static slack. (a) Worst-case execution with static slack L0, (b) worst-case execution with SPM, (c) T1 used 3/4 of its

time and finished early, (d) T2 claimed the slack and used 2/3 of its time, (e) worst-case execution with static slack L0, (f) steal the slack L0 by shifting
all tasks right, (g) T1 claimed L0 and use 3/4 of its times, and (h) T2 claimed the slack and used 2/3 of its time.

Fig. 4. The AND/OR graph for an example application.

tasks in the online phase to meet the timing constraints. The

execution order of an OR node is the maximum execution

order of its predecessors plus one. Tasks on different

branches after an OR node have the same execution order

since they are not executed at the same time.
For the example running on a dual-processor system

with fmax ¼ 1GHz, the canonical schedule is shown in

Fig. 5a. Notice that the synchronization nodes are consid-

ered as dummy tasks and are shown as bold vertical lines.

The dotted rectangles represent the program segments that

are, as a whole, executed or not executed (integrated

segment). The longest path of the application is shown in

bold in Fig. 4.

EOi and ST c
i for Ti are shown in Table 3. For example, the

execution order of T29 (an OR node) is larger than the
maximum execution order of its predecessors, T17 (with
EO17 ¼ 14) and T28 (with EO28 ¼ 20), that is, EO29 ¼ max
fEO17; EO28g þ 1 ¼ maxf14; 20g þ 1 ¼ 21. T11 and T12 are on
different branches after T10 (an OR synchronization node)
andwill not be executed at the same time; they have the same
execution order. The values ofST c

i are recorded as the time Ti

starts execution.
For the example, it takes �c

fmax
¼ 12�106

109
¼ 12ms. If the dead-

lineD < 12ms, the algorithm fails; otherwise, assumingD ¼
14ms > 12ms (seeFig. 5a), the secondpassof theofflinephase
prepares to steal the slack by shifting the canonical schedule
as late as possible toward the deadline. For each task Ti, we

854 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 5. The schedules for the example in Fig. 4. (a) Canonical schedule and (b) shifted canonical schedule.

TABLE 3
Offline Variables of the Example

define the canonical shifted start time (SST c
i) as the timeTi starts

execution in the shifted canonical schedule. It is the time by
which Ti must start execution for the remaining tasks to meet
the deadline, providing that the tasks in the same integrated
segment have the same shifting factor; that is, if task Tj is in
the same segment as Ti, SST

c
j � ST c

j ¼ SST c
i � ST c

i . Notice
that the shifting is a recursive process when there are nested
OR nodes. SST c

i is used to claim the slack for Ti at runtime.
The canonical shifted end time for taskTi in the shifted canonical
schedule is defined as SET c

i ¼ SST c
i þ

ci
fmax

.

The shifted canonical schedule for the example is shown
in Fig. 5b, where L0; L1; and L2 depict the slack stolen by
the algorithm. Notice that the tasks in one segment are
shifted together and have the same shifting factor. When
there are nested OR nodes, different segments may have
different shifting factors. We did not consider shifting tasks
individually in a segment. For example, for the segment
consisting of tasks T2; T3; T5; T6; and T7, we may shift T5

1ms more without violating the timing requirement. But,
shifting single tasks increases the complexity of the offline
algorithm and we do not expect too much gain from it since
that 1ms could be claimed by the subsequent tasks in the
online phase. We leave the examination of this point for
future work. After shifting the schedule, SST c

i is computed
for all Ti. SST

c
i values for the example are shown in Table 3.

Given any offline scheduling heuristic, if the offline

phase does not fail (i.e., �c

fmax
� D holds), the online phase

(see next section) can be applied. In the rest of the paper, we

assume that �c

fmax
� D (i.e., we do not consider overload).

3.2.2 Online Phase of GSS

Before presenting the online phase of the algorithm, we give
some definitions. To determine whether a task is ready or
not, we define the number of unfinished immediate predeces-
sors (UIPi) for each task Ti. UIPi decreases by one when any
predecessor of task Ti finishes execution. Task Ti is ready
when UIPi ¼ 0. The speed to execute task Ti using GSS is
denoted as f i

g. To maintain the execution order of tasks as in
the canonical schedule, the execution order of the next
expected task (TNET) is denoted by NET EO, that is,
EONET ¼ NET EO. The current time is represented by t.

Suppose that task Ti starts execution at time ti (i.e., the

time t at which one processor fetches Ti and starts to execute

it),wedefine the estimated end time (EETi) as the timeatwhich

the task is expected to finish execution if it consumes all the

time allocated for it, we have EETi ¼ ti þ
ci
f ig
.

Initially, the tasks that have no predecessor (root tasks)

are put into a Ready-Q. For other task Ti, UIPi is initialized

to 1 if Ti is an OR node; otherwise, UIPi is initialized to the

number of predecessors of Ti. The current time t is set to 0

and NET EO is set to 1.
The GSS algorithm is shown in Algorithm 1 (see Fig. 6).

