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Abstract—In this paper, we address power-aware scheduling of periodic tasks to reduce CPU energy consumption in hard real-time

systems through dynamic voltage scaling. Our intertask voltage scheduling solution includes three components: 1) a static (offline)

solution to compute the optimal speed, assuming worst-case workload for each arrival, 2) an online speed reduction mechanism to

reclaim energy by adapting to the actual workload, and 3) an online, adaptive and speculative speed adjustment mechanism to

anticipate early completions of future executions by using the average-case workload information. All these solutions still guarantee

that all deadlines are met. Our simulation results show that our reclaiming algorithm alone outperforms other recently proposed

intertask voltage scheduling schemes. Our speculative techniques are shown to provide additional gains, approaching the theoretical

lower-bound by a margin of 10 percent.

Index Terms—Real-time systems, power-aware computing, low-power systems, dynamic voltage scaling, periodic task scheduling.
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1 INTRODUCTION

IN the last decade, the research community has addressed
low-power system design problems with a multidimen-

sional effort. Reducing the energy consumption of a
computer system has necessarily multiple aspects, invol-
ving separate components such as CPU, memory system,
and I/O subsystem. Hardware and software manufacturers
have agreed to introduce standards such as the ACPI
(Advanced Configuration and Power Interface) [10] for
power management of laptop computers that allows several
modes of operation, such as predictive system shutdown.
An obvious target for energy reduction is the processor: An
early study found that 18-30 percent of the total energy
consumption is due to the CPU alone [17]. More recent
reports show that this fraction can exceed 50 percent for
CPU-intensive workloads [24], [31]. Dynamic voltage scaling
(DVS) framework, which involves dynamically adjusting
the voltage and frequency to reduce CPU power consump-
tion, has recently become a major research area.

In fact, the power consumption of an on-chip system is a

strictly increasing convex function of the supply voltage Vdd,

but its exact form depends on the technology. For example,

the dominant component of energy consumption in widely

popular CMOS technology is the dynamic power dissipation

Pd, which is given by Pd ¼ Ceff � V
2
dd � f , where Ceff is the

effective switched capacitance and f is the frequency of the

clock. On the other hand, the gate delay D is inversely

related to the supply voltage Vdd as given by the formula

D ¼ k � Vdd

ðVdd�VtÞ
2 , where k is a constant and Vt is the threshold

voltage. From these equations, it can be seen that one can

obtain striking power savings if the supply voltage and the

clock frequency are reduced simultaneously. Thus, the

dynamic voltage scaling technique (known also as variable

voltage scheduling) is based on obtaining energy savings by

simultaneously reducing the supply voltage and the clock

frequency, at the expense of increased latency. The exact

form of the power/speed relation can be obtained by

resorting to normalization: recent research studies [9], [11],

[14], [15] report formulas where the CPU power consump-

tion per cycle when expressed in terms of CPU speed is a

polynomial of the third degree. In general, this relation can

be captured by strictly increasing convex functions. Systems

which are able to operate on a (more or less) continuous

voltage spectrum are rapidly becoming a reality thanks to

advances in power-supply electronics and CPU design [6],

[21]. For example, the Crusoe processor is able to

dynamically adjust clock frequency in 33 MHz steps [28].
For systems with timing constraints and scarce energy

resources, we solve the Real-Time Dynamic Voltage Scaling
(RT-DVS) problem: adjust the supply voltage and clock
frequency to minimize CPU energy consumption while
still meeting the deadlines. First, task speed assignments
that minimize the energy consumption for the worst-case
workload should be evaluated at the static level. However,
limiting RT-DVS with this static solution would be very
conservative: Real-time applications usually exhibit large
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variations in the actualworkload experienced by the system;
for example, [4] reports that the ratio of the worst-case
execution time to the best-case execution time can be as
high as 10 in typical applications. Thus, at the second,
reclaiming level, dynamically monitoring task executions
and further reducing CPU speed by reallocating unused
CPU time can provide additional savings. Finally, we can
consider the speculation level where early task completions
are anticipated and the CPU speed is aggressively reduced.
However, it is imperative that all these components be
designed not to cause any deadlines to be missed even
under a worst-case workload that can happen after any
speed adjustment point.

1.1 Related Work

The work by Weiser et al. [29] was among the first to
propose (and evaluate the performance of) various DVS
algorithms, though the focus of that study was non-real-
time tasks. Yao et al. [30] provided a static, optimal, and
polynomial-time scheduling algorithm for real-time tasks
with release times and deadlines, assuming aperiodic tasks
and worst-case execution times. Pering and Brodersen [22]
also addressed the static dimension of RT-DVS, but only for
aperiodic tasks. Static solutions for extended/hybrid task
models were addressed in various papers: Heuristics for
online scheduling of aperiodic tasks while not hurting the
feasibility of periodic requests are proposed in [8]. The same
paper also suggested that the CPU speed be set to the
utilization of the periodic tasks’ utilization value in the
absence of aperiodic tasks, but without mentioning or
proving the optimality of this choice. Nonpreemptive
power-aware scheduling is investigated in [7]. Concentrat-
ing on periodic task sets with identical periods, the effects
of having an upper bound on the voltage change rate are
examined in [9], along with a heuristic to solve the problem.

The possible variations in actual workload of real-time
systems and, hence, reclaiming and speculation dimensions
attracted the attention of power management research
community first in the late 1990s. These dynamic algo-
rithms, according to an established classification [5], [12],
[26] fall either into intertask or intratask DVS algorithm
categories. In the former case, speed assignments are
determined at task-level: Though dynamic adjustments
are performed, these occur only at task dispatch or
completion times. That is, once a task is assigned CPU,
the CPU speed is not changed until it is preempted or
completed. On the other hand, intratask algorithms adjust
speed within the boundaries of a given task; typically, the
speed is gradually increased to assure the timely comple-
tion. Intratask algorithms usually require some degree of
compiler support to insert power management points into the
application code, in order to call explicitly Operating
System services for speed reduction. On the other hand,
intertask algorithms do not involve such changes at the
application code and, thus, they are more practical.

In the intratask DVS research, Lorch and Smith addressed
the scheduling of aperiodic tasks with soft deadlines in [18].
Shin et al. [26] proposed an intratask DVS framework for
aperiodic real-time tasks with (possibly) precedence con-
straints. Gruian [5] provided an intratask DVS algorithm for
periodic tasks scheduled according to the Rate-Monotonic
policy.

Among the intertask DVS algorithms, an early technique
based on slowing down the processor whenever there is a
single task eligible for execution is given in [27]. Dynamic
energy reclaiming issues (without speculation) in power-
aware scheduling were addressed [13] for cyclic and
periodic task models in the context of systems with two
(discrete) voltage levels. To the best of our knowledge, the
concept of “speculative speed reduction” was first intro-
duced by the authors in [20]; however, only tasks sharing a
common deadline were considered. A recent study parti-
cularly relevant for the settings of this paper is due to Pillai
and Shin [23], where the authors proposed a reclaiming
algorithm (Cycle-Conserving EDF) and a speculation-based
algorithm (Look-Ahead EDF). These intertask DVS algo-
rithms are based on updating and predicting the instanta-
neous utilization of the periodic task set. Finally, a recent
performance evaluation [12] compares several intertask and
intratask DVS algorithms in their own categories, including
the preliminary versions of some algorithms discussed in
this paper.

1.2 Paper Organization and Contributions

In this paper, we address three dimensions of intertask
dynamic voltage scaling algorithms for periodic real-time
task systems, assuming that the CPU speed can be varied
over a continuous spectrum between a lower bound and an
upper bound. We develop novel algorithms and evaluate
their performance against other intertask DVS algorithms
proposed in the literature, as well as against the provably
optimal, clairvoyant algorithm whose performance pro-
vides a lower bound for any (inter or intratask) DVS
algorithm. Thus, we present:

1. A static (offline) solution to compute the optimal
speed at the task level, assuming worst-case work-
load for each arrival1 (Section 3).

2. A generic dynamic reclaiming algorithm for tasks
that complete without consuming their worst-case
workload (Section 4). Our reclaiming algorithm
differs from other intertask reclaiming algorithms
(e.g., CC-EDF in [23]) in that it attempts to allocate
the maximum (possibly, the entire) amount of
unused CPU time (slack) to the first task at the
appropriate priority level, in a greedy fashion. Further,
when preempted, tasks implicitly return the slack
they inherited to the favor of the newly dispatched
task. We formally prove that the tasks will still meet
their deadlines if the speed is reduced according to
the rules we provide upon early completions. We
achieve these objectives by keeping track of the
remaining execution times of tasks in the static
optimal schedule, in which each task instance presents
its worst-case workload.

