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ABSTRACT
Power-aware systems are those that must make the best use of avail-
able power. They subsume traditional low-power systems in that
they must not only minimize power when the budget is low, but
also deliver high performance when required. This paper presents a
new scheduling technique for supporting the design and evaluation
of a class of power-aware systems in mission-critical applications.
It satisfies stringent min/max timing and max power constraints. It
also makes the best effort to satisfy the min power constraint in an
attempt to fully utilize free power or to control power jitter. Exper-
imental results show that our scheduler can improve performance
and reduce energy cost simultaneously compared to hand-crafted
designs for previous missions. This tool forms the basis of the IM-
PACCT system-level framework that will enable designers to ex-
plore many power-performance trade-offs with confidence.

1. INTRODUCTION
This paper investigates key issues in power management for mission-

critical systems. We use the NASA/JPL Mars Pathfinder rover [1]
as our motivating example. It features several interesting proper-
ties that were not adequately handled by previous work. First, such
a system must be designed to be power-aware, rather than low-
power. Second, the power management decisions must be made at
the system level, rather than only at the component level.

1.1 Power-aware vs. low-power
Traditionally, many components and systems have been designed

to be low-power, rather than power-aware. We believe that the
crucial difference between power-aware and low-power systems is
that power-aware systems must make the best use of the available
power, and they subsume low-power as a special case.

In the Mars rover case, its designers exploited some of the best
low-power design techniques. The rover has two power sources: a
solar panel and a non-rechargeable battery. By serializing all tasks,
this low-power design enables the rover to operate for hundreds of
days during daylight; and it sleeps at night. However, full serializa-
tion also means the rover moves as slowly as 10cm per minute, and
it can only take a total of three pictures per day.
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A power-aware design can greatly improve the utility of the rover.
We observe that the battery is non-rechargeable, and thus the excess
solar power would be wasted if not used. In the existing design, the
rover follows the same serial schedule regardless of the solar power
level. By taking advantage of the free solar power, a rover with
more parallelism in its schedule can perform better (more tasks,
less time) while saving even more battery energy than the existing
low-power design, as validated by our experiments.

1.2 System-level power-aware design
We believe that power-aware designs must be done at the system-

level, not just at the component level. Amdahl’s law applies to
power as well as performance. That is, the power saving of a given
component must be scaled by its percentage contribution in an en-
tire system. Thus, it is critical to identify where power is being
consumed in the context of a system.

In the case of the Mars rover, it turns out that some of the biggest
consumers are not even in the digital computer, but they also in-
clude the wheel motors, the steering motors, laser-guided obsta-
cle detection, and the heaters. A successful power-aware design
must consider these non-computation domains and coordinate their
power usage as a whole system.

1.3 Approach: design tools
Our approach is to support power-aware designs with a system-

level design tool. A lesson learned from the Mars rover was that,
without a tool, designers had no choice but to embed many power
management decisions in the implementation. As a result, they
were forced to design conservatively and could not consider more
than one or two alternatives. The purpose of our tool is to en-
able the exploration of many more points in the design space, so
that additional knowledge about the mission can be incorporated to
refine the design without requiring dramatic redesign. The work
presented in this paper represents one of the core tools in the IM-
PACCT design framework. The designers input a system-level be-
havioral specification of the design in terms of communicating pro-
cesses running on specific execution resources, and constraints on
processes and the system. Our scheduler constructs a constraint
graph and outputs a power-aware schedule that is in turn fed to an-
other tool that performs architecture-level power optimizations.

Section 2 reviews related work, and Section 3 describes the ap-
plication example. We present the problem formulation in Sec-
tion 4 and graph-based scheduling algorithms in Section 5. We
discuss experimental results in Section 6.

2. RELATED WORK
Prior works have addressed system-level power minimization

while maintaining either satisfactory performance or meeting real-



time constraints. However, these low-power techniques often can-
not be directly adapted in power-aware systems.