In the algorithm, each idle processor tries to fetch the next

ready task (lines 2 and 3). If the next expected task (TNET) is

not ready, the processor goes to sleep (line 30); we use

function waitðÞ to put an idle processor to sleep and

function signalðP Þ to wake up processor P . If TNET is ready

and is a computation task, the processor computes its new

speed, wakes up an idle processor if the task expected after

TNET is ready and changes the speed if necessary before

executing TNET (from line 6 to 15). The slack reclamation

takes place in line 9 when handling a computation task.

Suppose Tk starts execution at tk in the online phase, the

amount of slack available to Tk is SST c
k � tk (note that tk �

SST c
k as proven in Section 3.3).

For the successors of the computation tasks and the AND

synchronization nodes, their UIPs are updated properly

and a successor task Tj will be put into the ready queue

when it is ready, that is, UIPj ¼ 0 (from line 16 to 23). When

entering the ready-queue (line 21), tasks are ordered in their

canonical execution order. For an OR synchronization node,

the first task in the chosen branch is put into the Ready-Q

(line 26 to 27). Then, the processor will go back and try to

fetch another task to execute. The shared memory holds the

control information, such as Ready-Q and UIP values,

which must be updated within a critical section (not shown

in the algorithm for simplicity).

For the example in Fig. 4, if the execution follows the

lower branch at T10 and upper branch at T19 and the tasks

on this path use their average number of cycles, the single-

instance execution trace is shown in Fig. 7. Initially, both T2

and T3 claim 2ms of static slack (the difference between

SST c
i and the time they begin execution). From algorithm

GSS, line 9 (see Fig. 6), the speed for T2 and T3 will be fmax

2

and fmax

3
, respectively, and we have EET2 ¼ 4ms and

EET3 ¼ 3ms. Since T2 only uses 3
4
of the time allocated to

it and T3 uses all the time allocated to it, both T2 and T3

actually finish at time 3ms. Both T5 and T6 get 1ms of slack

(again, the difference between SST c
i and the time they begin

execution) and are supposed to finish at time 7ms and 6ms,

at speeds 3
4
fmax and 2

3
fmax, respectively. T7 is supposed to

follow T6 on the upper processor. Since T5 only uses 1
2
of the

time allocated to it and T6 uses all its time, T5 actually

finishes earlier than T6, and T7 follows T5 on the lower

processor and claims 1ms of slack. The algorithm continues

and the execution of the example application finishes at

time 13ms, 1ms before its deadline.

3.3 Algorithm Analysis

From the above example, we can see that every task Ti starts

execution no later than SST c
i with available slack SST c

i �ti

� 0, where ti is the execution start time for Ti. Thus, the

speed for Ti is f i
g ¼

ci
SET c

i �ti
¼ ci

SST c
i þ

ci
fmax

�ti
� fmax (line 9 in

Algorithm 1, Fig. 6). Since f i
g is the speed which guarantees

that task Ti finishes no later than SET c
i , the application will

meet the deadline if the canonical execution meets the

deadline.
Hence, for proving the correctness of Algorithm 1 (see

Fig. 6), we need to show that any task Ti starts its execution

no later than its canonical shifted start time SST c
i .

Lemma 1. The execution start time ti for any task Ti in an AND/

OR application under Algorithm 1 is less than or equal to its

canonical shifted start time, that is, ti � SST c
i .

ZHU ET AL.: POWER-AWARE SCHEDULING FOR AND/OR GRAPHS IN REAL-TIME SYSTEMS 855

Proof. Define an execution trace as a set of tasks that are

executed during one running of an application. Notice

that any task in an application will be in at least one

execution trace. For any execution trace, TRACEe, we

will prove that for any Ti in TRACEe, there is a time

tið� SST c
i Þ at which the following two conditions are

satisfied: 1) Ti is the head of the task queue and is ready

(i.e., all its predecessors finished execution); and 2) a free

processor is available for Ti.

We first relabel the tasks in TRACEe, starting from 1

to ne (the number of tasks in TRACEe), in the order of

their dispatch in the canonical execution. This step

compacts the task numbering to include only the tasks

that are in TRACEe. Notice that the execution order of

tasks in Algorithm 1 (see Fig. 6) is kept the same as in

canonical execution (lines 3, 11, and 26 of Algorithm 1,

Fig. 6), therefore, for tasks Ti and Tj in TRACEe, we have

SST c
i � SST c

j if 1 � i < j � ne.

856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 6. Algorithm 1.

Fig. 7. An execution trace for the example in Fig. 4.

The proof then proceeds by induction on i, for task Ti

in TRACEe.
Base case: Assume that the number of root tasks that

begin execution at time 0 ism � N , whereN is the number
of processors. Hence, ti ¼ 0 � SST c

i for i ¼ 1; . . . ;m.
Induction step: Assume ti � SST c

i for i ¼ 1; . . . ; k� 1.
Given that the execution order of tasks in Algorithm 1

(see Fig. 6) is kept the same as in the canonical execution
(lines 3, 11, and 26 of Algorithm 1, Fig. 6), task Tk is the
header of the task queue after the first k� 1 tasks are
dispatched. For any predecessor, Tq, of task Tk (i.e.,
Tq ! Tk 2 E), we have2 1 � q � k� 1. Hence, in the
shifted canonical schedule, task Tq finishes no later than
SST c

k , that is, SET c
q � SST c

k . During the online phase,
task Tq starts execution at tq � SST c

q with speed

fq
g ¼

cq
SET c

q � tq
¼

cq
SST c

q þ
cq

fmax
� tq

� fmax:

Thus, Tq will finish no later than SET c
q � SST c

k . There-
fore, task Tk is ready no later than SST c

k .
Next, for the shifted canonical schedule, before task Tk

starts at time SST c
k , there are at most r ¼ N � 1 tasks

(among the first k� 1 tasks) that are running and will
finish later than SST c

k (since at least one processor is free
and fetches Tk at time SST c

k). For task Ta (1 � a � k� 1)
that finishes no later than SST c

k in the shifted canonical
schedule, we have SET c

a � SST c
k . At runtime, we have

fa
g ¼

ca
SET c

a � ta
¼

ca
SST c

a þ
ca

fmax
� ta

� fmax;

that is, Ta will finish no later than SET c
a � SST c

k . Thus,
there are at most r ¼ N � 1 tasks that could finish later
than SST c

k . That is, at or before time SST c
k , at least N �

r ¼ 1 processors are idle and free.
Therefore, one free processor will fetch task Tk no later

than SST c
k and task Tk starts execution at time tk � SST c

k .
Therefore, for any task Ti in an AND/OR application

under Algorithm 1 (see Fig. 6), ti � SST c
i . tu

4 SPECULATIVE ALGORITHMS

While the GSS algorithm is guaranteed to meet the timing

constraints, there may be many speed changes during

execution since a new speed is computed for each task. It is

known that, if all tasks execute at the same speed on

uniprocessor systems, the minimum energy consumption

can be achieved [16]. Considering the speed adjustment

overhead, the single speed setting is even more attractive.

From this intuition, using the statistical information about

an application, we propose the following speculative

algorithms.

Based on different strategies, we developed two spec-

ulative schemes. One is to statically predict an optimal speed

(or at most two discrete speeds [16]). The second strategy is

to dynamically adjust the speed while speculating about the

remaining work. The point in the application at which we

attempt speed changes leads to two subschemes. One is to

speculate before each task,3 the other is to speculate only

after the OR synchronization nodes since different amounts

of slack can be expected from different branches after an OR

synchronization node.

4.1 Static Speculation Algorithms

For static speculative algorithms, the speed at which an
application should run is decided at the very beginning of the
application based on the statistical information about the
whole application as: �a

D , where �a is the average schedule
length (in cycles) needed to execute the application.

If the speculated speed falls between two speed levels
(fl <

�a

D � flþ1), the static speculation with a single speed
(method SS1) will set fss1 ¼ flþ1. Alternatively, two speeds
can be speculated for the application (method SS2). At the
beginning, the speculation speed, fss2, is set as the lower
speed, fl. After a certain time point (ttp), fss2 is changed to
the higher speed level, flþ1. The value of ttp can be statically
computed as: fl � ttp þ flþ1 � ðD� ttpÞ ¼ �a) ttp ¼

flþ1�D��a

flþ1�fl
.

Even after fss1 (or fss2) is calculated, we choose the
maximum speed between fss1 (or fss2) and f i

g for task Ti,
where f i

g is computed from GSS. This is to guarantee
temporal correctness, since the speculative speed is opti-
mistic and does not take into consideration the worst-case
behaviors.

4.2 Adaptive Speculative Algorithm

If the statistical characteristics of tasks in an application
vary substantially (e.g., the tasks at the beginning of one
application have the average/maximal cycle requirement
ratio as 0:9 while tasks at the end of the application the ratio
is 0:1), it may be better to respeculate the speed while the
application execution progresses based on the statistical
information about the remaining tasks. Here, we consider
two subschemes. First, for uniprocessor systems, we can
speculate a new speed before each task begins execution as:
fas1 ¼

�r
a

D�t , where t is the current time when a new task
begins execution and �r

a is the average remaining schedule
length (in cycles) considering the possibilities to execute
different paths. Initially, �r

a ¼ �a. Note that �a is the
average schedule length (in cycles) needed to execute the
application. After Ti finishes, �

r
a can be calculated as �r

a ¼
�r

a � ai (recall that this is for uniprocessor systems). When
branch bi is taken after an OR node, �r

a will be reset as �i
a,

where �i
a is the average remaining schedule length (in

cycles) needed to finish the application after bi is taken. To
guarantee the deadline, the speed fi for task Ti will be:
fi ¼ maxðf i

g; fas1Þ.
Considering the speed adjustment overhead and expect-

ing different amounts of slack from different paths after an
OR node, the second scheme speculates the speed only after
each OR node. Therefore, the speculative speed would be
set as fas2 ¼

�i
a

D�t , where t is the current time (when the
OR node is processed) and �i

a is the average number of

ZHU ET AL.: POWER-AWARE SCHEDULING FOR AND/OR GRAPHS IN REAL-TIME SYSTEMS 857

2. Recall that there is no back edge in our AND/OR graph (the back
edges are expanded as discussed in Section 2).

3. It is hard to implement this subscheme for multiprocessor systems
because it is difficult to compute the remaining work for the processors.
One reason is that when a task ends on one processor, we do not know on
which processor other tasks will run and some tasks may be in the middle
of execution on other processors. Another reason is the gaps between tasks’
execution because the dependencies between tasks are unpredictable for
different task sets. So, we consider the speculation before each task only for
uniprocessor systems.

cycles needed when branch bi is taken after that OR node.
Again, to guarantee the deadline, the speed fi for Ti will be:
fi ¼ maxðf ig; fas2Þ.