3. An online, adaptive, and speculative speed adjust-
ment mechanism to anticipate and compensate
probable early completion of future executions
(Section 5). We explore two intertwined questions
raised by the speculative component, namely, a) the
level of aggressiveness that justifies speculative speed
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1. Due to the nature of DVS, the actual execution time is dependent on
the CPU speed and, therefore, the worst-case number of required CPU
cycles is a more appropriate measure of the worst-case workload (see
Section 2).



reductions under a given probability distribution of
the actual workload and b) the issue of guaranteeing
the timing constraints even in aggressive modes.
Our aggressive algorithms differ from other inter-
task speculation-based algorithms (e.g., LA-EDF in
[23]) by reducing exclusively the speed of the
dispatched task, at the expense of borrowing CPU
time from other ready tasks. Further, the algorithms
are still able to reclaim the available slack (if any)
and we show that the feasibility is preserved even
after speculative speed reductions. The aggressive-
ness level of these algorithms can be adjusted by the
designer. In fact, our results indicate that a balanced
aggressiveness level that aims to achieve the speed
that corresponds to the expected workload gives the
best results.

Through extensive simulations, we compare our reclaim-
ing and aggressive algorithms against other state-of-the-art
intertask DVS algorithms, as well as the lower-bound that
can be achieved by any (intra or inter) DVS algorithm
(Section 6). We experimentally show that the dynamic
reclaiming algorithm alone provides higher energy savings
than other existing techniques. Moreover, our aggressive
algorithms yield additional gains, approaching the theore-
tical lower bound by a margin of 10 percent.

Finally, in Section 7, we address additional considera-
tions such as the applicability to platforms with discrete
speed levels and the consequences of using quadratic
power/speed functions. We underline that our objective is
to minimize CPU energy consumption; low-power techni-
ques for memory, disk, and I/O subsystems, albeit
important, are beyond the scope of this paper.

2 SYSTEM MODEL AND NOTATION

The ready time and deadline of each real-time task Ti will
be denoted by ri and di, respectively. The indicator of the
worst-case workload in variable voltage/speed settings,
that is, the worst-case number of processor cycles required
by Ti, will be denoted by Ci. Note that, under a constant
speed S (given in cycles per second), the execution time of
the task Ti is ti ¼

Ci

S
. A schedule of real-time tasks is said to

be feasible if each task Ti receives at least ACi CPU cycles
before its deadline, where ACi � Ci is the actual number of
CPU cycles (actual workload) of Ti.

We assume that the CPU speed can be changed con-
tinuously between a minimum speed Smin (that corresponds
to theminimum supply voltage necessary to keep the system
functional) and amaximum speed Smax. We also assume that
0 � Smin � Smax ¼ 1, that is, we normalize the speed values
with respect to Smax. In our framework, the voltage/speed
changes take place only at context switch time andwhile state
saving instructions execute. Pouwelse et al. report in [24] that
the voltage/speed change can be performed in less than 140
�s in Strong ARM SA-1100 processor. If not negligible, the
“voltage change overhead” can be incorporated into the
worst-case workload of each task.

We assume that the process descriptor of the task Ti has
two extra fields related to speed settings, in addition to
other conventional fields. The first one, Si, denotes the
current CPU speed at which Ti is executing. The other field
bSiSi denotes the nominal speed of Ti, which is the indicator of

the “default” speed of Ti. For each dispatched task, the
operating system sets Si ¼ bSiSi, prior to any dynamic speed
adjustment.

Thepowerconsumptionof theprocessorunder thespeedS
is given by gðSÞ, which is assumed to be a strictly increasing
convex function, represented by a polynomial of at least
seconddegree [9]. If the task Ti occupies the processor during
the time interval ½t1; t2�, then the energy consumed by CPU
during this interval is Eðt1; t2Þ ¼

R t2
t1
gðSðtÞÞdt. We consider

only CPU power/energy consumption in this paper.
In our detailed analysis of periodic power-aware

scheduling, we will consider a set T ¼ fT1; . . . ; Tng of
n periodic real-time tasks. The period of Ti is denoted by
Pi, which is also equal to the deadline of the current
invocation. We refer to the jth invocation of task Ti as Ti;j.
All tasks are assumed to be independent and ready at t ¼ 0.
Hence, the ready time of Ti;j is ri;j ¼ ðj� 1Þ � Pi and its
deadline is di;j ¼ j � Pi.

We define Utot as the total utilization of the task set under
maximum speed Smax ¼ 1, that is, Utot ¼

Pn
i¼1

Ci

Pi
. Note that

the schedulability theorems for periodic real-time tasks [16]
imply that Utot � 1:0 is a necessary condition to have at least
one feasible schedule; hence, throughout the paper, we will
assume that Utot ¼

Pn
i¼1

Ci

Pi
� 1.

3 OPTIMAL STATIC SOLUTION

In this section, we present the static optimal solution to the
variable voltage scheduling problem for the periodic task
model, assuming that each task presents its worst-case workload to
the processor at every instance. We show that the speed value
which minimizes the total energy consumption corresponds
to the utilization of the system subject to the minimum CPU
speed constraint. We underline that, in [2], solving an
instance of the RT-DVS problem is shown to be equivalent to
solving an instance of Reward-Based Scheduling (RBS)
problem with concave reward functions [1], [3]. Further, the
equivalenceofRBSandRT-DVS ispreserved regardlessof the
task model (aperiodic/periodic or preemptive/nonpreemp-
tive), as long as our aim is to reach a solution for a given
(worst-case) workload under timing constraints [2]. This
means that solutionsdevised for theRBSproblemcanbeused
for the RT-DVS problem.However, one can also compute the
static optimal speed for periodic task sets by using the first
principles as outlined below.

Proposition 1. The optimal speed to minimize the total energy
consumption while meeting all the deadlines is constant and
equal to �SS ¼ maxfSmin; Utotg. Moreover, when used along
with this speed �SS, any periodic hard real-time policy which can
fully utilize the processor (e.g., Earliest Deadline First, Least
Laxity First) can be used to obtain a feasible schedule.

Proof. First, observe that the convex nature of the power-
speed function suggests that we should try to maintain a
uniform speedwhile fully utilizing theCPU to the extent it
is possible. If Utot � Smin, then using the speed �SS ¼ Utot

leads clearly to a schedule which is fully utilized (i.e., no
idle time), through stretching out each task in equal
proportions (in other words, in this case, we are achieving
a total effective task utilization of

Pn
i¼1

Ci
�SS�Pi

¼ Utot
�SS
¼ 1). Note

that stretching out each task in equal proportions
guarantees the optimality, thanks to the convexity of
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power consumption function gðSÞ (see [2] for a formal
proof). However, if Utot < Smin, then we should use the
minimum CPU speed available to stretch out task
executions as much as possible. In any case, using the
speed �SS ¼ maxfSmin; Utotg will result in a total effective
task utilization which is no greater than 1. Hence, any
scheduling policy which can achieve up to 100 percent
CPU utilization (Earliest Deadline First, Least Laxity
First) can be used to complete all the task instances
before their deadlines with the speed �SS. tu

4 DYNAMIC RECLAIMING ALGORITHM

Though the static scheme can be shown to be optimal under
a worst-case workload, it is known that, in many cases, the
instances of real-time tasks complete earlier than under the
worst-case scenario [4]. A trivial remedy would be to shut
down the processor when there are no ready tasks.
However, this technique is clearly suboptimal because of
the convexity of the power consumption function: It is
always more energy-efficient to transfer unused CPU time
to other tasks by reducing their speeds whenever possible.

The dynamic reclaiming algorithm we present in this
section is based on detecting early completions and
adjusting (reducing) the speed of other tasks on-the-fly in
order to provide additional power savings while still
meeting the deadlines. To this aim, we perform compar-
isons between the actual execution history and the
canonical schedule Scan, which is the static optimal schedule
in which every instance presents its worst-case workload to
the processor and runs at the constant speed �SS. The CPU
speed is adjusted only at task dispatch times: Thus, we
should be able to say whether the task is being dispatched
earlier than under Scan and, if so, determine the amount of
additional CPU time the dispatched task can safely use to
slow down its execution; we will refer to this additional
CPU time as the earliness of the dispatched task.

