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POWER-AWARE SPEED-UP FOR MULTITHREADED NUMERICAL LINEAR

ALGEBRAIC SOLVERS ON CHIP MULTICORE PROCESSORS

JAYANTA MUKHERJEE∗AND SOUMYENDU RAHA†

Abstract. With the advent of multicore chips new parallel computing metrics and models have become essential for re-
designing traditional scientific application libraries tuned to a single chip. In this paper we evolve metrics specific to generalized
chip multicore processors (CMP) and use them for parallel performance modeling of numerical linear algebra routines that are
commonly available as shared object libraries tuned to single processor chip. The study uses a thread parallel model of parallel
computing on CMPs. POSIX threads (pthread) have been used due to the wide acceptance and availability. The shortcoming of
the POSIX threads for numerical linear algebra in terms of data distribution has been overcome by tuning algorithms so that a
particular thread will operate on a specific portion of the matrix. The paper studies tuned implementations of the conventional a
few parallel linear algebra method as examples on a generalized CMP model. For formulating a speed-up metric, this work takes
into consideration the power consumption and the effect of memory cache hierarchy.

1. Introduction. Chip multicore processor (CMP) architectures are designed with the aim to boost per-
formance by providing on-chip parallelism while reducing power consumption and heat output by integrating
two or more processor cores on to a single chip. Power has become the most critical constraint in the design of
many on-chip systems including the CMP systems. The analysis of both the software and hardware for overall
power consumption is needed for CMPs and similar on-chip systems. The main objective of the present study is
to introduce power as a parameter into a realistic speed-up metric for numerical linear algebra routines running
on CMPs.

For embedded devices the software can be made power-aware by analyzing the pipeline and the data flow
from the instruction set [32]. The estimation of power consumption is done using instruction level modeling
and considering base cost, effect of circuit state and effect of cache misses. The software then can be tuned to
consume less power based on this analysis. The basic idea behind the instruction level power models of a given
processor is to study the energy consumption rate [33]. The energy cost of a program is then simply the product
of its average power cost and its running time. These concepts can be applied to CMPs executing numerical
linear algebra routines.

CMPs use communication fabrics in the form of networks-on-chips (NoCs) that scale to handle the com-
munication demand among the cores [5, 24]. Thus a parallel computing model and speed-up metric for CMPs
must take into account the power consumed in on-chip communication as well as that in computation.

We review some of the existing results and concepts leading to the derivation of our speed-up metric. Some
duty cycle modulations are used in [4] to emulate performance asymmetry which is effective because of the
unpredictability of performance. Also, [4] shows that limitations in scalability arise due to differences in com-
putation power of the individual cores and not due to communication latencies. Thus load-balancing among the
on-chip threads is an unexplored aspect of power and heterogeneity aware parallel speed-up metrics for CMPs.
In [35] an experimental approach may be found for determining whether the differences in the implementation,
design and scheduling of threads would produce significant differences in performance. But a more general
approach will be to develop an analytical model that puts together parallel efficiency, granularity of parallelism,
voltage/frequency scaling and the power consumption in a CMP. Such a general analytical model is discussed in
[27] and the experimental work corroborating the model shows that the optimized parallel computing can bring
significant power savings and still meet a given performance target provided granularity and voltage/frequency
levels are chosen and combined judiciously. The particular choice, however, is dependent on the application’s
parallel efficiency curve and the process technology utilized. This analytical model does not take into consider-
ation the cache hierarchy, the cache hit-miss statistics and cache power consumptions. The hierarchical cache
traffic interacts with the spatial locality of data. In addition, static power consumption and leakage loss [12, 28]
during waiting for synchronization of threads also must be modeled in a power aware speed-up metric.

Available speed-up metrics do not consider any extra overhead due to any check-pointing or fault-tolerance
techniques adopted at the software or middleware level. For any application running for very long duration,
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the roll-backs and recovery of computation which in turn involves power, communication and memory traffic
overheads, becomes a necessary consideration.