Because the speculative algorithms never set a speed
below the speed determined by GSS, they will meet the
timing constraints if GSS can finish on time. Therefore, from
the discussion in Section 3, the speculative algorithms meet
the timing constraints if the canonical schedule under the
same heuristics finishes on time.

5 PRACTICAL CONSIDERATIONS

Issues of speed adjustment overhead and discrete speed
levels presented first in [28] can be incorporated into the
algorithms described in this paper. In the following, we will
discuss two other practical issues: shared memory access
contention and the energy consumed during idle period.

Shared Memory Access Contention. In shared memory
architectures, the data shared among processors (e.g., the
UIP structure in Algorithm 1) must be updated in a critical
section every time a task is dispatched. There will be
additional waiting time due to the shared memory access
contention as part of the context switch.

We found that the scheduling algorithm takes approxi-
mately 600 cycles without power management. For power
management, an additional 500 cycles are needed for
claiming the slack and computing the new speed. These
values4 are obtained by running the speed adjustment
algorithms on the SimpleScalar microarchitecture simulator
using its default configuration [5]. For the experiments in the
next section, we assume that the algorithm takes 1,100 cycles.
Note that the exact number depends on the number of
processors in the system and the number of successors each
task can have in the application.

In the worst case, one processor needs to wait until all
other processors finish accessing the shared data structures
if they start to execute the algorithm at the same time. To
account for this waiting time, in the worst-case analysis, we
need to assume that each processor incurs the longest
waiting time for shared memory contention. However,
during execution, if one processor does not wait for the
longest contention time, the extra time is reclaimed as slack
and used to slow down the processor. Thus, the algorithm
that considers shared memory access contention is more
conservative and, on average, more slack is available for the
power management schemes.

Idle Period. Without considering speed adjustment
overhead and/or processor response time, the best strategy
is to put any idle processor into the sleep state. This
unrealistic analysis yields the least processor energy
consumption for the idle period but may result in deadline
misses because of the transition time from sleep to an
operating state. To ensure that future tasks finish on time, a
processor needs to run at fmax when it enters the idle
period. This is because it is possible that the next task to be
dispatched must run at fmax and can spare no slack, not
even for changing speeds.

For the simulation presented in Section 6, we assume
that the power-saving state is used for the idle period in the
middle of execution and sleep state is used for the idle
period appearing at the very end of the schedule (see
Section 2.3).

6 EVALUATION AND ANALYSIS

We implement a shared memory multiprocessor simulator
using C++. It emulates the execution of an application by
simulating the execution at the task level. As mentioned in
Section 2, for simplicity, we assume the maximum number
of cycles to execute task Ti (i.e., ci) is independent of the
processor speed for a given system architecture [19].

We vary a number of parameters in our experiments: the
number of processors, laxity over deadline ratio (LDR), execution
time variability, fmin, and overhead of speed adjustment to see
how they affect the processor energy consumption for each
scheme. The laxity is defined as the difference between
application’s worst-case execution time and its deadline,
and laxity over deadline ratio is defined as LDR ¼ laxity

deadline . It
indicates the amount of static slack in specific systems. The
execution time variability, denoted by �, is defined as the
average over the maximum number of cycles needed to
execute the application, which indicates the amount of
dynamic slack the application will get on average during
execution. The value of �i for task Ti in the application is
generated from a discretized normal distribution with
average � and standard deviation 0:48 � ð1� �Þ (if � > 0:5)
or 0:48 � � (if � � 0:5); the 0:48 value comes from discretiz-
ing the values of the normal distribution. The actual
execution time of Ti follows a similar discretized normal
distribution with average �i � ci. Each point in the presented
graphs is an average of 1,000 runs. We show results for both
the Transmeta model and the Intel XScale model.

Our simulation study considers the following schemes:
static power management (SPM), greedy slack stealing
(GSS), adaptive speculation before each task (AS1), adaptive
speculation at OR nodes (AS2), static speculation with a
single speed (SS1), static speculation with two speeds (SS2),
and clairvoyant (CLV). CLV is the ideal case achievable
only via postmortem analysis by running all tasks with
single speed (or two discrete speeds) computed from tasks’
actual runtime, using list scheduling but following the
canonical execution order. For each scheme, the processor
energy consumption is compared to that of no power
management (NPM) where every task runs at fmax. Recall
that the power-saving and sleep states are used for different
idle periods in the schedule.

We consider an application of automated target recogni-
tion (ATR) (Fig. 8a) and a synthetic application (Fig. 8b),
with ci and ai in units of 105 cycles. ATR is a real-life
application provided to us by BAE systems. ATR detects
regions of interest (ROIs) in one frame and compares the
ROIs with certain templates. The number of templates that
each ROI should be matched to is three, the maximum
number of ROIs in one frame is eight and pi ði ¼ 1; . . . ; 8Þ is
the probability of having i ROIs in one frame (the values in
the graphs are from processing 180 successive frames). The
loops in the dependence graphs can be expanded as
discussed in Section 2. The numbers associated with each

858 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

4. The values were obtained by using up to six processors and at most
three successors for each task.

loop are the maximum number of iterations paired with the

probabilities of having a specific number of iterations. If

there is only one number, it is the exact number of iterations

during execution.

