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Abstract Statistical power calculations constitute an

essential first step in the planning of scientific studies. If

sufficient summary statistics are available, power calcula-

tions are in principle straightforward and computationally

light. In designs, which comprise distinct groups (e.g., MZ

& DZ twins), sufficient statistics can be calculated within

each group, and analyzed in a multi-group model. How-

ever, when the number of possible groups is prohibitively

large (say, in the hundreds), power calculations on the basis

of the summary statistics become impractical. In that case,

researchers may resort to Monte Carlo based power studies,

which involve the simulation of hundreds or thousands of

replicate samples for each specified set of population

parameters. Here we present exact data simulation as a

third method of power calculation. Exact data simulation

involves a transformation of raw data so that the data fit the

hypothesized model exactly. As in power calculation with

summary statistics, exact data simulation is computation-

ally light, while the number of groups in the analysis has

little bearing on the practicality of the method. The method

is applied to three genetic designs for illustrative purposes.

Keywords Simulation � Power

Introduction

The importance of statistical power in (behavior) genetic

analyses is evident in the number of articles devoted to

power calculations. Power has been studied in virtually all

research designs, ranging from the classical twin design

(Martin et al. 1978; Neale et al. 1994), to extended family

designs (e.g., Heath et al. 1985; Heath and Eaves 1985;

Posthuma and Boomsma 2000), to sibpair and family

linkage and association designs, either in- or excluding

gene by environment interaction (Abecasis et al. 2000a, b;

Boomsma and Dolan 1998; Dolan et al. 1999; Fulker and

Cherny 1996; Purcell 2002; Purcell and Sham 2002; Sham

et al. 2000; Sham and Hewitt 1999; Sham et al. 2002; Van

den Oord 1999). For a wide range of genetic designs, the

Genetic Power Calculator1 (Purcell et al. 2003) can be used

to calculate power. However, for customized designs and

specific research questions, researchers may have to resort

to their own procedure to carry out power calculations.

Power calculation based on the likelihood with the

general Pearson–Nyman statistical decision theory takes

two forms. First, the non-centrality parameter k of the non-

null v2-distribution can be calculated in the analysis of

exact sufficient statistics (e.g., Dolan et al. 1999). If the

distribution of the data is multivariate normal, the expected

variance covariance matrix R and the means vector l are

sufficient statistics, as they define the likelihood of the data
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up to an arbitrary constant (Azzelini 1996). Second, when

R and l are not sufficient statistics, the non-centrality

parameter k of the non-null v2-distribution can be esti-

mated on the basis of the analysis of simulated data using

Monte Carlo simulation methods (e.g., Fulker and Cherny

1996; Abecasis et al. 2002a, b; Purcell 2002; van den Oord

1999). The latter is computationally intensive, but does not

require the presence of sufficient summary statistics,

whereas the former is computationally light, but does

require sufficient summary statistics.

The aim of the present note is to discuss a third method of

power calculation, which we refer to as exact data simula-

tion. This method is suitable when data are multivariate

normal, and sufficient summary statistics are in principle

available, but the number of possible groups is prohibitively

large (say, in the hundreds). The large number of distinct

groups renders power calculations on the basis of the sum-

mary statistics impractical. Usually, researchers resort to

Monte Carlo based power studies under such circumstances.

However, exact data simulation, in combination with the

definition variable facilities in packages like Mplus (fourth

edition, Muthén and Muthén 1998–1997) or the freely

available Mx program2 (Neale et al. 2003), is also applicable,

and is more efficient than raw data simulation. Exact data

simulation was used by Dolan et al. (2005) to evaluate the

effects of missing data on the power in structural equation

modeling, and by Van der Sluis et al. (Under revision) to

evaluate the power to detect gene by environment interaction

in sib-pair association studies. Although the technique of

exact simulation is in itself not new (Bollen and Stine pro-

vided the basics in 1993, and the technique of exact data

simulation has recently been integrated as a distinct function

in the freely available R-program3), we wish to bring it to the

attention of geneticists since this method of calculating

power has general value in the field of genetic modeling.