In [23] recursive blocked algorithms are used to split the numerical linear algebra problems and thus the
technique mainly improves on the temporal locality. Most of the work in the recursive algorithm is performed
by efficient Basic Linear Algebra Subprograms (BLAS) library routines optimized for the calling application’s
host architecture. The approach uses OpenMP induced threads and produces the results for both uniprocessor
and symmetric multi processing (SMP) platforms. Algorithms for efficient scheduling and synchronizing of
threads on multiprogrammed SMPs have been developed in [3]. This work has modified the Linux kernel
(version 2.2.15) in order to implement the scheduler as a run-time library. In [18] higher level BLAS and
LAPACK-style [2] codes have been used for computing the pivoted Cholesky factorization routine for positive
semi-definite matrices. Data distribution among different threads on a CMP can be done using block cyclic data
distribution in the similar way as ScaLAPACK routines [10]. Work on new data structures for dense matrices and
LAPACK design for chip multicore processors can be found in [8, 17]. More on important multicore architecture
issues, programming models, algorithms requirements and software design for numerical library research and
development can be found in [20]. Polyhedral models of data dependence and program transformations were
considered in [6]. Multigrid applications can be found in [14].

The scalable implementation of BLAS and LAPACK [2] libraries on SMP systems [10] can be the basis for
the modification needed in these routines for efficiently running on the CMPs. In this paper, data manipulation
and computation for selected BLAS and LAPACK routines with POSIX threads [7] have been done with respect
to the latency in physical and logical access to the processing element on the chip. Some of the implementations
on a single chip multicore processor result in an SMP-like parallel computing. Further, the speed-up metrics
discussed in the present paper lead to tuning the algorithm and implementation for power and memory access
latency.

In its experimental part the present paper studies the performance of a few linear algebra subroutines on
a simple CMP using multithreading. The computationally studied numerical methods are Jacobi Iteration and
Cholesky factorization. The experiments compare the estimated actual speed-up against theoretical estimates
obtained by the speed-up metric considering interconnect delay based communication latency, hierarchical
cache miss rate and power (including leakage loss) consumed in communication, computation and waiting for
synchronization.

2. Speed-up Metric. The parameters that affect the performance of a program on a CMP are on-chip
interconnect delay, connection topology (e.g., hypercube, mesh) affecting switching and communication latency,
power leakage and power dissipation (including thermal dissipation) and cache access time (as affected by cache
hierarchy). Additionally, for a CMP densely packed with compute and other resources may experience transient
faults and consequent maintenance of redundancy, check-pointing and roll-back also affect the performance.

A measure of the effectiveness of the availability of multiple processing units on the chip is given by the
speed-up achieved over the same operation being done on a single processing unit [16]. The speed-up, S, is
defined as the ratio of sequential to parallel execution time.

S =
T1(ws)

TN(wp)
, (2.1)

where, ws is the sequential and wp is the parallel workload (instructions or computations). T1(ws) is the
sequential execution time or the amount of time needed to complete the workload ws on a single processor and
TN(wp) is the parallel execution time or the amount of time to complete the workload on N processors. For a
CMP system speed-up can be simply defined as the ratio of sequential execution time on a single core to the
execution time using multiple cores in parallel:

S =
T1(ws)

Tn(wp)
, (2.2)

where, ws is the sequential and wp is the parallel workload which is obtained as combining the sequential
workload at each node in the task graph and the overhead due to parallelization. We express wp = OF × ws

where OF is the overhead factor which is greater than or equal to 1 and Tn(wp) is the execution time or the
amount of time needed to complete the same operation on n cores. Within the parallel workload wp, let PF be
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the fraction of the workload that can actually be parallelized. Then, following [19, 21], the relationship between
frequency, average number of cycles per instruction and the execution time using n cores is given as

Tn(wp) = (1 − PF )wp

CPI1

f1
+

PF × wp

DOP

CPIn

fn

, (2.3)

where, CPI is the average number of cycles per instruction and f is the operating frequency. The subscripts
denote the number of cores for which the respective quantities are being considered. Here DOP is the average

degree of parallelism which is defined as the average number of cores that can be busy computing a workload
over CPIn

fn
units of time. The speed-up can be expressed as

S =
T1(ws)