6.1 The Effect of Laxity over Deadline Ratio (LDR)

We start by discussing the effect of LDR on energy savings

for uniprocessor systems. The reason is that we want to

compare the effectiveness of the schemes on different

architectures (uniprocessor and multiprocessor). As the

maximum schedule length (in cycles) of an application is

assumed to be fixed for a specific system, LDR will be

changed by varying the application’s deadline. Further, as

mentioned above, the AS1 scheme is only used in

uniprocessor systems.
First, we run ATR on a uniprocessor system with � �

0:95 (the value was measured and means that there is little

dynamic slack) and overhead ¼ 5�s. For different LDR

values (i.e., different deadlines), Fig. 9 shows the absolute

energy consumed by NPM and SPM. The Intel XScale

model (Fig. 9b) has small number of discrete speeds and,

thus, when LDR � 0:2, SPM runs at the same speed (1GHz)

as NPM and consumes the same amount of energy. When
LDR increases, there is more static slack in the system and,
therefore, energy consumption should decrease for SPM
(since the slowdown capability is bigger). In the Transmeta
model (Fig. 9a), when LDR � 0:75, the energy consumption
for SPM increases with increased LDR. The reason is that
every task runs at fmin when LDR � 0:75 and the idle time
increases (and, thus, the idle energy consumed increases)
when LDR increases (recall that we change LDR by
varying the application’s deadline). For NPM, the energy
consumption increases with increased LDR since it will
consume more idle energy.

Fig. 10 shows the normalized energy consumption for
SPM and all other dynamic schemes with NPM as the
baseline. It can be seen that the processor energy consumed
is approximately the same for all dynamic schemes. The
reason is that the maximum number of regions of interest
(ROIs) in one frame is 8 and the average number of ROIs is
three. On average, the speed for most of the tasks is around
fmin by dynamically reclaiming the slack from branching
even when no static slack is considered. When the processor
is simulated following the Intel XScale model (Fig. 10b),

ZHU ET AL.: POWER-AWARE SCHEDULING FOR AND/OR GRAPHS IN REAL-TIME SYSTEMS 859

Fig. 8. Dependence graph for: (a) ATR and (b) a synthetic application.

Fig. 9. The absolute energy consumption versus LDR for ATR running on a uniprocessor system with � � 0:95 and overhead ¼ 5�s. Assuming that
Cef ¼ 10�6.

where there are fewer speed levels but a wider speed range
between levels, the normalized energy for SPM incurs sharp
changes. These changes correspond to the downgrade of
speed from one level to the next level. For example, when
LDR � 0:2, SPM needs to run at 1GHz while, when
0:2 < LDR � 0:4, SPM only runs at 800MHz.

From the results, we can also see that the greedy scheme
is better than static speculation schemes and worse than
adaptive speculation schemes when the processor is
modeled as Transmeta (Fig. 10a). When using Intel XScale
model (Fig. 10b), the greedy scheme is worse than all
speculative schemes. The reason is that Transmeta has a
relatively higher fmin (200MHz over 700MHz) than Intel
XScale (150MHz over 1GHz), which prevents the greedy
scheme from using all the slack at the very beginning. For
all the dynamic schemes, adaptive speculation after every
new task (AS1) performs the best and is very close to the
clairvoyant scheme (CLV) even accounting for overheads.
The adaptive speculation schemes are better than static
speculation schemes because they take into account the
remaining tasks.

We executed ATR on two, four, and six processors and
obtained similar results;we showonly thenormalizedenergy
consumption for sixprocessors inFig. 11. Themaindifference

observed for different number of processors is that the total
energy consumption is higher for more processors. This is
because themore processors there are, themore synchroniza-
tion between processors and, therefore, the larger amount of
idle time in the schedule. A surprising result, caused by the
energy consumption during idle period can be seen: at high
LDR, SPM is better than dynamic schemes. The reason is that
the idle period in the schedule consumes 15 percent of the
maximum power in dynamic schemes, while it only con-
sumes around 15percent of theminimumpower (i.e., around
1 percent of maximum power) in SPM.

6.2 The Effect of fmin and Speed Levels

We expected that the speculative schemes perform better
than the greedy scheme. The reason is that, typically, the
greedy behavior tends to run at the least possible speed to use
up all the slack for the current task and, consequently, the
future tasks must run at very high speed [21], [28]. However,
when theminimum speed is bounded by fmin, it prevents the
greedy scheme from using all the available slack at the very
beginning and forces some slack to be saved for future use.
Fewer speed levels also prevent the greedy scheme from
using slack early by decreasing the probability of speed
changes: the closer the speeds are to each other, the higher the

860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 10. Energy normalized to NPM versus LDR for ATR running on a uniprocessor system with � � 0:95 and overhead ¼ 5�s.