Shutting down idle subsystems such as network interfaces, hard
disks, and displays can save a significant amount of power in a
system. The shutdown decision can be based on idle times of in-
dividual subsystems by making the timeout adaptive to the actual
usage pattern, or using profiling to help predict the proper time to
shutdown and power up subsystems [7, 4, 8]. While it is impor-
tant to manage the power of subsystems, unfortunately these tech-
niques have several limitations. First, they do not handle timing
constraints, including deadlines and min/max separation. Second,
they are not power-aware in the sense that they do not distinguish
between free power (such as solar sources) and expensive power
(non-rechargeable battery). These power managers do not con-
trol their workload; instead, they make the best effort to minimize
power consumption by treating the workload as a given.

Many real-time scheduling techniques have been proposed to
date, but only recently have researchers started to address power
issues with the objective of minimizing power usage. For exam-
ple, rate-monotonic scheduling has been extended to scheduling
variable-voltage processors. The idea is to save power by slowing
down the processor just enough to meet the deadlines [6]. Such
techniques also have limitations. First, they are CPU schedulers
that minimize CPU power, whereas our power managers control
subsystems and task executions. Second, in practice, it is difficult
to tune the voltage or frequency scale to such a fine precision. As
a result, the risk of missing deadlines may be high, even if context
switching overhead is taken into account. Also, these schedulers
do not handle constraints on power.

We present power-aware scheduling with several new features.
First, the scheduler must handle both timing and power stringently
as hard constraints. It is unlike previous work that treats them
as desirable by-products but cannot always make strong guaran-
tees. Second, domain-specific knowledge about power sources,
battery models, and other operating conditions must be express-
ible in terms of supported types of constraints on both timing and
power. The types of constraints that are sufficiently expressive for
our application are min and max timing constraints on tasks, as well
as min and max power constraints on the system. Min/max timing
constraints subsume deadlines and precedence dependencies and
can express dependencies across subsystems [2, 3]. The max power
constraint tracks the budget imposed by the power sources. It con-
strains the system-level power curve under a budgeted level. The
min power constraint, strictly speaking, may be counter-intuitive in
that it forces the power manager to maintain a certain level of ac-
tivity. The primary motivation is that energy from free sources that
cannot be stored should be utilized greedily. Another motivation
is to control the jitter in the system-level power curve to improve
battery usage. A power-aware scheduler should satisfy the rigor-
ous min/max timing constraints and the max power budget, while
making the best effort to meet the min power goal [5].

3. MOTIVATING EXAMPLE
The NASA/JPL Mars rover [1] is our motivating example for

demonstrating the effectiveness and applicability of our power-aware
scheduler. The rover travels between different target locations on
Mars surface to perform scientific experiments and shoot images.
Its power sources consist of a non-rechargeable battery and a solar
panel. The life-time of its mission is limited by the amount of re-
maining battery energy. Since the temperature on Mars surface can
be as low as �80ÆC, the rover must heat its motors periodically as
it drives them to move. Thus, mechanical and thermal subsystems
are the major power consumers.

Timing constraintsOperation Duration (s)
Heating steering motors

Heating wheel motors

Hazard detection

Steering

Driving

5
5

5
10

10

At least 5s, at most 50s before steering

At least 5s, at most 50s before driving

At least 10s before steering

At least 5s before driving

At least 10s before next hazard detection

Table 1: Timing constraints of the Mars rover

@-40  C

Solar panel 14.9 12 9
Battery pack 10 max 

CPU constant 2.5 3.7

Heating two motors 5 7.6 9.5 11.3

Driving 10 7.5 10.9 13.8

Steering 5 4.3 6.2 8.1

Hazard detection 10 5.1 6.1 7.3

Power  (W)Power sources Duration
(s)& tasks

3.1
10 max 10 max 

Best case
o

Worst caseTypical case

@-60  C
o

@-80  C
o

Table 2: Power sources and consumers of the Mars rover

We construct a high-level representation that includes the me-
chanical and thermal subsystems, as well as different energy sources.
We also focus on a typical scenario when the rover is traveling.
Each time the rover drives its six wheels for a full rotation to move
one step, which is about 7cm in distance. Before driving the wheels,
it must first detect any obstacles on its way and choose a safe angle
to turn. Then it turns itself to the right direction using the four steer-
ing motors. Finally, the six wheel motors are driven. Therefore,
hazard detection, steering, and driving must operate in sequence.
Other constraints on the mechanical operations are summarized in
Table 1. We assume the power consumption of tasks varies with en-
vironmental temperature that tracks the sunlight intensity, and we
investigate three cases of solar power output: best case is 14.9W
at noon time; the typical case is 12W; and the worst case is 9W
at dusk. The max power constraint is equal to the available solar
power plus 10W maximum battery power output. We also extract
the solar power level as the min power constraint to distinguish the
free power from the costly power. Table 2 illustrates the power
sources and consumers in three cases.