Below, we shortly recapitulate the basics of power analysis,

and then outline the procedure of exact simulation, which

may be implemented readily (we use the freely available R

program). The method is illustrated in three genetic designs.

Although we confine ourselves in this paper to illustrations in

the context of genetic designs, we stress that this form of

simulation can be used for power calculations in a wide range

of other designs such as random effects models, growth

curve and simplex models, and structural models.

Power calculation

The concept of power is closely related to the two types of

statistical errors: the Type I error (i.e., the probability of

rejecting a true hypothesis, a), and the Type II error (i.e.,

the probability of accepting a false hypothesis, b). Power is

defined as 1 - b, i.e., the probability of rejecting a false

hypothesis, or the probability of not making a Type II error.

The basic aim of a power study is to determine the sample

size N, which is required to achieve adequate power, given

chosen a and a particular effect size.

For example, suppose that we want to fit a classical

univariate ACE twin-model (see Fig. 1), and we expect

that additive genetic effects (a) account for 40% of the

phenotypic variance, besides effects of shared (c) and

unique (e) environment. We denote this model 1, or

hypothesis 1, H1. Under model 1, four parameters are

estimated: the path coefficient for the additive genetic

effects A (a), the path coefficient for the shared environ-

ment C (c), the path coefficient for the unique environment

E (e, which includes measurement error), and the means of

the twins (l), which are usually set to be equal within twin

pairs and across MZ and DZ twins. The parameter vector h
for this model with df1 degrees of freedom, is h1 = {a, c,

e, l}, from which the covariance matrices R1mz and R1dz

and mean vector l1 can be derived. Now consider a second

model, which we denote model 0, or H0, in which the

additive genetic effects are assumed to account for only 5%

of the phenotypic variance. This alternative model will be

characterized by parameter vector h0 = {c, e, l}. Note that

in model 0, parameter a is not estimated (and thus not part

of h) but fixed at a value that corresponds exactly to 5% of

the phenotypic variation being explained by additive

genetic effects. This model has df0 degrees of freedom,

covariance matrices R0mz & R0dz, and mean vector l0. This

alternative model H0 is nested in the null-model H1,

because the parameters in h0 represent a subset of the

parameters in h1 (e.g., Bollen 1989; Satorra and Saris

1985). The study of power is subsequently concerned with

the probability of rejecting the false model H0 in favor of

the true model H1, given a, the true value of parameter a

(the effect size), and sample size N.

To calculate power, we adopt the method of Satorra and

Saris (1985, see also Saris and Satorra 1993), which is

Fig. 1 Classical univariate ACE-twin model

2 http://www.vcu.edu/mx/
3 http://www.r-project.org/
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based on the normal theory log-likelihood ratio test statistic

T. In a single group, T is calculated as follows:

T ¼N � ½log jRj þ traceðR�1SÞ � log jSj � p

þ ðm� lÞ0R�1ðm� lÞ�;
ð1Þ

where N is the sample size, p denotes the number of variables

in the analysis, and R and l, and S and m represent the

theoretical and observed variance covariance matrix and the

means vector, respectively. Given that the assumptions of

normal theory maximum likelihood are met (e.g., multivar-

iate normality, and a large sample of independently and

identically distributed cases), and under the assumption that

R and l represent the true model (R1 and l1), the test statistic

T follows a v2 distribution with df1 degrees of freedom, i.e.,

T * v2(df1) (Azzeline 1996; Bollen 1989). If R and l do not

represent the true model but the alternative model (R0 and

l0), and given regularity conditions are satisfied (practically

amounting to multivariate normality, limited misfit and large

sample size N), the test statistic T follows a non-central v2

distribution with df0 degrees of freedom and non-centrality

parameter k, i.e., T * v2(df0, k), where k[ 0.