Fig. 11. Energy normalized to NPM versus LDR for ATR running on a 6-processor system with � � 0:95 and overhead ¼ 5�s.

probability that a small amount of slack will cause a speed
change. As a result, the greediness of the greedy scheme is
moderated with a higher fmin and fewer speed levels. To see
how fmin and the number of speed levels affect performance,
in Fig. 12, we plot energy savings for different values of fmax

fmin

and different number of speed levels between fmax and fmin.
With fixed fmax ¼ 1GHz, we study the effect of fmin by

setting the factor of fmax

fmin
with different values. Assuming 5 or

16 speed levels equally distributed between fmax and fmin,
Fig. 12 shows the results for ATR running on dual-
processor systems with LDR ¼ 0:2 and overhead ¼ 5�s. In
this experiment, we do not have corresponding voltage
value for each arbitrary speed level, for simplicity, we
assume Pd � f3 [18]. When there are five speed levels
(Fig. 12b), the greedy scheme is almost the same or better
than all the speculative schemes even when fmax

fmin
¼ 25 (i.e.,

fmin ¼ 40MHz), which coincides with our previous obser-
vation that a few speed levels (four to six) is good enough
for greedy power management [28]. The reason is that a few
speed levels will decrease the probability that greedy
scheme changes speed and thus some slack is saved for
future tasks. For 16 speed levels (Fig. 12a), the greedy
scheme becomes worse than the speculative schemes as
expected when fmax

fmin
� 5 (i.e., fmin � 200MHz).

From Fig. 12, notice that the greedy scheme does not
always become worse with increased fmax

fmin
(that is, decreased

fmin). The nonmonotonic change in the performance of GSS
is a direct result of the quantized speed levels. When we use
continuous speeds between fmax and fmin as shown in
Fig. 13, the energy consumption of GSS increases mono-
tonically with decreased fmin. Overall, we can see that the
performance of the speculative schemes is 10 percent to
15 percent worse than the clairvoyant scheme. For higher
values of LDR, similiar results are obtained.

6.3 The Effect of Execution Time Variability (�)

For the synthetic application running on a dual-processor
system with LDR ¼ 0:2 and overhead ¼ 5�s, the normal-
ized processor energy for each scheme is shown in Fig. 14 as
a function of �. Since increasing LDR and decreasing �
have the same effect on the available slack in a system, the
shapes of the curves for dynamic schemes correspond to

when LDR was changed. Again, the greedy scheme is as
good as the speculation schemes.

6.4 The Effect of the Overhead

The time overhead of speed adjustment varies a lot based
on different architectures. For example, an AMD K6-2+ was
measured to have an overhead of 400�s for changing
voltage and 40�s for the frequency [22]. The lpARM
processor needs 70�s to change voltage/speed [4]. For Intel
XScale, the maximal overhead for changing both voltage
and speed was measured as 30�s, while the StrongARM
SA-1110 needs 150�s to change the speed [23]. With new
technology, the overhead of voltage/speed adjustment is
expected to decrease in the future. In this paper, the range
of overhead considered is from 5�s to 150�s.

The results in Fig. 15 show the normalized processor
energy consumption of each scheme for the synthetic
application running on a dual-processor system with � ¼
0:9 and LDR ¼ 0:2 (for smaller � or bigger LDR, the
schemes will set the speed close to fmin and the effect of the
overhead will decrease). In contrast with the Transmeta
model, static speculation with two speeds (SS2) is much
better than static speculation with single speed (SS1) when

ZHU ET AL.: POWER-AWARE SCHEDULING FOR AND/OR GRAPHS IN REAL-TIME SYSTEMS 861

Fig. 12. Energy normalized to NMP versus fmax

fmin
for ATR running on dual-processor systems with LDR ¼ 0:2, overhead ¼ 5�s.

Fig. 13. Energy normalized to NPM versus fmax

fmin
for ATR running on a

dual-processor system with LDR ¼ 0:2, overhead ¼ 5�s, and contin-
uous speed.

using Intel XScale model due to the wider range between
adjacent levels in the Intel XScale model.

If the application is smaller, such as removing the loops
in the synthetic application (Fig. 8), the effect of overhead
increases. Fig. 16 shows the effect of overhead on energy
consumption for the application without loops by setting
� ¼ 0:9 and LDR ¼ 0:2. From these figures, we can see
similar behavior for all the schemes, but all of them perform
worse. A surprising result is that, when processors are
configured as the Intel XScale model, the normalized energy
consumption for GSS drops around overhead ¼ 95�s. The
reason is that, with increased overhead (¼ 100�s), the static
slack is not enough for GSS to run the first few tasks at a
lower speed. The speed for the first few tasks then increases
one level and saves some slack for future tasks. Subse-
quently, the speed for all tasks becomes smoother, conse-
quently consuming less energy.

7 CONCLUSION

In this paper, we extend the AND/OR model by adding
probabilities to each branch after the OR nodes. This
extended model can be used for applications where a task
is ready to execute when one or more of its predecessors
finish execution and one or more of its successors will be
ready after the task finishes execution. We proposed the
greedy slack stealing algorithm for the AND/OR model
applications executing on N-processor shared memory

systems and proved its correctness in meeting the timing
constraints. Then, using statistical information about appli-
cations, we proposed a few speculative algorithms to save
more energy by reducing the number of speed changes
(and, thus, the overhead) while ensuring that the applica-
tions meet their timing constraints. Some practical problems
were also addressed, such as shared memory access
contention, energy consumed during idle state, as well as
speed adjustment overhead and discrete speed levels.