Before providing the details of our approach, we under-
line that a simple approach that equates earliness with
previously unused CPU time and blindly slows down the
processor is not a safe approach. To see this, consider a
3-task system with the following parameters:

C1 ¼ 4; P1 ¼ 10; C2 ¼ 4; P2 ¼ 10; C3 ¼ 6; P3 ¼ 30:

The worst-case utilization of the task set is equal to 1.00.
Hence, the optimal speed for the static version is �SS ¼
Smax ¼ 1:00 (from Proposition 1). If every task presents its
worst-case workload at every instance and we use EDF,
then the schedule in Fig. 1 (Scan) is obtained. Now, suppose
that T3 completes early at t ¼ 10, leaving an unused
computation time of four units before its deadline. If these
four units of CPU time are used by T1;2 (recall that Ti;j is the
jth instance of task i), T2;2 will miss its deadline, in the case
that both T1;2 and T2;2 present their worst-case workload.

As we can see, computing and managing earliness is not
a trivial task. Moreover, it is clearly impractical to a priori
produce and keep the entire static optimal schedule Scan

during the execution. In order to simultaneously address
the problems of feasibility and efficiency while tasks
execute, complete, rearrive dynamically and the actual
schedule is produced, we choose to keep and update a data

structure (called �-queue) that helps to compute the
earliness of tasks when they are dispatched. Let us denote
by remi;jðtÞ the remaining execution time of Ti;j at time t in
Scan, under static optimal speed �SS. At any time t during
actual execution, the �-queue will contain information about
tasks that would be active (i.e., running or ready) at time t

in the worst-case static optimal schedule Scan (in other
words, the �-queue is the ready queue of Scan at time t).
Specifically, at any time t, for each task Ti;j in the �-queue

the information about its identity, arrival time, deadline,
and remi;jðtÞ value is available.

Clearly, given t, the ri;j and di;j values can be easily
computed for the periodic task model. Note that the �-queue
at time t contains information about all instances Ti;j such
that ri;j � t � di;j, and remi;jðtÞ > 0. The �-queue contains at
most n elements since at most one instance of a given
periodic task can be active at a given time t in any schedule.
Therefore, we will omit the instance number while referring
to the �-queue elements, whenever possible.

Our approach assumes that tasks are scheduled accord-
ing to EDF* policy. EDF* is the same as EDF (Earliest
Deadline First [16]), except that, among tasks whose
deadlines are the same, the task with the earliest arrival
time has the highest priority (FIFO policy); in the case that
both deadline and arrival times are equal, the task with the
lowest index has the highest priority. This EDF* priority
ordering is essential in our approach because it provides a
total order on the priorities. Further, we assume that the
�-queue is also ordered according to EDF* priorities. We
denote the EDF* priority-level of the task i by d�i (low values
denote high priorities).

At this point, we are ready to relate the �-queue with the
computation of the earliness factor. Let wS

i ðtÞ denote the
remaining worst-case execution time of task Ti under the
speed S at time t. Further, set the nominal speed bSiSi ¼ �SS for
each task Ti.

Proposition 2. For any task Tx which is about to execute, any
unused computation time (slack) of any task in the �-queue

having strictly higher priority than Tx will contribute to the
earliness of Tx along with already finished work of Tx in the
actual schedule. That is, total earliness of Tx is no less than

�xðtÞ ¼
X

ijd�
i
<d�x

remiðtÞ þ remxðtÞ � w
bSxSx

x ðtÞ

¼
X

ijd�
i
�d�x

remiðtÞ � w
bSxSx

x ðtÞ:
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To understand the above result, note that, when Tx is being
dispatched, tasks with higher priority that are still in the
�-queue must be already finished in the actual schedule
(since Tx currently has the highest EDF* priority), but they
would have not yet finished in Scan.

Note that �xðtÞ is only a conservative estimation of the
actual earliness of Tx. Any higher-priority task that may
arrive, preempt Tx, and leave the system before Tx completes
may further contribute to the delay ofTx and also increase the
actual earliness of Tx; yet, in the absence of clairvoyant
capabilities, not much can be done to deterministically take
this into consideration. In addition, when Tx returns from
preemption after such a future interruption, it will be able to
better evaluate its earliness anyhow and further slow down,
thanks to the above formula. Therefore, we adopt this
relatively simple and fast way of inferring the earliness
amount from past events. The key notation that will be heavily
used in the remainder of the paper is presented in Fig. 2.
Implementing the �-queue. The �-queue can be imple-
mented using the following rules:

R1. Initially, the �-queue is empty.

R2. Upon arrival, each task Tj “pushes” its worst-case
execution time under nominal speed bSjSj ¼ �SS to the
�-queue in the correct EDF* priority position (this
happens only once for each arrival, no repush at “return
from preemptions”).

R3. As time elapses, the elements in the �-queue are
updated (consumed) accordingly: The remi field at the
head of the �-queue is decreased with a rate equal to that
of the passage of time. Whenever the remi field of the
head reaches zero, that element is removed from the
�-queue and the update continues with the next element.
No update is done when the �-queue is empty.

Observation 1. At time t, the �-queue, updated according to the
rules R1, R2, and R3, contains only the tasks that would be
ready at time t in the static optimal schedule Scan. Further, the
remi;j field contains the remaining allotted time of each active
instance Ti;j at time t in Scan.

Observation 1 stems from the following:

1. The �-queue is ordered according to EDF* order,
2. Every arriving task pushes its remaining worst-case

execution time (under nominal speed) to the �-queue
only once,

3. The queue is updated only at the head, reflecting the
fact that only the task with the highest EDF* priority
would be running in Scan, and

4. A task that would have finished in Scan is removed
from the �-queue.

This effectively yields a dynamic image of the ready queue in
Scan at time t.

As an example, consider the consider the 3-task system
fT1; T2; T3g with parameters:

C1 ¼ 4; P1 ¼ 10; C2 ¼ 4; P2 ¼ 10; C3 ¼ 6; P3 ¼ 30:

�SS ¼ Utot ¼ 1:00, thus, in Scan, each task is to execute with the
maximum CPU speed. During the actual execution, the task
set may present rather different workloads, but the �-queue

will always be updated according to the rules given above,
reflecting at all times the ready queue in Scan when
scheduled in conjunction with EDF* policy. Table 1 shows
the snapshots at time points when a task is inserted to or
removed from the �-queue. Recall that, in principle, the remi

field of the task at the head of the �-queue is decremented
according to the rule R3.

Note that the dynamic reduction of remi in R3 above
does not need to be performed at every clock cycle; instead,
for efficiency, we perform the reduction whenever a task is
preempted or completes in actual schedule, by taking into
account the time elapsed since the last update. The above
approach relies on two facts: First, the speed adjustment
decision will be taken only at arrival/preemption and
completion times and it is necessary to have an accurate
�-queue only at these points. (If speeds are to be changed at
other points, the update of remi must reflect that.) Second,
between these points, each task is effectively executed
nonpreemptively.

We are now ready to present our Generic Dynamic
Reclaiming Algorithm, GDRA, shown in Fig. 3. Procedure
Speed-ReduceðTx; B; SÞ, in Fig. 4, will be used by GDRA to
reduce the speed S of Tx by allocating B extra units of CPU
time to Tx under worst-case remaining load, subject to the
Smin constraint.2 GDRA is “generic” in the sense that the
amount of additional time allocation Y in Step 5.2 is not
specified and it may assume any value between 0 and �xðtÞ

without compromising the correctness. The following
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2. The argument Tx passed to the procedure Speed-Reduce effectively
represents a pointer to the process descriptor of Tx from which one can
access the variables Sx and wSx

x . The same applies to the Speed-Increase
procedure given in Fig. 10.



theorem, whose proof is presented in the Appendix,

establishes that the schedules produced by GDRA are

always ahead of Scan.

Theorem 1. At any time t during the execution of GDRA,

w
bSiSi

i ðtÞ � remiðtÞ;

for any ready task Ti.