4. PROBLEM FORMULATION
Our problem formulation is based on an extension to a constraint

graph used in a previous time-driven scheduling problem [2]. We
sketch the key concepts in our model as follows. Section 4.1 re-
views the constraint graph formulation and slack properties. Sec-
tion 4.2 defines power properties of the scheduling problem by
applying max and min power constraints. Section 4.3 presents
a new way of viewing the time/power scheduling problem as a
two-dimensional constraint problem by drawing analogies from the
Gantt chart. A detailed discussion and formal definitions to all
terms and concepts can be found in [5].

4.1 Constraint graph and slack properties
The input to the power-aware scheduling tool is a constraint

graph G(V;E), where the vertices V represent tasks, and the edges
E � V �V represent timing constraints in a form of min and max
timing separation [2].

Each vertex v2V has three attributes, d(v), p(v) and r(v), where
d(v) corresponds to the execution delay of task v, p(v) is its power
consumption, r(v) is the execution resource onto which task v is
mapped. We assume the scheduler is non-preemptive so that each
task v has a bounded execution delay d(v). We also assume its
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Figure 1: Constraint graph of a scheduling problem

power consumption is an exact value p(v) � 0. As a result, its en-
ergy consumption is d(v)� p(v). In practice, the power consump-
tion can be either in the form of (min, typical, max), or a function
over time. Since our formulation can be extended to handling these
cases, we will assume a single value to simplify the discussion. The
resource mapping function r : V ! R maps all tasks to a resource
set R. Examples of execution resources include not only computing
resources such as an embedded microprocessor, but also other con-
sumers of power, e.g. mechanical subsystems and heaters. If two
tasks u and v are mapped to the same resource (r(u) = r(v)), then
u and v must be serialized by the scheduler to eliminate resource
conflicts.

An example of a constraint graph is illustrated in Fig. 1. Nine
tasks named a . . . i are mapped onto three resources, A, B and C.
Each vertex v is denoted with a name and its attributes in the form
of r(v)=d(v)=p(v).

A schedule σ assigns a start time σ(v) to each task v 2V . It has
a finish time τσ when all tasks complete their execution. Schedule
σ is called time-valid if all the start time assignments do not violate
any timing constraints, and tasks that share the same resource are
serialized. Given a time-valid schedule σ, there are alternative time
slots for start time assignment σ(v) to a task v, which is defined as
slacks. Task v’s slack ∆σ(v) can be computed from σ and vertex
v’s outgoing edges in constraint graph G [5]. If the scheduler de-
lays task v until another times slot within its slack ∆σ(v), the new
schedule remains time-valid.

4.2 Power properties of a schedule
A schedule σ has a power profile function of time Pσ(t);0� t �

τσ representing the instantaneous power consumption during the
execution of σ. The power profile is constrained by two parame-
ters: Pmax;Pmin, such that Pmax � Pσ(t)� Pmin � 0. The max power
constraint Pmax specifies the maximum budget of supply power that
can be provided to support task execution. The min power con-
straint Pmin specifies the level of power consumption to maintain a
preferred level of activity.

The max power constraint is a hard constraint. At any given
time t, the value of the power profile function Pσ(t) must not ex-
ceed Pmax. Schedule σ is called power-valid (or simply, valid) if it
is time-valid and its power profile does not exceed the max power
constraint. Otherwise, the time interval [t1;t2] where Pσ(t) > Pmax
(t1 � t � t2) is called a power spike. The min power constraint
violation is called a power gap at a time interval [t1;t2] such that
Pσ(t) < Pmin (t1 � t � t2). However, we treat the min power con-
straint as a soft constraint.