The performance of all the algorithms in terms of
processor energy savings is analyzed through simulations.
The greedy slack stealing algorithm performs surprisingly
better than some speculative algorithms in two situations:
one is when the minimum speed prevents the greedy
algorithm from using up the slack very aggressively; the
other is when there are only a few speed levels which
prevent the greedy algorithm from changing speeds very
frequently. The greedy scheme is good enough when the
system has a reasonable minimum speed or there are only a
few (four to six) speed levels for the processors. The
dynamic schemes become worse relative to static power
management (SPM) when the size of the application
becomes smaller, laxity over deadline ratio (LDR) becomes
smaller, and execution time variability(�) does not have wide
fluctuations, since most of the slack will be used to cover the
speed adjustment overhead. When the number of proces-
sors increases, the performance of the dynamic schemes

862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 14. Energy normalized to NPM versus � for synthetic application running on a dual-processor system with LDR ¼ 0:2 and overhead ¼ 5�s.

Fig. 15. Energy normalized to NPM versus overhead for synthetic application running on a dual-processor system with LDR ¼ 0:2 and � ¼ 0:9.

decreases due to limited parallelism and frequent processor
idleness forced by synchronization among tasks.

The algorithms described here for shared memory
systems cannot be directly applied to distributed systems,
in which the communication time plays an important role.
Energy efficient scheduling algorithms for distributed
systems are deserve further exploration, such as [20].

ACKNOWLEDGMENTS

This work has been supported by the US Defense Advanced
Research Projects Agency through the PARTS project (Con-
tract F33615-00-C-1736). The authors would like to thank
Nevine AbouGhazaleh for providing the trace data of ATR
application and the referees’ criticisms and suggestions that
helped them in rewriting the paper in a better form.

REFERENCES

[1] N. AbouGhazaleh, D. Mossé, B.R. Childers, and R. Melhem,
“Toward the Placement of Power Management Points in Real
Time Applications,” Proc. Workshop Compilers and Operating
Systems for Low Power, 2001.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Dynamic
and Aggressive Scheduling Techniques for Power-Aware Real-
Time Systems,” Proc. 22nd IEEE Real-Time Systems Symp., Dec.
2001.

[3] T.D. Burd and R.W. Brodersen, “Energy Efficient CMOS Micro-
processor Design,” Proc. Hawaii Int’l Conf. System Sciences, pp. 288-
297, Jan. 1995.

[4] T.D. Burd, T.A. Pering, A.J. Stratakos, and R.W. Brodersen, “A
Dynamic Voltage Scaled Microprocessor System,” IEEE J. Solid-
State Circuits, vol. 35, no. 11, pp. 1571-1580, 2000.

[5] D. Burger and T. . Austin, “The Simplescalar Tool Set, Version
2.0,” Technical Report 1342, Dept. of Computer Science, Univ. of
Wisconsin-Madison, June 1997.

[6] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven
Signal Processing: An Approach for Energy Efficient Computing,”
Proc. Int’l Symp. Low-Power Electronic Devices, 1996.

[7] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-Power
CMOS Digital Design,” IEEE J. Solid-State Circuit, vol. 27, no. 4,
pp. 473-484, 1992.

[8] M.L. Dertouzos and A.K. Mok, “Multiprocessor On-Line Schedul-
ing of Hard-Real-Time Tasks,” IEEE Trans. Software Eng., vol. 15,
no. 12, pp. 1497-1505, 1989.

[9] R. Ernst and W. Ye, “Embedded Program Timing Analysis Based
on Path Clustering and Architecture Classification,” Proc. Int’l
Conf. Computer-Aided Design, pp. 598-604, Nov. 1997.

[10] S. Gary, P. Ippolito, G. Gerosa, C. Dietz, J. Eno, and H. Sanchez,
“Powerpc 603TM , A Microprocessor for Portable Computers,”
IEEE Design & Test of Computers, vol. 11, no. 4, pp. 14-23, 1994.

[11] D.W. Gillies and J.W.-S. Liu, “Scheduling Tasks with AND/OR
Precedence Constraints,” SIAM J. Computing, vol. 24, no. 4, pp. 797-
810, 1995.

[12] F. Gruian, “System-Level Design Methods for Low-Energy
Architectures Containing Variable Voltage Processors,” Proc.
Workshop Power-Aware Computing Systems, Nov. 2000.

[13] F. Gruian, “Hard Real-Time Scheduling for Low-Energy Using
Stochastic Data and DVS Processors,” Proc. 2001 Int’l Symp. Low
Power Electronics and Design, Aug. 2001.

[14] http://developer.intel.com/design/intelxscale/benchmarks.htm,
2004.

[15] http://www.transmeta.com, 2004.
[16] T. Ishihara and H. Yauura, “Voltage Scheduling Problem for

Dynamically Variable Voltage Processors,” Proc. 1998 Int’l Symp.
Low Power Electronics and Design, pp. 197-202, Aug. 1998.