Tn(wp)
=

ws
CPI1

f1

(1 − PF ) × wp ×
CPI1

f1

+
PF×wp

DOP
×

CPIn

fn

=

CPI1
f1

(1 − PF ) × OF ×
CPI1

f1

+ PF×OF
DOP

CPIn

fn

. (2.4)

The parallel efficiency [11] of an application running on N processors, ǫ(N), can be written as

ǫ(N) =
T1

NTN

. (2.5)

Parallel efficiency for any application running on a CMP with n cores, ǫ(n) can be written as

ǫ(n) =
T1(ws)

nTn(wp)
=

ws
CPI1

f1

n(1 − PF )wp
CPI1

f1

+ n
PF×wp

DOP
×

CPIn

fn

=

CPI1
f1

n(1 − PF ) × OF ×
CPI1

f1

+ nPF×OF
DOP

×
CPIn

fn

. (2.6)

2.1. Power Consumption Model. We make same assumptions as in [27] regarding homogeneity, avail-
ability, simultaneous activity of the cores on a generalized CMP. It is also assumed that cores that are not
being used are completely shut-down. Total power (Ptotal) consumption consists of three components: static
power (Pstatic) which is the component required for biasing the circuit elements, active power (Pactive) that
is consumed during computation and leakage power (Pleakage) which is independent of any activity. Leakage
power is consumed even if a core is not doing any computation. Considering all these components in a way
similar to the approach in [27], we can write

Ptotal = Pstatic + Pactive + Pleakage. (2.7)

The static power can be expressed in terms of the biasing current and supply voltage:

Pstatic = VsupplyIbias = VDDIstatic, (2.8)

where, VDD or Vsupply is the supply voltage and Ibias is the biasing current or static current (Istatic). The
leakage power dissipation varies with the CMOS process technology. For CMPs the leakage power is significant
due to the smaller feature size of the CMOS process used and and depends on the number of processing entities
(i. e., cores) on it. Also, as the CMOS process enters the sub-65 nm technology, the leakage component of
power increasingly becomes significant [22, 27]. The active power consumption includes both dynamic power
(Pdynamic) and short-circuit (Pshortcircuit) power. Active power is proportional to the instruction processing
activities. It may be written as

Pactive = Pdynamic + Pshortcircuit,

so that

Ptotal = Pstatic + Pdynamic + Pshortcircuit + Pleakage. (2.9)
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Leakage current has five basic components: the sub-threshold leakage current (Isub), the gated oxide leakage
current (Igate), the reverse biased PN junction current, the punch through current and the gate tunneling
current [9]. We analyze the total leakage power by considering only the gated oxide leakage current Igate and
the sub-threshold leakage (Isub) which are likely to be more significant. The sub-threshold leakage current (Isub)
is modeled as

Isub = I0e
Vgs−Vt−Voff

ndsvT

(

1 − e
−

Vds
vT

)

(2.10)

where I0 is the leakage current at 25◦C, Vt is the threshold voltage, Vgs is the gate to source voltage, Voff is an
empirically determined model parameter [30], Vds is the drain to source voltage and vT is the thermal voltage
obtained as kT

q
, q being the electron unit charge, T , the temperature in Kelvin and k, the Boltzmann constant.

The constant nds is experimentally determined for a particular technology. The dynamic power is computed as
in [26]: αCV 2

DDf , α being the activity factor, C a capacitative constant and f , the switching frequency (taken
same as the operating frequency) and VDD, the supply voltage. The short circuit power dissipation is expressed
as Pshortcircuit = 1

2IshortcircuitVDD [1], with Ishortcircuit as the short circuit current. The gate oxide leakage
current Igate can be expressed as a sum of the gate to source leakage current igs and the gate to drain leakage
current igd [25]. Thus, we can write,