Focusing exclusively on task completion times (in Scan),

the above result implies that, in the actual schedule, no task
instance completes later than its completion time in Scan

(which is feasible), proving the correctness of GDRA:

Corollary 1. GDRAyields a feasible schedule under EDF* priority
for a workload no greater than the worst-case workload.

Note that any specific algorithm should specify the exact
amount of earliness parameter Y , to use in speed reduction.
One natural choice in Rule 5.2 of Fig. 3 is to use Y ¼ �xðtÞ,
that is, to reduce the speed so as to profit from the full
earliness. We call this variation simply Dynamic Reclaiming
Algorithm (DRA).

4.1 Incorporating One Task Extension (OTE)
Technique

As presented in [27], one can further slow down execution
when there is only one task in the ready queue and its worst-
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case completion time (under the current speed) does not
extend beyond the next event (next arrival/closest deadline of
any task). For example, consider the following 2-task system:
C1 ¼ 100; P1 ¼ 200; C2 ¼ 300; P2 ¼ 600. Again, it is easy to
see that �SS ¼ Smax ¼ 1:00. The worst-case static schedule Scan

is shown in Fig. 5a.
In the actual execution, suppose that the schedule follows

Scan until t ¼ 200 and T2 completes early at t ¼ 200.When the
second instance of T1 arrives at t ¼ 200, the �-queue has the
2-instance snapshot fðT1;2; 200; 400; 100Þ; ðT2;1; 0; 600; 200Þg.
Note that, even though T2 completed, rem2ð200Þ is still
200 since the updating of the �-queue only reduced it by
100 units. At this point (t ¼ 200), the earliness �1ð200Þ ¼ 0

and DRA would not reduce the speed. But, we can actually
reduce the speed S1 safely to 0.5, effectively adding the
interval ½300; 400� for the execution of T1;2 and ½500; 600� for
the execution of T1;3 (see Fig. 5b). Observe that, at t1 ¼ 100,
T2 is also the only ready task and its earliness �2ð100Þ ¼ 0,
yet it cannot reduce its speed since t1 þ wS2

2 > 200 which is
the time of the next event.

OTE technique can be used in conjunction with any
scheduling policy: To improve (G)DRA, we add a new
rule 5.3. Let NTA be the next arrival time of any task
instance in the system after t and recall that Sx is the speed
from Step 5.2 in (G)DRA and t is the time Tx is dispatched.

5.3. IfTx is theonly ready taskandZ ¼ NTA� t� wSx
x ðtÞ > 0,

set Sx ¼ Speed-ReduceðTx; Z; Sx)

In other words, reduce the speed of Tx so as to use the idle
CPU up to time NTA. We call this improved technique DR-
OTE. Clearly, the following holds.

Proposition 3. If all the task instances meet their deadlines under
DRA, they will also meet their deadlines under the algorithm
DR-OTE.

5 AGGRESSIVE SPEED REDUCTION

The DRA and DR-OTE algorithms provide sound dynamic
speed reclaiming mechanisms, however, they guarantee
feasibility by always being “ahead” of the static worst-case
optimal schedule Scan (i.e., tasks never actually start or
finish after the scheduled time in Scan). Scan is feasible at all
times, yet it is optimal only under the assumption that all
future instances will present their worst-case workload.
Whenever, under constant speed, the actual execution times
of a task’s instances exhibit large variation, starting a task
with this assumption can be too conservative. Instead,
whenever the current system state suggests, we may
assume speculatively that the current and future instances
will most probably present a computational demand
which is lower than the worst case. Hence, we can adopt
an “aggressive” approach based on reducing the speed of

the running task under certain conditions to a level which is
even lower than the one suggested by DR-OTE. But, this
speculative move might shift the task’s worst-case comple-
tion time to a point later than the one in Scan under an actual
high workload. And, if this pessimistic scenario turns out to
be true, we should be ready to increase the CPU speed
beyond �SS later to guarantee feasibility of future tasks.
This would hamper significant power savings since the
convexity of power/speed curve suggests a uniform speed
to achieve a given average speed value over any interval of
time. On the other hand, in the case that the actual
workload turns out to be lower than the worst case, the
actual schedule will still be ahead of Scan, even with the low
speed, thereby achieving even higher power savings.

Let us illustrate the aggressive scheme by a simple
example, in which we have C1 ¼ C2 ¼ 25, P1 ¼ P2 ¼ 100,
gðSÞ ¼ S3. The static worst-case optimal schedule Scan

(Fig. 6a) is obtained by computing �SS ¼ Utot ¼ 0:5. Note that
Scan is optimal only when the actual required CPU cycles
ACi ¼ Ci for i ¼ 1; 2, for which case the total energy
consumption is E1 ¼ 50ð0:5Þ3 þ 50ð0:5Þ3 ¼ 12:5. In case that
AC1 < C1 and/or AC2 < C2, S

can is no longer optimal. For
example, if AC1 ¼ 15 and AC2 ¼ 20, then starting with �SS

and applying the DR-OTE algorithm yields the schedule
shown in Fig. 6b.

Note that, because of its actual lowworkload,T1 completes
at t ¼ 30. Then, the DR-OTE algorithm is able to dynamically
reclaim unused 20 units of time, effectively reducing S2 to
25

50þ20
¼ 25

70
¼ 0:35. But, sinceAC2 < C2, T2 also completes well

before thedeadline. In this case, the total energy consumption
is3 E2 ¼ 30ð0:5Þ3 þ 56ð0:35Þ3 þ 14ð0:1Þ3 ¼ 6:16. However, by
adopting an aggressive scheme, we can start to execute T1

with a speed lower than S1 ¼ 0:50, for example, S1 ¼ 0:35.
In this case, T1 will complete at t ¼ 42:8 and the dynamic
reclaiming algorithm will further set S2 to

25
50þ7:2

¼ 25
57:2

¼ 0:43

(note that we cannot, at this point, set the speed S2 any
lower than this and still guarantee completion within the
deadline). T2 will complete at t ¼ 42:8þ 20

0:43
¼ 89:3. The

schedule is depicted in Fig. 7. The total energy consumption
in this aggressive scheme is

42:8ð0:35Þ3 þ 46:5ð0:43Þ3 þ 10:7ð0:1Þ3 ¼ 5:54275;

providing an additional 10 percent in power savings with
respect to DR-OTE.

However, we should point out that, under a very
pessimistic scenario where AC1 ¼ C1, the aggressive
scheme would have to execute T2 with high speed to
prevent a deadline miss, resulting in a high energy
consumption. We conclude this example by noting that it
would not be possible to “aggressively” assign a speed
lower than 25

75
¼ 0:33 to S1 since doing so and having a

worst-case workload for T1 might result in a deadline miss
for T2, even under S2 ¼ Smax.

A powerful system design principle is to make the
common case more efficient. This translates (in settings
where the worst-case workload occurs only rarely) into
having a power-efficient schedule for average or close to
average cases, which can be achieved by further reducing
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3. Note that we are using the minimum CPU speed Smin ¼ 0:1 in the
interval ½86; 100�.

Fig. 4. Speed Reduction Procedure.



the CPU speed. After having presented the rationale of
aggressive speed management techniques, we should
address and provide solutions for two important issues.

The first one is the feasibility: When we reduce the
speed of Tx aggressively, we should be able to guarantee the
timing constraints of Tx and that of any other task since the
schedule may no longer be “ahead” of Scan. This guarantee
may come at the cost of increasing the CPU speed beyond �SS

later. However, any aggressive algorithm should 1) specify
the amount of speed increase for different tasks, 2) allow the
use of other dynamic speed management techniques (e.g.,
DRA and OTE) in order to be able to gather the full benefit
of aggressive schemes, and 3) determine the critical window
(the interval of time that the schedule is no longer ahead of
Scan) and prevent deadline misses during this time window.