The max and min power constraints form some new properties
on power/performance trade-offs in power-aware systems. In cases
where the min power constraint Pmin represents free power level,
the energy drawn from the non-renewable energy sources is defined
as the energy cost Ecσ(Pmin) of a schedule σ. We also define the
energy utilization of min power level ρσ(Pmin) as the ratio of energy
drawn from free source over total available free energy [5]. These
new properties distinguish between costly power and free power.
Any power consumption below the free power level does not con-
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Figure 2: Power-aware Gantt chart of a time-valid schedule

tribute to the energy cost on non-renewable energy sources, and
therefore should be utilized maximally. The conventional power or
energy minimization is simply a special case, where Pmin = 0.

4.3 Power-aware Gantt chart
We introduce our power-aware Gantt chart as a new visual rep-

resentation for power-aware scheduling problems. It presents a
schedule in two different views: time view and power view. Each
view is a two-dimensional diagram whose horizontal axis repre-
sents time and vertical axis represents power. In the time view,
tasks are displayed as bins placed on several rows that denote par-
allel execution resources. The power view shows the power profile
of the schedule with min and max power constraints and corre-
sponding power properties.

In the time view for a schedule σ computed from a constraint
graph G(V;E), the execution of a task v 2 V is represented by a
bin beginning at start time σ(v) horizontally and whose length cor-
responds to its execution delay d(v). We scale the vertical size of
the bin to denote power consumption p(v). As a result, the area of
the bin indicates the energy expenditure of task v. Each execution
resource Ri 2 R takes one row denoted by Ri. All tasks that are
mapped to this resource, that is, 8v 2 V such that r(v) = Ri, are
displayed in row Ri in timing order. Timing constraints and slacks
can also be intuitively visualized by selectively annotating the bins.

The power view is obtained by collapsing all bins in the time
view to the lowest horizontal axis, which yields the power profile
Pσ(t). It also illustrates the composition of the power profile from
every power consumer’s contribution at each time. With annotation
of max and min power level, power spikes and power gaps can be
directly observed; the energy cost vs. free power usage are clearly
separated; and power properties such as energy cost Ecσ(Pmin) and
min power utilization ρσ(Pmin) can be visualized with the corre-
sponding annotations. Fig. 2 shows the power-aware Gantt chart of
a time-valid schedule to the example problem in Fig. 1.

In addition to a graphical representation to schedules, the power-
aware Gantt chart also serves as the underlying model for a power-
aware design tool for exploring power/performance trade-offs vi-
sually. The designers can manually intervene with the automated
scheduling process by dragging and locking the bins to alternative
time slots in the time view, while observing the results in the power
view interactively.

5. SCHEDULING ALGORITHMS
Given a scheduling problem, the goal of the power-aware sched-

uler is to find a schedule σ that is both time-valid and power-valid
with minimum power gaps. We use an incremental approach by
solving one type of constraint at a time in the following three steps.
First, based on the constraint graph of the problem, we try to find
a schedule that is time-valid (Section 5.1). Second, the max power



TimingScheduler(Graph G, vertex anchor, vertex c)
L(c) := SINGLE SOURCE LONGEST PATH(G;anchor)
if (positive cycle found) then return FAIL
if (Succ[c] = /0) then return σ with σ(c) := L(c)
while (Succ[c] 6= /0) do

v := extract one vertex from Succ[c]
B: Succ[v] := Succ[v][Succ[c]

foreach (vertex u that is not traversed) do
if (r(u) = r(c))) then serialize u after c

σ = TimingScheduler(G;anchor;v)
if (σ 6= FAIL) then return σ with σ(c) := L(c)
undo changes to G since step B

return FAIL

Figure 3: Algorithm for timing scheduling

constraint is applied to the time-valid schedule to remove power
spikes using slack-based heuristics (Section 5.2). Finally, given a
valid schedule provided by the previous step, we apply the min
power constraint and reorder tasks within their slacks to reduce
power gaps and improve the min power utilization in Section 5.3.

5.1 Algorithm for timing scheduling
The time-constrained scheduling algorithm is shown in Fig. 3. It

is an extension to a previous serialization algorithm [2]. G is the
constraint graph. anchor represents a virtual task that starts at time
0. c is called the candidate vertex that is being visited at each step
as the algorithm traverses graph G topologically. The start time of
candidate c is assigned as the distance from the anchor to c in the
longest path. The next candidate v is selected from c’s topological
successors Succ[c]. Tasks that share the same resources are serial-
ized by adding edges between vertices. If these additional edges
produce any positive cycles in the graph, they are removed by the
algorithm and another topological ordering is attempted. The first
invocation to the algorithm starts from anchor as the first candi-
date. Then the algorithm is recursively invoked at each step when a
new candidate is selected. A time-valid schedule is returned when
all vertices are scheduled. This algorithm can be proved to always
find a time-valid schedule if one exists, since it will traverse all pos-
sible topological orderings of the graph before it terminates with a
failure.