Ptotal = IstaticVDD + αCV 2
DDf +

1

2
IshortcircuitVDD + VDD(Igate + Isub). (2.11)

We estimate

igs =
127.04× Leff × e(5.60625× V −10.6

gs ×T−2.5
ox )

2
, (2.12)

igd =
127.04× Leff × e(5.60625×V −10.6

gd
×T−2.5

ox )

2
(2.13)

following the commonly used gate-oxide leakage models [25] where Leff is the effective gate width in nanometers,
Tox is the effective gate oxide thickness in nanometers and V is the effective supply voltage for the number of
cores as designated in its subscript. The igs and igd are given in micro Ampere per micrometer of transistor
width. Considering the above model for a single core processor, the estimate for power dissipation can be
written as

P1 = IstaticV1 + αCV 2
1 f1 +

1

2
IshortcircuitV1 + V1(Igate + Isub). (2.14)

For a CMP with n cores the power equation can be written as

Pn = nIstaticVn + nαCV 2
n fn + n

1

2
IshortcircuitVn + nVn(Igate + Isub). (2.15)

For a multicore processor with n cores the power equation can be re-written in terms of voltage scaling:

Pn = nIstaticνV1 + nαCν2V 2
1 fn + n

1

2
IshortcircuitνV1 + nνV1(Igate + Isub), (2.16)

since Vn = νV1, the scaled voltage for n cores with respect to a single core. As seen from the above model for
CMPs the leakage power increases with increase of number of cores per chip. Hence apart from power actually
consumed during computation (i. e., dynamic power) the leakage power plays an important role in on-chip
parallel computing with a CMP.

From equation (2.14) we can write the frequency for a single core processor in terms of power being
consumed,

f1 =
P1 − V1(Istatic + 1

2Ishortcircuit + Igate + Isub)

αCV 2
1

(2.17)

=:
P1 − V1Ĩ

αCV 2
1

.
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From equation (2.15) we can derive the frequency for a CMP using n cores as,

fn =
Pn − nVn(Istatic + 1

2Ishortcircuit + Igate + Isub)

nαCV 2
n

(2.18)

=:
Pn − nVnĨ

nαCV 2
n

.

Also, f1

fn
= nν2 P1−V1 Ĩ

Pn−nνV1 Ĩ
. Putting the expression for the frequencies in equation (2.4) we can express power

aware speed-up as follows.

S =
1

(1 − PF ) × OF + nPF×OF
DOP

CPIn

CPI1
ν2 P1−V1Ĩ

Pn−nνV1 Ĩ

. (2.19)

We define ϑ := P1

V1 Ĩ
and ς = Pn

P1

. Then, the speed-up can be written as

S =
1

(1 − PF ) × OF + nPF×OF
DOP

CPIn

CPI1
ν2 ϑ−1

ϑς−nν

. (2.20)

Power aware parallel efficiency, ǫ(n), for a CMP using n cores can be similarly expressed plugging in the
expressions for frequencies in equation (2.6):

ǫ(n) =
1

n(1 − PF ) × OF + n2 PF×OF
DOP

CPIn

CPI1
ν2 P1−V1Ĩ

Pn−nνV1Ĩ

. (2.21)

The power optimization (Popt) can be expressed in terms of the energy consumption

Popt :=
Energy consumed in serial code execution

Energy consumed in parallel code execution
(2.22)

So, the term Power optimization can be defined as follows.

P1 := Total execution time for serial code × (Static Power + Leakage Power)

+System time for serial code × Dynamic Power

Pn := Total execution time for parallel code × (Static Power + Leakage Power)

+System time for parallel code × Dynamic Power for all n cores

Popt =
P1

Pn

(2.23)

When one thread is waiting for another thread to complete some computation, the static, leakage power and
the short-circuit power will be consumed even though very little dynamic power is being consumed. In order to
optimize a parallel implementation with respect to power consumption it is necessary to design the numerical
algorithms in such a way that threads wait for each other a minimum at the barriers. For this the computational
load among different cores must be balanced with respect to localization of the threads and the barrier calls.