The second issue is the determination of the aggres-
siveness level: Even though it may be possible to show the
existence of a feasible schedule (under a very aggressive
speed reduction for Tx), if such a move is not justified by the
expected workload of the system, it may be reasonable to
adopt a more conservative speed reduction to decrease the
probability of speed increases which cause high energy
consumption. A natural solution is to use a predefined speed
reduction bound (Sb) below which we never attempt to
decrease the CPU speed during an aggressive speed
adjustment. Observing that the “average workload” is an
appropriate estimator for the actual computational demand,
we choose to parameterize the aggressiveness level with
respect to the optimal speed under an average workload (Soptavg).
More specifically, Soptavg is the optimal speed for the
workload where each instance requires exactly its average
computational demand (determined by a probability dis-
tribution function). Generally, we may set Sb to k � Soptavg,
where k is a constant such that Smin � Sb � Smax (i.e.,

Smin

Soptavg
� k � Smax

Soptavg
). Observe that changing k in this range

provides a complete spectrum of “aggressiveness.” At one

end of the spectrum, k ¼ Smin

Soptavg
(which is usually much

smaller than 1.0) corresponds to the “extreme aggressive-

ness” where we attempt to obtain the lowest speed level for

the running task; this is only subject to feasibility, which

might be achieved later only by executing the following

tasks with very high speeds (i.e., by this choice, we are

supposing that the current workload will be well below the

worst-case workload). At the other end of the spectrum,

setting k ¼ Smax

Soptavg
reflects the DR-OTE algorithm itself.

Another main point in the spectrum is the scheme which

limits the aggressiveness speed bound by exactly Soptavg,

that is, k ¼ 1; this reflects the view that slowing down the

CPU below Soptavg will hurt the aggregate power savings in

the long run.

5.1 Feasibility Guarantees for Aggressive Schemes

As mentioned above, when we attempt to aggressively

reduce the CPU speed, we risk exceeding worst-case

completion times of Scan in the current schedule, both for

the running, ready, and yet-to-arrive tasks. In general,

checking the consequences of such an aggressive decision is

a nontrivial problem (linked with response-time analysis

complications of EDF), especially if it is to be addressed in a

dynamic fashion, at runtime. In this study,we adopt a simple

approach that restricts the aggressive power management to

occur only when we can limit its effects up to the next event

(arrival/deadline of any task). As the results in Section 6

below indicate, the aggressive schemes have the potential of

providing additional power savings, even with this con-

servative feasibility test with limited horizon.
Whenever we can predict that the completion time of the

currently ready task Tx will not extend beyond the next

event (arrival/deadline), we can speculatively reduce the

speed of Tx while guaranteeing that it will still complete

before the next event (which is, by definition, earlier than or

equal to the deadline of Tx). However, care must still be

taken in order to guarantee the timely completions of other

ready tasks which are waiting on the ready queue at a lower
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Fig. 6. The static optimal schedule (a) and the schedule of DR-OTE (b).

Fig. 7. The schedule obtained via aggressive speed reduction.

Fig. 5. The static optimal schedule (a) and the actual schedule with OTE technique (b).



priority level than Tx, since the execution/completion of
these tasks will be delayed until Tx completes.

A possible way to guarantee the feasibility in this case is
to increase the speed of another suitable and ready task Ty

which will run after Tx. This is effectively equivalent to
increasing the time allocation of Tx, while decreasing the
time allocation of Ty by the same amount. Clearly, from this
point on, the system cannot blindly decrease the speed of Ty

to its original bSySy (i.e., we should also change bSySy for that
instance).

One can generalize this technique in the following way:
If T1; T2; . . . ; Tr are ready tasks that are guaranteed to run
consecutively and all to complete before the next task
arrival time (NTA) even under worst-case workload, we
can arbitrarily swap CPU time allocations among them (in
particular, to reduce the speed of T1 while increasing the
speeds of one or more of T2; . . . ; Tr). In fact, in this case,
even Trþ1 (if it exists) may provide a portion of its time
allocation, if need arises. However, we must still guarantee
that T1; T2; . . . ; Tr will complete before NTA and Trþ1 will
complete no later than before the time allocation swapping,
under the worst-case scenario. Further, in all these
computations, we should take into account the slack-time
of already completed tasks in the �-queue (with EDF*
priority lower than T1) that may contribute to the worst-case
CPU allocation of T2; . . . ; Tr; Trþ1 in the future through
dynamic reclaiming. Finally, all these speed adjustments
should adhere to the Smin, Smax, and Sb bounds.

The details of the approach can be best illustrated by a

simple example. Suppose at time t1, T1 is the ready task

with the highest EDF* priority and that, after the reclaiming

step (5.2), its CPU allocation is wS1

1 and that its speed S1 is

still greater than both Smin and Sb. Further, assume that T2,

T3, and T4 are ready tasks with next highest priorities, such

that t1 þ
P3

i¼1 w
Si

i < NTA, but t1 þ
P4

i¼1 w
Si

i > NTA (see

Fig. 8). For the sake of simplicity, we will first assume that,

at t ¼ t1, the �-queue does not contain an element with EDF*

priority between d�1 and d�4; we will comment on the

relaxation of this assumption at the end.
During an aggressive move, we attempt to transfer up to

Q units of CPU time to T1 (and, hence, decrease its speed)
and it would still complete before NTA (Fig. 8). In
particular, T2 and T3 can provide a fraction of this amount
(effectively, up to Z units), as long as their speeds remain
lower than Smax despite the increase. In addition, T1 can try
to transfer CPU time from T4, following T2 and T3.
However, this amount can never exceed Q� Z ¼ W units,
regardless of the amount of previous transfers: Doing
otherwise would shift the worst-case completion time of T3

beyond NTA, with unpredictable consequences. In sum-
mary, we may aggressively try to transfer up to Q units of
CPU time from T2 and T3 (in reality, the Smax constraint
would allow a much smaller amount) and the amount
transferred from T4 cannot exceed Q� Z units.

Now, let us relax the assumption that the �-queue does
not contain an element with EDF* priority between d�1 and
d�4 at t ¼ t1. For example, assume that T3 has already
completed at t ¼ t1, though it is in the �-queuewith (unused
computation time) rem3. Further, assume that rem3 is equal
to the same amount of worst-case remaining execution time

of T3 in Fig. 8. According to DR-OTE, T1 would not be able
to use the slack-time of T3 which has lower EDF* priority.
However, as can be easily seen, T1 can transfer this amount
as well during an aggressive move and the effects can be
checked until the next event. A main difference with the
case in the previous paragraph is that the Smax constraint is
irrelevant for the reserved CPU time of already completed
tasks: T1 can consume as much as possible until the next
event. Needless to say, utmost care must be still exercised
when a slack-time reservation exceeds the NTA boundary
(such as T4 above) and the transfer amount should not shift
other ready tasks beyond NTA (i.e., it should be still less
than Q� Z).

To incorporate the aggressive speed reduction technique,
we add a new rule 5.4 to the previous algorithm, thereby
obtaining the new algorithm Aggressive-DR:

5.4. If Z ¼ NTA� t� wSx
x ðtÞ > 0 and there are other ready

tasks in addition to Tx, call Aggressive-Speed-

Adjustment, shown in Fig. 9.
The following points must be noted about the notation

used in the algorithm: When the algorithm is invoked at
time t, the ready task with the highest EDF* priority is
denoted by T1. The other tasks that are ready, or that are
completed but have their unused computation time in the
�-queue with EDF* priority lower than that of T1, are
denoted by T2; . . . ; Tm; 2 � m � n, in decreasing order of
priorities. At the cost of a slight abuse of notation, we will
also use the expression wSi

i ðtÞ to refer to RemiðtÞ value of
any completed task Ti in the �-queue at time t. The current
speed assignments are denoted by S1; . . . ; Sm and the next
task arrival after t will occur at time NTA.

Note that the aggressive speed reduction is performed
only when the ready queue (in the actual execution)
contains more than one task. Procedure Speed-Increase
(Fig. 10) increases the speed S of Tx so as to remove at
most H units of time allocation under worst-case remaining
workload of Tx with respect to the speed S, subject to Smax.
In procedure Aggressive-Speed-Adjustment, whenever T1

transfers slack-time from Tj, we perform the speed increase
for Tj, increasing bSjSj, the nominal speed of Tj. Whenever Tj is
about to be dispatched, its current speed will be set to bSjSj by
rule 5.0; rules 5.1 and 5.2 should consider this new
(increased) speed when trying to reduce speed due to a
(possible) earliness detection. Finally, Tj should assume the
new nominal speed bSjSj when it returns from preemption
since this is the lowest speed known to guarantee a feasible
schedule in the case where every task presents its worst-
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case load to the processor after aggressive speed adjust-

ments. However, we underline that the nominal speed bSjSj of

future instances of Tj will remain unchanged and equal to �SS.

Moreover, it is possible to show the following (see [2] for

the formal proof):

Proposition 4. Aggressive-Speed-Adjustment routine

preserves the feasibility of the schedule.