Based on the problem shown in Fig. 1, its time-valid schedule is
illustrated in Fig. 2. There are one power spike and several power
gaps left for the remaining steps.

5.2 Algorithm for max power scheduling
The algorithm shown in Fig. 4 has three parameters: graph G,

vertex anchor, and max power constraint Pmax. The timing sched-
uler is always called first to obtain a time-valid schedule. The algo-
rithm examines the power profile Pσ of the returned schedule σ to
find the first power spike at time t. To eliminate the spike, several
simultaneous tasks at t are delayed by adding extra edges to G so
that the power curve is below Pmax. A valid schedule σ is found if
there is no power spike in σ. The time-validity of σ is always guar-
anteed recursively. If no solution can be found after the recursive
call, a failure notice is returned suggesting that either additional
tasks at t need to be delayed, or some tasks already delayed have
been incorrectly chosen.

We propose slack-based heuristics to select and delay tasks for
spike elimination. First, a slack-based ordering function is used to
order simultaneous tasks. When a power spike is detected at time
t, the algorithm orders active tasks at t by their slacks ∆σ, and then
selects tasks to delay based on the following conditions. (1) If there
are tasks with non-zero slacks, the task with the largest slack is se-

lected first. The algorithm continues selecting tasks to delay until
the power spike at t is removed. (2) If the power spike cannot be
removed until all remaining tasks have zero slacks, tasks are ran-
domly selected. After a task is selected, the second question is by
how long it should be delayed, which is referred to as the delay dis-
tance. We heuristically set the upper bound of the delay distance to
the execution time of the task. In addition, in case (1) where the se-
lected task v has some slack, the delay distance is further bounded
by its slack ∆σ(v) so that the new schedule is still time-valid. In
cases (2), which eliminates a power spike at the cost of introducing
new timing violations, some significant timing adjustment to the
schedule is required by asserting the Boolean variable reschedule.
Finally, after enough tasks are delayed and the power spike at t dis-
appears, we lock the start time of the remaining tasks by adding
extra edges to G. These locks are especially meaningful to case
(2). Since all remaining tasks have zero slacks, they should not be
delayed subsequently. However, if delays to these tasks are neces-
sary for a valid schedule, the algorithm will fail in its next recursion
and these locks will be undone. Then the algorithm will choose one
task from them to make further delay and continue recursion.

It is notable that in some extreme cases, the max power sched-
uler may not find a valid schedule even though one exists. The rea-
son is that the algorithm does not enumerate all possible combina-
tions in partially ordered tasks. However, in practice, our heuristics
perform well in finding a valid solution without sacrificing perfor-
mance. Our slack-based heuristics tend to examine more reason-
able schedules first. Also, the heuristic to lock the tasks before the
recursion can help reduce the computation of the scheduler.

The schedule shown in Fig. 2 does not satisfy the max power
constraint. Fig. 5 show the valid schedule after applying the max
power scheduler. Tasks h and f are delayed to remove the power
spike.

5.3 Algorithm for min power scheduling
Min power scheduling reduces the energy cost by improving min

power utilization for a valid schedule. The algorithm is shown in
Fig. 6. It has four parameters: graph G, vertex anchor, power con-
straints Pmax and Pmin. A valid schedule σ is obtained from the
max power scheduler. If σ already has full min power utilization,
then no further improvement is necessary. Otherwise, the algo-
rithm finds a power gap at time t and delays some tasks started
before t to fill this power gap. These tasks must have enough slacks
to be delayed until t such that the new schedule is time-valid. The
algorithm also checks whether the new schedule is power-valid,
and whether it has a higher min power utilization. If so, it is a
better schedule and the algorithm continues searching for further
improvement. Otherwise, the delay is canceled and the previous
schedule is restored. The algorithm keeps scanning the schedule
until no further improvement can be found. Each scan (except the
last one) will improve the schedule by delivering the same perfor-
mance with a reduced energy cost. Since min power constraint is a
soft constraint, the scheduler tolerates the existence of power gaps
after it makes the best efforts to remove them.