2.2. Cache Hierarchy Effects. For cache miss, there is associated penalty in terms of loss of parallel
efficiency. If cache is hit, let th be the time taken for fetching the data from the cache. For a cache miss, let the
time taken be tm where tm ≫ th. If for any algorithm p is the fraction of computation that has scored a cache
hit, then time taken, tcache, in cache operation for fetching the data can be written as tcache = pth + (1− p)tm.
Then cache penalty Cp can be expressed as

Cp =
tcache

th
=

tm
th

+ p

(

1 −
tm
th

)

, (2.24)

where if th is in the order of nanoseconds, then tm is in the order of microseconds, as during cache miss data
must be fetched from memory and memory access is a relatively slower process. Actual cache operation time is
expressed as,

tcache = Cpth. (2.25)
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Depending on cache hierarchy, th and p may vary. Time taken on a hit at the cache at core level is less than
the time taken on a hit at cache per chip region each covering a group of cores, which in turn will be less than
the time taken on a hit at the CMP’s global cache. Let time taken for a cache hit from cache at core level be
th.core, time taken for a cache hit at a cache for a group of cores be th.zone, and time taken for a cache hit at the
global cache for the CMP be th.chip . Generally it would be realistic to assume that th.core ≤ th.zone ≤ th.chip.
For a particular application, let there be cache hit at cache per core level p1 fraction of times, cache hit at the
group of cores level be p2 fraction of times and the cache hit at the CMP’s global cache be p3 fraction of times.
Then time taken for cache hit may be expressed as

th = p1th.core + p2th.zone + p3th.chip, (2.26)

where, p = p1 + p2 + p3. The speed-up, S, may be modified and written as

S =
1

Cpth
f1

ws×CPI1
+ (1 − PF ) × OF + PF×OF

DOP
CPIn

CPI1

f1

fn

, (2.27)

in which frequency expressions from equations (2.18) and (2.19) may be substituted.

Depending on the architecture one has to modify the conventional algorithms to reduce the cache miss rate.
So, for any application running on multicore processor, the algorithm should be designed in such a fashion that
the amount of data handled or processed by a particular core is optimized, i. e., data driven parallelism is a
better option.

2.3. Communication Overheads. The communication overhead including interconnect propagation and
switching latency, tc may be considered and the speed-up in equation (2.27) is re-formulated as

Sp =
1

(Cpth + tc)
f1

ws×CPI1
+ (1 − PF ) × OF + PF×OF

DOP
CPIn

CPI1

f1

fn

=
1

(Cpth + tc)
f1

ws×CPI1
+ (1 − PF ) × OF + PF×OF

DOP
CPIn

CPI1
nν2 ϑ−1

ϑς−nν

(2.28)

giving the power-aware speed-up considering computation, communication and cache hierarchy.

3. Numerical Linear Algebra Routines. The most widely used tools for scientific computing are the
Basic Linear Algebra Subprograms (BLAS) and the LAPACK libraries [2, 15]. In addition to tuning the individ-
ual numerical linear algebra routine’s serial algorithm to a single core’s architecture, for a CMP, considerations
for the overall tuning of the multithreaded parallel numerical linear algebra operation to the on-chip commu-
nication, cache and power architecture are essential. The present paper uses POSIX threads to implement
ScaLAPACK [10] algorithms for observing the intended power-aware speed-up. For tuning purposes, data ma-
nipulation and computation are done according to physical and logical access of a single processing element
(core) or a group of cores on the chip.

3.1. Jacobi Iterative Solver. For a real system of equations, Ax = b, the Jacobi iteration is a method
of simultaneous corrections, as no component of an approximation x(m) is used until all the components of x(m)

have been computed. The method replaces mth iterate x(m) by x(m+1) at once, before the beginning of next
cycle. The algorithm may be written as x(m+1) = b + (I − A)x(m). In the thread parallel version of the Jacobi
iterative solver, the workload is distributed over all the threads across the rows. Every thread is operates on a
block of adjacent rows to get the facility of spatial locality of reference of data. The data-distribution is shown
in Figure 3.1. Matrices with Ai,j = N/(i + j + 1), N being the matrix column dimension and all diagonal
elements set at 10000 is used for computational experiments. The right hand side, bi = i and initial guess
x0

i = 4.0i have been used.