We note that another approach while using the aggres-

sive scheme is to adhere to the “parameterized speed

bound” even when reducing the speed in Step 5.2 through

dynamic reclaiming. This approach assumes that reducing

the speed below k � Soptavg when reclaiming will hurt the

total performance in the long run and prevents doing so

even when the feasibility would be preserved by doing so.

To distinguish two variations, we will denote the original

scheme and the new variation by AGR1 and AGR2,

respectively. The correctness of the new scheme follows

from the correctness of AGR1 since AGR2 never slows

down the processor more than AGR1.

6 EXPERIMENTAL EVALUATION

In order to experimentally evaluate the performance of the

proposed algorithms, we implemented a periodic schedul-

ing simulator for EDF* policy. We implemented the

following schemes for performance evaluation:
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. Static uses constant speed �SS and switches to power-
down mode (i.e., S ¼ Smin) whenever there is no
ready task.

. OTE: Static optimal speed scheme in conjunction
with One Task Extension (but without dynamic
reclaiming).

. CC-EDF (Cycle-conserving EDF): the reclaiming
algorithm proposed by Pillai and Shin ([23]).

. LA-EDF (Look-ahead EDF): the speculative algo-
rithm proposed by Pillai and Shin ([23]).

. DRA, which is implemented in two variations: with
or without the OTE technique (DR-OTE and DRA,
respectively).

. AGR1 with the parameterized speed bound set to
Soptavg (i.e., the aggressiveness factor k is set to 1).

. AGR2 with the parameterized speed bound set to
0:9 � Soptavg (i.e., the aggressiveness factor k is set to
0:9).4

. Bound, which is the clairvoyant algorithm that
knows the exact actual workload in advance and
adopts an optimal speed accordingly.5

In our experiments, we investigated the average perfor-

mance of the schemes over a large spectrum of worst-case

utilization (Utot) and variability in the actual workload. In

particular, we first focused on the average energy con-
sumption of 100 task sets, each containing 30 tasks. We

repeated the experiments for 20 and 10-task sets as well.

The periods of the tasks were chosen randomly in the
interval ½1;000; 32;000�. The minimum speed Smin is set to

0.1. The nominal speed �SS is set to Utot, as the optimality of

this choice was shown in Section 3. The variability in the

actual workload is achieved by modifying the WCET
BCET

ratio
(that is, the worst-case to the best-case execution time ratio).

We ran experiments where the actual execution time

follows a normal or uniform probability distribution
function. In the case of the normal distribution, the mean

and the standard deviation are set to WCETþBCET
2

and
WCET�BCET

6
, respectively, for a given WCET

BCET
, as suggested in

[27]. The choice of this mean and standard deviation
ensures that, on the average, 99.7 percent of the execution

times fall in the interval ½BCET;WCET �. In the case of the

uniform distribution, the mean is again set to WCETþBCET
2

.
For each task set, we simulated the execution 10 times in

interval [0, LCM], where LCM is the Least Common

Multiple of P1; . . . ; Pn, and we measured the average energy
consumption per experiment using a cubic power/speed
function [9], [11], [14], [15]. To investigate the effect of the
specific form of the convex power consumption function,
we also performed experiments with quadratic power/
speed function. We comment on the results of this last set of
experiments in Section 7.

6.1 General Trends

One remarkable outcome of the experimental evaluation is

the following: Although the OTE scheme provides sub-

stantial improvements over techniques that continuously

use Smax during the execution without reclaiming [27],

throughout the entire spectrum, DR-OTE only provides a

marginal (less than 1 percent) improvement over pure DRA.

This result indicates that almost the entire power savings

are obtained by initially committing to �SS, which fully

utilizes the CPU (Static), and using the dynamic reclaiming

algorithm itself. To improve the readability of the graphs,

we show below only the results of DR-OTE since the results

for the latter are almost identical to the pure DRA. The same

observation holds for CC-EDF.

6.1.1 Effect of Utilization

Fig. 11 shows the energy consumption of the techniques

varying with the utilization of the task set under Smax, when
WCET
BCET

is set to 5. We changed the utilization of the system

between 20 percent (corresponding to low load) and

100 percent (maximum load). The results are normalized

with respect to Static. One can observe the following major

patterns:

. The normalized energy consumption of all schemes
is rather insensitive to the variations in Utot. This is
due to the fact that, for a given scheme, the use of
optimal nominal speed �SS results in having very
similar effective utilization, for any value of Utot. In
other words, when the utilization decreases, the
speed decreases and makes the CPU (still) fully
utilized.

. OTE performs better than Static, but the improve-
ment is usually less than 10 percent. This implies
that the large power savings reported over con-
tinuously using Smax for some task sets in [27] are
due largely to the shutting down of the processor
when it is idle as a result of the actual low workload.
If and when one starts with the optimal static speed,
the potential (additional) savings due to the OTE
technique itself becomes rather limited.

. DRA, AGR1, AGR2, CC-EDF, and LA-EDF have a
definitive advantage over Static and OTE for all
utilization values, providing additional energy sav-
ings that vary between 50 percent and 70 percent.

. The energy consumption of DRA is 17-20 percent
lower than that of CC-EDF throughout the spectrum.
It also outperforms LA-EDF, though the difference is
around 7 percent.

. The results point to a consistent advantage of
aggressive algorithms over DRA (and over other
nonclairvoyant algorithms). This advantage reduces
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Fig. 10. Speed Increase Procedure.

4. The performance of AGR2 is almost identical to AGR1 when k is set to
1. However, we empirically determined that setting k ¼ 0:9 can provide
further savings for AGR2; see Section 6.2 for details.

5. Although Bound is not a practical algorithm (because no algorithm
can predict the exact workload beforehand), we found it useful to include it
as a yardstick in our experiment settings. Clearly, no dynamic voltage
scaling algorithm (either inter or intratask) can offer a better performance
than that of Bound.



as the utilization approaches 100 percent; at high
utilization values, all tasks assume a nominal
(default) speed close to Smax ¼ 1:0 and aggressive
speed reduction is not always possible because of
the maximum speed constraint. It is also interesting
to observe the near-optimal performance of AGR1
and AGR2, especially in utilization values not
exceeding 80 percent: The clairvoyant algorithm
could provide only 10 percent improvement over
aggressive algorithms in that part of the spectrum.

. AGR2 performs slightly better than AGR1; we
present a detailed performance comparison of both
algorithms in Section 6.2.

6.1.2 Effect of WCET
BCET

Ratio

The simulation results confirmed our prediction that the
energy consumption would be highly dependent on the
variability of the actual workload. The (normalized) average
energy consumption of the task sets, as a function of the
WCET
BCET

ratio (with Utot ¼ 0:6) is shown in Fig. 12. In terms of
shape and percentage difference, the curves for other
utilization values are fairly similar. From these experiments,
we arrived at the following conclusions:

. When WCET
BCET

¼ 1, there is no CPU time to reclaim
dynamically and, thus, the energy consumption is
the same for all three techniques, as expected.
However, once the actual workload starts decreasing
(that is, increasing WCET

BCET
), the algorithms are able to

reclaim unused computation time and to save
energy with respect to Static.

. The relative ordering of the schemes remains the same
as we increase the WCET

BCET
ratio. Aggressive algorithms

give the best energy savings, followed by DRA, LA-
EDF, and CC-EDF. Increasing the ratio helps improve
the relative performance of AGR since speculative
moves are justified more frequently.

. Once we increase the WCET
BCET

ratio beyond 4, energy
savings of dynamic algorithms (and that of Bound)
continue to increase, but the relative percentage of
improvement is not as impressive as the case where
that ratio is � 4. This is because the expected
workload of the system converges rapidly to

50 percent of the worst-case workload with increas-
ing WCET

BCET
ratio (remember that the mean of our

probability distribution is WCETþBCET
2

).

6.1.3 Effect of the Number of Tasks

To examine the effect of the number of tasks, we performed
simulations for both 10 and 20-task sets. The figures
illustrating the results are omitted due to the space
limitations, but they can be found in [2]. In general, the
trends are very similar to that of 30-task systems. This is
expected since the main determinant of the workload is the
variability in the actual workload. However, the percen-
tages do differ from one case to the next. In particular, we
see that all reclaiming and speculative speed reduction
schemes provide a slightly larger advantage when the
number of tasks increases because there are more oppor-
tunities for reclaiming unused slack-times as well as for
aggressively reducing the CPU speed with increasing
number of tasks.