To find an “optimal” schedule whose energy cost is minimized,
the algorithm should examine all valid partial orderings of tasks,
which will increase the complexity of computation to an exponen-
tial order of tasks. Therefore, we apply heuristics based on fol-
lowing observations. First, the scheduler should scan the sched-
ule multiple times. This is because, after delaying some tasks in
the previous scan, either new power gaps or new tasks to fill other
power gaps can be found if the schedule is scanned again. More-
over, the order to visit the power gaps will lead to different final
schedules due to different partial orders. This suggests that better



MaxPowerScheduler(Graph G, vertex anchor, Pmax)
σ := TimingScheduler(G, anchor, anchor)
if (σ = FAIL) then return FAIL
for (t := 0; t � τσ; t := t + 1) do

S := set of all active tasks at t , ordered by slack ∆σ
reschedule := FALSE
while (Pσ(t)> Pmax or reschedule = TRUE) do

B: repeat
v := EXTRACT MAX(S)
if (∆σ(v) = 0) then reschedule := TRUE
delay v by some time units (heuristically determined)

until (Pσ(t)� Pmax)
if (reschedule = TRUE) then

lock start times of remaining tasks in S
σ := MaxPowerScheduler(G;anchor;Pmax )
if (σ 6= FAIL) then return σ
undo added edges to G since step B

return σ

Figure 4: Algorithm for max power scheduling
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Figure 5: A valid schedule after max power scheduling

MinPowerScheduler(Graph G, vertex anchor, Pmax;Pmin)
σ := MaxPowerScheduler(G;anchor;Pmax )
if (σ = FAIL) then return FAIL
if (ρσ(Pmin) = 1) then return σ
σold := σ
while (TRUE) do

for (t in a heuristic order of range [0, τσ]) do
if (Pσ(t)< Pmin) then

S := set of tasks that start before t
foreach (v 2 S such that ∆σ(v)� t�σ(v)�d(v)) do

B: σnew := delay v some time units such that v is active at t
if (σnew is valid and ρσnew (Pmin)> ρσ(Pmin)) then

σ = σnew
if (ρσ(Pmin) = 1) then return σ

else
undo added edges to G in step B

if (σ = σold) then return σ
return σ

Figure 6: Algorithm for min power scheduling
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Figure 7: The improved schedule after min power scheduling

schedules could be found if the schedule can be scanned in various
orders in time dimension, e.g. incremental order, reverse order, or
random order. Finally, when a task v is selected to fill a power gap
at t, we consider alternative time slots to reschedule v by heuristics.
It is difficult to determine the “best” time slot since the choice alters
not only the power profile but also the slacks of some other tasks.
Some available heuristics are: starting v at t, finishing v at the end
of the power gap beginning at t, or a randomly chosen time slot. In
practice, we scan the schedule multiple times while altering some
of the heuristics during each scan and take the best results.

Fig. 7 shows a better schedule that improves on the valid sched-
ule in Fig. 5. In fact, the same schedule can be directly applied to
all cases with a range of constraints where Pmax � 16;Pmin � 14,
without recomputing a schedule for each case. This feature makes
our statically computed power-aware schedules adaptable to a run-
time scheduler that schedules tasks according to the dynamically
changing constraints imposed by the environment.

6. EXPERIMENTAL RESULTS
This section presents scheduling results for the Mars rover’s op-

erations and a case study for evaluating our power-aware schedul-
ing algorithms in a mission scenario.

The constraint graph for the Mars rover is shown in Fig. 8. We
assume all heaters are independent resources and one heater can
heat two motors at a time. Therefore there are a total of five ther-
mal heaters. Four steering motors are considered a single steering
mechanical resource. The six wheel motors are modeled as one
mechanical unit for driving. There is also a laser guided digital
component for hazard detection. Each task is denoted with the re-
source mapping and the execution delay. The power consumption
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Figure 8: Constraint graph of the Mars rover

is not shown since it varies in different cases. During each iteration
of the schedule, the rover moves two steps (14cm). Fig. 9, 10 and
11 show the schedules (power views only) for three cases after ap-
plying power-aware scheduling algorithms. Fig. 9 gives first two
iterations in the best case. To utilize the available free energy, we
manually unroll the loop and insert two heating tasks to improve
solar energy utilization. Therefore the second iteration can be re-
peated with less energy cost. Since the power budget is sufficient, a
fast schedule is given by allowing operations to overlap. In the typ-
ical case, parallel operations are still possible while some heating
tasks are serialized. In the worst case, a tight power budget forces
all operations to be serialized, leading to a slow schedule.