3.2. Cholesky Factorization. Symmetric positive definite real square matrix A has Cholesky factoriza-
tion A = LLT , L being the lower triangular matrix with positive diagonal entries. The linear system can be
then solved by forward substitution in lower triangular system Ly = b, followed by the back substitution in
upper triangular system LT x = y.
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Fig. 3.1. Threaded Parallel Jacobi Iterative Solver

3.2.1. Threaded Parallel Algorithm. In the threaded parallel version of the Cholesky factorization the
two basic operations, division (cdiv) and modifications (cmod), are parallelized. These two basic operations
are based on the thread identity so that each thread will operate on some entries within a range of the matrix
indices in a synchronized way. To achieve such synchronization blocking calls and thread schedulers available
on POSIX thread library are used. We have used Round-Robin scheduling (SCHED RR) for the threads setting
minimum priority by using sched get priority min(). Also, for Solaris®based systems the concurrencies can
be set using thr setconcurrency(). The threads were spawned using pthread create() and thread create()
for Linux based and Solaris®based systems respectively. For synchronizing among threads pthread create()
(thread join() for Sun Solaris®systems) was used. Scheduling parameters like the priority variable has been
set by adding minimum priority and index to minimize thread waiting. By using pthread setschedparam()
and pthread getschedparam() scheduling parameters, the Round-Robin Scheduling was configured. Data dis-
tribution has been done on the outer most loop in the block cyclic distributed sub-matrix format of Cholesky
factorization. Each thread operates with in a range (like kstart to kend) which depend on the thread identity
or index. The range is proportional to the ratio of number of elements per row by the number of threads being
spawned. With this, an attempt is made to keep computational load per thread almost equidistributed so that
there is little skew in finishing time of the threads at a barrier. This in turn helps in meeting leakage power
dissipation goals via synchronization objectives. The test cases used are symmetric positive definite matrices
from [31] in dense format and the table 3.1 gives the list of test matrices used for computation. The schedulers
add to the parallel overhead a little more (2-5 per cent) but avoids fine grained parallelization of the division
(cdiv) and modifications (cmod) individually. The reduced granularity of parallelization improves the fraction
to be parallelized.

4. Experiments and Results. In the speed-up equation (2.28), the voltage scaling ν and power scaling
ς are determined from the various throttle settings attained by the particular CMP design. We take activity
factor α = 1 and estimate ϑ, which depends on the architecture and CMOS process of the CMP, with the
following tools. Using Cacti [34] we have estimated cache access power characteristic using the cache size,
number of banks, (set)-associativity and size of blocks as input. But to obtain leakage power characteristics
we have used eCACTI [29] setting the parameters for applicable CMOS (90 nanometer in our experiments)
technology parameter along with all the inputs required in Cacti. For the leakage power estimates we have used
parameters of the cache hierarchy model of the host CMP in a generalized simplified framework as shown in
figure 4.1. By using g-cache-trace modules the cache-statistics was obtained. The g-cache-trace modules
also trace the operating system’s cache statistics along with the code execution statistics. About 2 to 5 per cent
better cache hit statistics in case of parallel code execution as compared to serial code execution was observed for
the matrix computation routines experimented with. The simulator LUNA [12, 13] is used to obtain high level
power and delay analysis for a generalized one-to-one link topology among the individual cores. The simulation
using LUNA are done while accepting its limitation that the network representation, bandwidth for each link
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Table 3.1

Example Matrices from [31]

Matrix Name Dimension and Non-
Zero Entries

Functionality

BCSSTK01 48 × 48, 224 BCS Structural Engineering Matrices : Small test
problem

BCSSTK02 66 × 66, 2211 BCS Structural Engineering Matrices : Oil rig - stat-
ically condensed