[17] P. Kumar and M. Srivastava, “Predictive Strategies for Low-Power
RTOS Scheduling,” Proc. 2000 IEEE Int’l Conf. Computer Design:
VLSI in Computers and Processors, Sept. 2000.

[18] P. Kumar and M. Srivastava, “Power-Aware Multimedia Systems
Using Run-Time Prediction,” Proc. 14th Int’l Conf. VLSI Design,
pp. 64-69, Jan. 2001.

[19] R. Melhem, N. AbouGhazaleh, H. Aydin, and D. Mossé, “Power
Management Points in Power-Aware Real-Time Systems,” Power
Aware Computing, chapter 7, pp. 127-152, Plenum/Kluwer Pub-
lishers, 2002.

[20] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy
Aware Scheduling for Distributed Real-Time Systems,” Proc. Int’l
Parallel and Distributed Processing Symp., Apr. 2003.

[21] D. Mossé, H. Aydin, B.R. Childers, and R. Melhem, “Compiler-
Assisted Dynamic Power-Aware Scheduling for Real-Time Appli-
cations,” Proc. Workshop Compiler and OS for Low Power, Oct. 2000.

[22] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th ACM
Symp. Operating Systems Principles, Oct. 2001.

[23] V. Raghunathan, P. Spanos, and M.B. Srivastava, “Adaptive
Power-Fidelity in Energy Aware Wireless Embedded Systems,”
Proc. 21st IEEE Real-Time Systems Symp., Nov. 2000.

[24] J.A. Ratches, C.P. Walters, R.G. Buser, and B.D. Guenther, “Aided
and Automatic Target Recognition Based upon Sensory Inputs
from Image Forming Systems,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 19, no. 9, pp. 1004-1019, Sept. 1997.

[25] D. Shin, J. Kim, and S. Lee, “Intra-Task Voltage Scheduling for
Low-Energy Hard Real-Time Applications,” IEEE Design & Test of
Computers, vol. 18, no. 2, pp. 20-30, 2001.

[26] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Kerkest,
and R. Lauwereins, “Energy-Aware Runtime Scheduling for
Embedded-Multiprocessor SOCS,” IEEE Design & Test of Compu-
ters, vol. 18, no. 5, pp. 46-58, 2001.

[27] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for
Reduced CPU Energy,” Proc. 36th Ann. Symp. Foundations of
Computer Science, pp. 374-382, Oct. 1995.

[28] D. Zhu, R. Melhem, and B.R. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
Processor Real-Time Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, no. 7, pp. 686-700, 2003.

ZHU ET AL.: POWER-AWARE SCHEDULING FOR AND/OR GRAPHS IN REAL-TIME SYSTEMS 863

Fig. 16. Energy normalized to NPM versus overhead for smaller application running on a dual-processor system with LDR ¼ 0:2 and � ¼ 0:9.

Dakai Zhu received the BE degree in computer
science and engineering from Xi’an Jiaotong
University in 1996, the ME degree in computer
science and technology from Tsinghua Univer-
sity in 1999, and the MS degree in computer
science from the University of Pittsburgh in
2001. Currently, he is a PhD student at the
University of Pittsburgh and is researching on
power and fault tolerance management for
parallel real-time systems. He is a student

member of the IEEE.

Daniel Mossé received the BS degree in
mathematics from the University of Brasilia in
1986 and the MS and PhD degrees in computer
science from the University of Maryland in 1990
and 1993, respectively. He joined the faculty of
the University of Pittsburgh in 1992, where he is
currently an associate processor. His research
interests include fault-tolerant and real-time
systems, as well as networking. The major
thrust of his research in the new millenium is

power-aware computing and security. He has served on program
committees for all major IEEE-sponsored real-time related conferences
and as program and general chairs for RTAS and RT Education
Workshop. Typically funded by the US National Science Foundation and
US Defense Advanced Research Projects Agency, his projects combine
theoretical results and implementations. He is on the editorial board of
the IEEE Transactions on Computers and is a member of the IEEE
Computer Society and of the ACM.

Rami Melhem received the BE degree in
electrical engineering from Cairo University in
1976, the MA degree in mathematics and the MS
degree in computer science from the University
of Pittsburgh in 1981, and the PhD degree in
computer science from the University of Pitts-
burgh in 1983. He was an assistant professor at
Purdue University prior to joining the faculty of
The University of Pittsburgh in 1986, where he is
currently a professor of computer science and

electrical engineering and the chair of the Computer Science Depart-
ment. His research interests include real-time and fault-tolerant systems,
optical interconnection networks, high-performance computing, and
parallel computer architectures. Dr. Melhem served on program
committees of numerous conferences and workshops and was the
general chair for the Third International Conference onMassively Parallel
Processing Using Optical Interconnections. He was on the editorial board
of the IEEE Transactions on Computers and the IEEE Transactions on
Parallel and Distributed Systems. He is serving on the advisory boards of
the IEEE technical committees on parallel processing and on computer
architecture. He is the editor for the Kluwer/Plenum Book Series in
computer science and is on the editorial board of the Computer
Architecture Letters. Dr. Melhem is a fellow of IEEE and the IEEE
Computer Society, and a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

864 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