Given the significance level of the test a, and the dif-

ference in degrees of freedom between the true model and

the alternative model, df1 - df0, the criterion level ca can

be obtained from a v2 table. If the test statistic T exceeds

this criterion level, i.e., T [ ca, then the alternative model

is rejected in favor of the true model (i.e., the fit of the

alternative model to the data is significantly worse than the

fit of the true model). The aim of power studies is to

determine the probability of observing T [ ca, i.e.,

P(v2(df0, k) [ ca), given R0, l0, R1, l1, N, and a, i.e., the

probability of rejecting the alternative model in favor of

the true model.

The non-centrality parameter k can be obtained by fit-

ting the alternative model to the true R1 and l1, whereby k
equals the difference in the v2 fit statistic of the model H1

and the v2 fit statistic of the alternative model H0. That is

(again in a single group),

k ¼N � ½log jRAj þ trace ðR�1
A R0Þ � log jR0j � p

þ ðl0 � lAÞ
0R�1

A ðl0 � lAÞ;
ð2Þ

and the non-null distribution of this test statistic is

v2(df1 - df0,k). A variety of programs can subsequently be

used to integrate the non-null distribution to obtain the

power (e.g., R, Mx; see also Hewitt and Heath 1988). Note

that some packages, such as the Mx program, also compute

the total sample size that would be required (given the

reported proportion of subjects in each group) to reject the

hypothesis at various power levels.

As stated in the introduction, power calculations usually

take on one of two forms. First, one may be in the position

that all information present in the raw data can be sum-

marized in the covariance matrix R and the means vector l,

in which case R and l are sufficient statistics, because they

define the likelihood of the data up to an arbitrary constant

(Azzelini 1996). In that case, one can derive the expected

population statistics R and l for every group in the study

design under H1 and H0, and base the power calculations

on these summary statistics.

The second method of power calculation is applied when

sufficient summary statistics are not available. For example,

the population statistics R and l do not summarize all

information present in the raw data when the continuous

data are a mixture (i.e., a convex combination of different

distributions; McLachlan and Peel 2002), or when data are

missing at random (MAR; Shafer and Graham 2002). In

family studies, gene by environment interaction may render

the summary statistics insufficient. For instance, Purcell

(2002) showed how environmental moderation on the

means and variances can be modeled (see Fig. 2). For both

MZ and DZ twins, the variance of twin i is calculated as:

Var ðtiÞ ¼ ðaþ ba � modtiÞ2 þ ðcþ bc �modtiÞ2

þ ðeþ be �modtiÞ2 ð3Þ

while the for MZ twins, covariance between twin i and

twin j is calculated as:

CovarMZðti; tjÞ ¼ ðaþ ba �modtiÞðaþ ba �modtjÞ
þ ðcþ bc �modtiÞðcþ bc �modtjÞ

ð4Þ

and for DZ twins as:

CovarDZðti; tjÞ ¼ 1=2ðaþ ba �modtiÞðaþ ba �modtjÞ
þ ðcþ bc �modtiÞðcþ ba �modtjÞ ð5Þ

The expected values of means for all twins are calculated

as:

l ¼ mþ bm �modti mþ bm �modtj½ �: ð6Þ

If the environmental moderator is categorical or ordinal

(e.g., gender or affection status), the sufficient statistics

Fig. 2 Univariate ACE-twin model including moderation on the

variances and the means
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(R and l) are available, assuming that the data are normally

distributed conditional on the levels of the moderator. In

that instance, the twins in a pair may be concordant with

respect to the moderator (i.e., both twins score 0, or both

twins score 1), or the twins may be discordant with respect

to the moderator (i.e., scoring 0 and 1, respectively). For

both MZ and DZ twins, R and l can be formulated for all

possible combinations, such that all information present in

the raw data is summarized with 6 different variance

covariance matrixes R (3 for the MZ twins, and 3 for the

DZ twins) and 3 different means vectors l (assuming no

relation between zygosity and mean), as such distinguish-

ing 6 different groups. By comparing the fit of the model

including moderator effects on both the means and the

variances, to a model in which the moderator only affects

the means (say), one can obtain an estimate of non-cen-

trality parameter k, from which the power to detect the

effect of the moderator can be derived.