6.1.4 Effect of Uniform Distribution

We also experimented with generating actual execution
times according to a uniform probability distribution and
observed the same relative ordering of schemes with similar
patterns. The normalized energy consumption of nonstatic
schemes with varying utilization and WCET

BCET
ratio in the

context of 30, 20, and 10-task sets, is slightly higher for the
uniform distribution [2]. This slight increase is due to the
fact that the likelihood of having large execution times close
to WCET is higher for the uniform distribution. Since the
large execution times adversely affect and limit the
reclaiming opportunities, the performance is degraded,
though marginally. However, the advantage of AGR is still
consistent and the shapes of the curves remain rather
similar to the normal distribution.

Comparing the mechanism of our algorithms to those the
of CC-EDF and LA-EDF schemes proposed in [23], we can
make the following observations: When the reclaiming
algorithm CC-EDF detects an early completion, the CPU
speed is updated to reflect the new (lower) value of the
instantaneous utilization. This effectively results in redu-
cing the speed of all the ready tasks in equal proportions.
Although it looks as a “fair” distribution of slack, the better
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Fig. 11. Normalized energy consumption (30 tasks). WCET
BCET

¼ 5. Fig. 12. Effect of variability in actual workload (30 tasks); load =

60 percent.



performance offered by DRA hints at the fact that a greedy
approach is more effective when the actual workload
deviates from the worst-case scenario. Essentially, DRA
assigns the entire slack to the first low-priority task that is
about to run. This greedy strategy pays off in the long run
since, in many cases, this “lucky” task completes early as
well and subsequent tasks are able to use its slack. Thus, in
general, we can say that overprovisioning while distribut-
ing the available slack during the reclaiming phase hinders
energy savings.

The same observation holds for LA-EDF. This algorithm
uses the CPU time borrowed from future task instances to
speculatively lower the instantaneous utilization over
multiple tasks, thereby limiting the speed reduction that
can be applied to the first task to run. In contrast, our
aggressive algorithms “steal” CPU time from other ready
tasks to the exclusive benefit of the dispatched task. The
experiments show that the performance is best when the
aggressive slow-down is limited by the speed that would be
optimal under the expected workload of the task set. Before
concluding this section, we note that a recent study [12]
provided an independent experimental evaluation of these
schemes, confirming the success of AGR and DRA when
compared to other existing techniques.

6.2 Experimental Evaluation of AGR1 and AGR2

In this section, we present results of simulations performed
to compare algorithms AGR1 and AGR2. The effect of the
utilization and that of the WCET

BCET
ratio (denoted by r in the

graphs) for 30-task sets generated with a normal distribu-
tion are shown in Fig. 13 (a and b, respectively). The curves
and trends are similar for the other sizes of task sets. We
also omit the uniform distribution results since the relative
performance of AGR1 versus AGR2 is extremely similar to
the settings of normal distribution results. In these graphs,
the performance curves of AGR1 are shown by lines, while
AGR2 is depicted through points.

As can be easily seen, the performances of two
aggressive schemes are hardly distinguishable. We observe
that the relative performance of AGR1 with respect to AGR2
tends to degrade with the increase in utilization. Remember
that, in AGR2, a task is not allowed to reclaim or
aggressively transfer CPU-time from other tasks if the
speed bound Sb is reached, with the implicit assumption
that there may be more suitable tasks that can further

benefit from reclaiming. However, in low utilization (hence,
in low nominal speed values), this decision may not always
be justified since other tasks may already be executing at or
close to Smin.

6.2.1 The Effect of the Aggressiveness Level

Unlike the utilization and WCET
BCET

ratio, changing the
aggressiveness level deeply affects the results, as shown
in Fig. 14. The curves shown are for 60 percent utilization
and WCET

BCET
¼ 5; other parameter settings have very similar

behavior. The performance of DRA and Static are insensi-
tive to the parameter k. The maximum power savings are
obtained with algorithm AGR2 typically when k ’ 0:9. This
represents a further 5 percent improvement over k ¼ 1,
yielding a net advantage of 20 percent over DRA. AGR1
reaches its minimum energy consumption usually with
k ¼ 1. Further, the curve suggests that unbounded or
extreme aggressiveness (small values of k) hinders the
power savings: For instance, both schemes consume
60 percent more energy than DRA for k � 0:2.

Yet, as we increase the value of k and move toward more
“balanced” aggressiveness levels, the aggressive schemes
become preferable to DRA: AGR1 and AGR2 outperform
DRA, for k � 0:75 and k � 0:7, respectively. After the power
savings reach their maximum at k ¼ 0:9 (for AGR2) and k ¼
1:0 (for AGR1), the performance starts to degrade. Remark-
ably, fork � 1:1,AGR2consumes considerablyhigher energy
than AGR1: This is due to the fact that, when the algorithm is
runwith largevaluesofk, thealgorithm is reluctant to reclaim
or transfer CPU-time, even when the speed is higher than
Soptavg. AGR1 does not suffer from this effect since it
automatically uses the earliness information to perform an
initial speed reduction and considers the speed bound Sb

only when aggressively reducing speed. Hence, even for
large values of k, AGR1 remains better than DRA, and is
guaranteed to converge to it for

k ¼
�SS

Soptavg

¼
2

1þ BCET
WCET

;

which is 1.66 in this example. On the other hand, AGR2
converges to OTE (not shown in Fig. 14) for the same value;
this is because the actual speed starts with �SS and the
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Fig. 13. Effect of utilization (a) and effect of variability in actual workload (b).



aggressive or dynamic reclaiming is never possible since

Sb ¼ �SS. In this case, the CPU speed is reduced only through

the OTE technique.
In general, keeping k in the range ½0:9; 1� and committing

to an aggressiveness level which aims to achieve very close

to Soptavg produces the best results, yielding additional (i.e.,

beyond DRA or DR-OTE) energy savings which may be as

high as 20 percent. The additional gains with respect to

Static are around 10 percent. Exact k values that provide the

best energy savings for AGR1 and AGR2 as a function of the

utilization are given in Table 2, in addition to the energy

consumption values corresponding to these k values as

percentage of the energy consumed by the static scheme.

The best k values maximizing the performance of AGR1

and AGR2 are found to be rather insensitive to the WCET
BCET

ratio. As can be seen, AGR1 yields the best performance

with k ¼ 1:00 (almost) invariably. In contrast, keeping k in

the range of ½0:9; 0:95� maximizes the energy savings of

AGR2. Since AGR2 considers the speed bound even when

reclaiming (prior to speculation), this indicates that its

performance approaches (and even exceeds) that of AGR1

when used with smaller speed bounds (increased aggres-

siveness levels).

7 ADDITIONAL CONSIDERATIONS

7.1 Power/Speed Relation

The simulation experiments we conducted were performed
with cubic power/speed functions in accordance with other
research work that appeared in literature [9], [11], [15], [14].
However, we also investigated the effect of the power/speed
function’s specific form on the results we obtained. The
results indicate that the relative ordering of schemes remains
the same, though the improvement provided by nonstatic
algorithms tends to increase (decrease) with increasing
(decreasing) exponent in the power/speed function. This is
to be expected since the benefits of reclaiming/speculating
tends to increase with that exponent. Fig. 15 presents the
results obtainedwith a 30-task set and normal distribution of
execution times, assuming quadratic power/speed functions
(compare to Figs. 11 and 12).

7.2 Continuous versus Discrete Speed Levels

Throughout thepaper,wemade the assumption that theCPU
speed can be changed continuously in the interval
½Smin; Smax�. Current technologies support only a finite
number of speed levels [28], though the number of available
speed levels is likely to increase in future.Our framework can
be always adapted to these settings by choosing the lowest
speed level that is equal to or greater than the value suggested
by the algorithms. Our preliminary experimental results
indicate that this simple approach results in an energy
overhead of 15-17 percent with respect to continuous speed
settings, when the number of available speed levels is only 5.
When the number of speed levels exceeds 30, the difference
reduces to 3 percent.More comprehensive recent studies that
address this issue and other overhead sources in dynamic
voltage scaling can be found in [19], [25].