BCSSTK03 112 × 112, 376 BCS Structural Engineering Matrices : Small test
structure

BCSSTK04 132 × 132, 1890 BCS Structural Engineering Matrices : Oil rig—not
condensed

BCSSTK05 153 × 153, 1288 BCS Structural Engineering Matrices : Transmission
tower

BCSSTK06 420 × 420, 4140 BCS Structural Engineering Matrices : Medium test
problem

BCSSTK08 1074 × 1074, 7017 BCS Structural Engineering Matrices : TV studio
BCSSTK09 1083 × 1083, 9760 BCS Structural Engineering Matrices : Square plate

clamped
BCSSTK11 1473 × 1473, 17857 BCS Structural Engineering Matrices : Ore car—

lumped mass
BCSSTK13 2003 × 2003, 42943 BCS Structural Engineering Matrices : Fluid flow

Fig. 4.1. Cache hierarchy for a typical multicore system
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Fig. 4.2. Speed-up for 4 threads for the Jacobi iterative solver

and detailed data flow path may be very different in the actual CMP. Also, every application may not follow
the same data flow path on the CMP every time. Thus LUNA gives only an idealized and statistically expected
power behavior for the communication fabric.

4.1. Jacobi Iterative Solver. The speed-up increases nearly in linear fashion as the matrix size increases.
In the parallel algorithm the amount of computation to be done in a single iteration has been distributed among
different threads in such a manner so that all the threads are as much as possible equally loaded. There are some
asymmetries in core performance in a CMP environment. But for our analysis leading to (2.28) we have neglected
the performance asymmetry and take into account the delay due to blocking calls in our implementation of the
multithreaded Jacobi iteration. These characteristics also implies that due to the unmodeled (in theoretical
speed-up) overhead of parallelization in thread creation and blocking functions the actual speed-up is much less
than the theoretical speed-up. The unmodeled overhead in thread-creation and blocking calls become relatively
insignificant. The actual speed-up then approaches the theoretical speed-up for larger size of the matrix. The
speed-up for one thread is less than 1 compared to the single process due to the thread overheads.

The actual execution time based speed-up for large matrices tends to follow the theoretical speed-up pattern
for this example. The figure 4.2 shows the speed-up for 4 threads on a SUN Microsystem system based on a
dual-core AMD Opteron®Model 2218 2.6GHz 90 nanometer SOI CMOS process CMP for the Jacobi iterative
solver. The speed-up reaches more than 3 for square matrix with column dimension size greater than 600 using
4 threads.

The difference between the actual speed-up and theoretical speed-up is mostly due to synchronization
overhead for different threads at the barrier calls and this overhead increases with the number of barrier calls
as two threads are now localized on each core against the optimal situation of one per core. The theoretically
unaccounted for skew due to the cores being busy with kernel threads also contribute to the shortfall with
respect to the theoretical speed-up given by (2.28). However, we still get a good overall agreement with the
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theoretical model for this BLAS level 2 rich algorithm. The active component of power is directly related to
the time for which the cores are busy while the static and leakage components are proportional to the total
execution time.