The existing schedule used in the past mission was designed to
be low-power. To avoid exceeding max power supply, JPL uses
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Figure 9: Schedule for the best case
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Figure 10: Schedule for the typical case
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TimeEnergy cost    

14.9 0 60% 75 79.5(1st)  6(2nd) 81% 50
12 55 91% 75 147 94% 60
9 388 100% 75 388 100% 75

Power-awareJPLSolar power 

Pmin (W) τσ (s)ρσ(Pmin)
Utilization TimeEnergy cost

Ecσ(Pmin) (J) τσ (s)
Utilization
ρσ(Pmin)Ecσ(Pmin) (J)

Table 3: Performance and energy cost of the schedules

 Time Energy 
cost (J)

 Energy 

0 - 599 14.9 16 600 0 24 600 145.5
600 - 1199 12 16 600 440 20 600 1470

1200 - 9 16 600 3114 4 150 776
Total 48 1800 3554 48 1350 2391.5

Improve-
ment

33.3% 32.7%

Power-awareJPLTime frame Solar power
(W)(s) (s) (s)

Time
cost (J)(step)

Distance
(step)

Distance

Table 4: Comparison to schedules under a mission scenario

a fixed, fully serialized schedule, without tracking available solar
power and power consumption in different conditions. The existing
schedule is identical to our power-aware schedule in the worst case
with the lowest power budget. The fundamental difference is that,
our schedule is completely constraint-driven; whereas the existing
solution is hardwired manually.

We use the performance of the schedule (the inverse of the fin-
ish time τσ) and the energy cost Ecσ(Pmin) to the non-rechargeable
battery as the metrics, and compare JPL’s schedule and our power-
aware schedules in Table 3. The existing scheme only schedules
for the worst case; while in other cases, solar energy is under-
utilized and opportunities to performance improvement are over-
looked. However, JPL’s low-power schedule appears “economic”
since its energy cost is low. Our schedules, on the other hand,
speeds up the rover’s movement by up to 50% in the best case and
25% in the typical case, while drawing more costly energy from the
battery. To evaluate this trade-off between performance and energy
cost, we apply our schedules to a scenario where the available solar
power varies over time.

Suppose the mission is to travel to a target location in a dis-
tance of 48 steps. The mission starts with maximum solar power
at 14.9W. Then, it drops to 12W after 10 minutes, then falls to
the worst case at 9W 10 minutes later. If the existing schedule is
applied, the rover will spend 10 minutes evenly in the best case,
typical case, and worst case since it has a fixed moving speed (16
steps per 10 minutes). This results in a long execution time (30
minutes) and considerable energy cost in the worst case. When our
schedules are used, the rover finishes 50% of its work (24 steps) in
the first 10 minutes, 42% (20 steps) in the next 10 minutes, leaving
the remaining 8% (4 steps) in the worst case for only 2.5 minutes.
Since our schedules accelerate the execution at the best and typical
cases, the rover can finish the mission earlier before having to work
in the costly worst case. The analysis to this case study in Table 4
shows our schedules win both on performance (33.3% speed-up)
and energy savings (32.7% reduction) considerably.

7. CONCLUSION
Power-aware design has become an important issue in mission-

critical systems that require the best use of available power sources
while delivering high performance. We target the scheduling al-
gorithms to embedded systems with variable power constraints and
heterogeneous power consumers, as well as different energy sources
with different costs, from costly to free. In these systems, power-
aware techniques have potentials for both performance improve-
ment and energy savings.

We present a constraint-driven model that incorporates power
and timing constraints in a system-level context. We propose three
core algorithms that decompose the power-aware scheduling prob-
lems into steps. This incremental approach applies heuristics to
solve the constraints with different properties. The case study with
a real application shows that our power-aware method is capable of
improving performance while saving expensive energy.
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