8 CONCLUSIONS

In this paper, we presented techniques for power-aware
real-time computing through variable voltage scheduling.
Our solution that aims to reduce the CPU energy
consumption is comprised three parts: 1) a static solution
to compute the optimal speed based on the worst-case
workload, 2) an online speed adjustment mechanism that
reclaims unused time based on the actual workload, and 3) a
speculative speed adjustment mechanism based on the
expected workload. All these techniques are formally
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Fig. 14. Normalized energy consumption as a function of the bounding

factor k in aggressive schemes (30 tasks); utilization = 0.6, WCET
BCET

¼ 5,

normal distribution.

TABLE 2
The Aggressiveness Parameters Maximizing Energy Savings as a Function of Utilization



proven to preserve the feasibility of the schedule, even
under a worst-case workload.

Our simulation results show that, when the actual
workload deviates from the worst-case workload consider-
ably, the reclaiming algorithm DRA (component 2) above)
can save up to 50 percent of the energy over the static
algorithm, which takes into account the load in the system.
It also offers a consistent advantage over other state-of-the-
art intertask voltage scheduling algorithms such as One
Task Extension [27], Cycle-Conserving EDF [23], and Look-
Ahead EDF [23]. Finally, our aggressive techniques further
improve on DRA by 10-15 percent and the second
speculative algorithm AGR2 approaches the theoretical
lower-bound (that can only be achieved by a clairvoyant
algorithm) by a margin of 10 percent. We concluded that,
being too aggressive or not aggressive enough causes the
algorithms to perform rather poorly. The experiments
confirmed that a “balanced” aggressiveness level that aims
to achieve the speed that would be optimal under the
expected workload yields the best results.

APPENDIX

Theorem 1. At any time t during the execution of GDRA,

w
bSiSi

i ðtÞ � remiðtÞ;

for any ready task Ti.

Proof. Throughout the proof, we will consider the actual
CPU schedule as a sequence of task execution segments. A
segment starts when a given task Ta is dispatched (say at
t ¼ ta) and ends (at t ¼ tb) when Ta releases the CPU
either by completion or by preemption. In other words,
during the time interval (segment) ½ta; tb�, the CPU is
allocated continuously to Ta. We will use induction to
prove the validity of the statement for every such
execution segment (on which a given task runs). Note
that we will need to show the validity of the
proposition for each segment and for all the tasks that
are (or incidentally, may become) ready during this
segment.

First, observe that initially (at t ¼ t0) all tasks are

ready and the �-queue contains their w
bSiSi

i values in the

remi fields. Assume that T1 has the highest EDF* priority

at this time and it will run with the speed cS1S1 until it

completes at t ¼ t1 (note that the identical ready times

and EDF* imply that it won’t be preempted). At any

time t in the interval ½t0; t1Þ, rem1 ¼ w
bS1S1

1 since S1 ¼ cS1S1.

Since, by definition, T1 will not execute for more than its

worst-case workload, at the time of its completion at

t ¼ t1, rem1 � w
bS1S1

1 ¼ 0. For every other task Tj waiting in

the ready queue during this interval, remj will remain

the same as w
bSjSj

j since Tj did not have a chance to execute.

Thus, the proposition holds for the first execution

segment ½t0; t1�.

Since the base case is established, now assume that the

statement remains valid for the first k execution

segments and consider the ðkþ 1Þst segment, during

which Tx executes. Hence, Tx runs continuously from

tk�1 to tk ¼ tk�1 þ�t and it relinquishes the CPU either

by completion or the arrival of a higher priority task

(preemption). From the induction assumption, remi �

w
bSiSi

i for every ready task Ti at t ¼ tk�1.

We first focus on the changes in remx and w
bSxSx
x ðÞ in

interval ½tk�1; tk�: When we consider the speed decrease

ratio in the procedure “Speed-Reduce” and w
bSxSx
x ðtk�1Þ, we

can easily conclude that Tx cannot run more than Y þ

w
bSxSx
x ðtk�1Þ units, that is, 0 � �t � Y þ w

bSxSx
x ðtk�1Þ.

The value of w
bSxSx
x ðtk�1 þ�hÞwhere 0 � �h � �t can be

easily computed. During the interval ½tk�1; tk�, we execute
with a speed

S0
x ¼ cSxSx �

w
bSxSx
x ðtk�1Þ

w
bSxSx
x ðtk�1Þ þ Y

;

hence, at th ¼ tk�1 þ�h,
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Fig. 15. Normalized energy consumption as a function of utilization with WCET
BCET

¼ 5 (left) and variation in workload with utilization = 60 percent (right)

with quadratic power/speed function (30 tasks).



w
bSxSx

x ðthÞ ¼ w
bSxSx

x ðtk�1Þ �
S0
x

cSxSx

�h

¼ w
bSxSx
x ðtk�1Þ 1�

�h

Y þ w
bSxSx
x ðtk�1Þ

2
4

3
5 � 0;

for the preemption case, or w
bSxSx
x ðth ¼ tkÞ ¼ 0, for the

completion case.

What is the value of remxðtk�1 þ�hÞ? Let us

define by �hðt; xÞ the sum of all remi values in the

�-queue at time t, such that Ti has strictly higher

EDF* priority than Tx. Observe that, by definition,

�xðtÞ ¼ �hðt; xÞ þ remxðtÞ � w
bSxSx
x ðtÞ. Hence:

remxðtk�1Þ ¼ �xðtk�1Þ þ w
bSxSx

x ðtk�1Þ � �hðtk�1; xÞ: ð1Þ

As time elapses, we consume from the �-queue,
starting from the head. We distinguish two cases:

. If �h � �hðtk�1; xÞ, we will only consume the
slack of “higher” priority tasks in the �-queue and
remx will remain intact. Hence, using also the
induction assumption, we can obtain:

remxðtk�1 þ�hÞ ¼ remxðtk�1Þ � w
bSxSx

x ðtk�1Þ

� w
bSxSx
x ðtk�1 þ�hÞ4

for this special case.
. If �hðtk�1; xÞ < �h � �t � Y þ w

bSxSxðtk�1Þ
x , we will

start decreasing remx value only at
t ¼ tk�1 þ �hðtk�1; xÞ. At t ¼ tk�1 þ�h,

remxðtk�1 þ�hÞ ¼ remxðtk�1Þ � ð�h � �hðtk�1; xÞÞ

and, using (1), we get:

remxðtk�1 þ�hÞ ¼ �xðtk�1Þ þ w
bSxSx

x ðtk�1Þ ��h

� Y þ w
bSxSx

x ðtk�1Þ ��h

¼ ðY þ w
bSxSx

x ðtk�1ÞÞ 1�
�h

Y þ w
bSxSx
x ðtk�1Þ

2
4

3
5

� w
bSxSx

x ðtk�1Þ 1�
�h

Y þ w
bSxSx
x ðtk�1Þ

2
4

3
5 ¼ w

bSxSx

x ðtk�1 þ�hÞ:

Thus, for task Tx, we have remxðtk�1 þ�hÞ �

w
bSxSx
x ðtk�1 þ�hÞ � 0 for 0 � �h � �t � Y þ w

bSxSx
x ðtk�1Þ. A

geometric interpretation of the changes in remxðÞ and

w
bSxSx
x during the time interval ½tk�1; tk�1 þ�t� is presented

in Fig. 16.

For any other task Ty which was also ready at t ¼ tk�1,

but whose execution was delayed due to the high priority

computation of Tx, remyðtk�1 þ�hÞ ¼ remyðtk�1Þ, since

this value (correctly represented in the �-queue) cannot be

decreased before remx reaches zero (which cannot happen

beforeTx completes, aswehave shownabove). But,Ty was

not executed either, hencew
bSySy
y ðtk�1Þ ¼ w

bSySy
y ðtk�1 þ�hÞ. The

inductionassumption is that remyðtk�1Þ � w
bSySy
y ðtk�1Þ, hence

remyðtk�1 þ�hÞ � w
bSySy
y ðtk�1 þ�hÞ as well. Finally, for any

other task Tq which may arrive (and wait) while Tx is

executing, clearly remq will remain equal to the w
bSqSq
q . From

these results,we can infer that, at any time t in the ðkþ 1Þst

execution segment, remiðtÞ � w
bSiSiðtÞ
i for any ready task Ti.

Having established the statement for the ðkþ 1Þst seg-

ment, we prove the theorem. tu
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