4.2. Cholesky Factorization. The speed-up of threaded parallel Cholesky factorization in total execution
time for 2 and 4 threads on a SUN system with dual AMD Opteron®dual-core Model 2218 2.6GHz 90 nanometer
SOI CMOS process CMPs is studied in this section. One thread was localized per core. The data distribution
was a equal sized row block partitioning among the threads. For Cholesky factorization the speed-up does not
change much for input matrix sizes beyond the square matrix dimension of 1083. For the actual speed-up a
similar slope in the speed-up curve to that of the theoretical curve as per equation (2.28) is observed. The
speed-up curve both in theory and in our experiments may be seen to have a steep slope for square matrix
with column dimensions between 70 and 450, and are more or less in agreement in terms of the expected
profile of the experimental data. For matrices of size smaller than 70 × 70 the overhead due to parallelization
and synchronization is relatively significant and makes multithreading not useful. For matrices larger than
1083 × 1083 cache misses play a more important role in affecting the actual speed-up. Thus a drop in actual
speed-up is expected. The theoretical speed-up was derived assuming an infinite availability of cache and bus
which obviously does not hold good for beyond a certain data size since the resources on a single chip multicore
processor is finite and fixed unlike a multi-processor system where availability of resources can be more flexible.
The simple cache hit-miss model becomes inadequate beyond this point of saturation and the actual speed-up
falls far short of the theoretical speed-up. The figure 4.3 shows the speed-up of threaded Cholesky factorization
for 2 and 4 threads on the same SUN Microsystems machine based on dual dual-core AMD Opteron®CMPs.
The theoretical speed-up increases as the matrix size increases and reaches close to 1.9 and 3.7 for 2 and 4
threads respectively. We note that this is a BLAS level 3 rich algorithm unlike the Jacobi iterative solver and
hence the saturation point for the multi-threaded algorithm is reached faster. For large number of threads we
observe that the power characteristic is not greatly sensitive to the number of threads. This makes threaded
Cholesky Factorization on a CMP an algorithm relatively less sensitive to power aware optimizations.

4.3. Remarks. All the power characteristics are based on the estimates made on the processor models
with only public domain manufacturer data using eCACTI and Cacti. This is plugged into the theoretical speed-
up and compared with the actual system time and total time lapsed for running the codes. Jacobi iterative
solver is easier to tweak for optimal speed-up due to the fact that in each iteration all the values needed are
already being computed in the last iteration. This gives a possibility of getting Θ(n) speed-up where n is the
number of cores for a single user system executing only this parallel program. Thread-scheduling do not play a
significant role in tuning this solver. For Cholesky factorization, data-parallel model involves a lot more complex
constraints. Thread-scheduling plays a significant role in reducing the use of blocking calls and in turn, static
and leakage power dissipation related slow-down. Thread-scheduling, as before, plays a significant role. The
blocking calls, however, cannot be avoided and is necessary to maintain the data-consistency. This in turn
decreases the speed-up. The amount of blocking increases the static power consumption and the leakage loss.
The data-parallel model induces a relatively higher cache hit rate which helps in getting better performance with
lower power consumption. For Cholesky Decomposition, tuning based on simplistic cache and communication
model makes it difficult to get the predicted speed-up for larger matrices.

5. Conclusions. The threaded parallel numerical linear algebra routines is a natural approach to tuning
the BLAS and LAPACK/ScaLAPACK routines to a CMP. Power, on-chip cache traffic and on-chip interconnect
behavior play a crucial role in getting the speed-up which is desired to be close to the order of the number
of threads. Due to the umodeled overheads in thread creation and synchronization, we do not get significant
speed-up for smaller matrices. Again for very large problems, cache memory related latencies come into the
picture and affects speed-up. A possibility is that a CMP with a large number of cores can be utilized to
reduce the cache-misses by understanding the order of data access in the matrix computation. Algorithmic
level optimization of the power may be possible by reducing the static and leakage dominated phases of the
implementation. By utilizing the cache-hierarchy to the maximum possible extent the overall waiting time can
be reduced and consequently the overall execution time as lower power is dissipated. Efficient thread schedulers
must be embedded into the tuned implementations to utilize the cores as symmetrically as possible.

As general CMPs with large number of cores and switched on-chip communication fabric become available,
it would be possible to observe the power aspects of the speed-up metric in greater detail.
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Fig. 4.3. Speed-up for different thread numbers for the Cholesky factorization. It may be noted that our theoretical speed-up
computation is in good agreement with the experimental data for dense matrix size of up to 450. For larger matrices the system
becomes saturated and page faults and cache thrashing dominate. The theoretical model is based on the implicit assumption that
infinite cache is available. Hence the disagreement beyond a certain matrix size. Unlike a multi-chip multi-processor system,
a chip multicore processor displays this limitation more sharply. Also, for very small matrices the thread overheads dominate
and both theoretical and actual speed-ups are less than 1 indicating that below a certain data size and work load it is not worth
multithreading.
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