However, if the moderator is continuously distributed,

sufficient statistics cannot be calculated. In the absence of

sufficient statistics, power calculation may be conducted by

means of Monte Carlo simulation. This design implies

determination of the values of the parameters of interest

(e.g., based on previous studies or corresponding to realistic

effect sizes), and subsequent (quasi-) random data genera-

tion according to the true model H1, with realistic sample

size N. By fitting the false model H0 to the data simulated

according to the true model H1, an indication of the power is

obtained. However, in contrast to the situation in which

sufficient summary statistics are available, parameter values

are not recovered exactly when the H1 model is fitted, as the

random data are the outcome of a stochastic sample process.

Therefore, the difference in the v2 statistic of the model H0

and the model H1 cannot be taken as an exact estimate of the

non-centrality parameter k. To solve this, a large number of

datasets are usually generated, and k is estimated as the

mean of the difference in v2 obtained in these data sets

minus the number of degrees of freedom (df1 - df0). Since

power studies often concern multiple parameters with

multiple values, such Monte Carlo simulation studies can be

prohibitively intensive. As an alternative, simulated sample

sizes may be chosen very large to induce asymptotic

behavior of the v2 statistic. However, how large a sample

size should be chosen depends on the study design in

question, and very large sample sizes also render the anal-

yses computationally intensive.

Exact data simulation

Power calculations based on sufficient summary statistics are

computationally relatively efficient to carry out. However,

the actual feasibility of this type of power calculation depends

on the number of distinct groups. If the number of groups is

large (i.e., [100), it may be more convenient to carry out

Monte Carlo based power calculations. We now introduce the

concept of exact data simulation, which shares the virtues of

the power studies based on summary statistics, but is more

practicable given a large number of distinct groups.

The idea of exact data simulation is that data, which are

randomly generated to begin with, can subsequently be

transformed to fit the null-model H0 exactly. That is, first a

data file is generated using a normal distribution quasi-

random number generator. These data are then trans-

formed, using a transformation proposed by Bollen and

Stine (1993), so that the variance covariance matrix and

means are exactly as specified under the model H0.

Assume a total sample size of N, and k distinct groups

with known probability pk. Let Y denote the Nk 9 q data

matrix for group k, where Nk is N*pk (possibly rounded to

the nearest integer) and q is the number of variables. Let m

denote the q 9 1 vector of observed means and S = YtY/

(N - 1)-mmt be the observed covariance matrix, R the

expected covariance matrix implied by model H1, and l the

expected means vector implied by the model H1. Let S1/2

and R1/2 then denote the square root factorization of the

positive definite matrices S and R such as given by a

Cholesky factorization. It can then be shown that the

covariance matrix and mean vector of data matrix Z, which

is obtained through the following transformation of Y

Z ¼ ðY� J � mtÞS�1=2R1=2 þ J� lt ð7Þ

equals R and l, exactly (Bollen and Stine 1993). In Eq. 7, J

is a unit vector of length q, and � denotes the Kronecker

product. This transformation allows one to create raw data

for numerous groups that fit the null-model exactly. Con-

sequently, when the null-model used for the generation of

the data is fitted to these transformed data, all parameter

values used for the simulation are recovered exactly. Let

Log L0 and Log LA denote the maximum values of log-

likelihood functions. The difference 2Log LA - 2Log L0

equals the non-centrality parameter k.

Compared to multi-group power calculation with sum-

mary statistics, which becomes unpractical when the

number of groups is large, the practicality of exact data

simulation is unaffected by the number of groups in the

analysis. However, one issue does require attention. When

the number of groups is large (e.g., 256, see Illustration 1

below), the probability pk that a subject belongs to a group

k may be relatively small. In order to calculate the

Cholesky decomposition of the observed variance covari-

ance matrix S, the number of observations in a group Nk

should equal at least q + 1 (i.e., to ensure that S is positive

definite and the Cholesky decomposition is possible).

There are two ways to handle this problem. First, one can

choose N to be sufficiently large that all groups, even those

Behav Genet (2008) 38:202–211 205
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with small probabilities, by choosing a very large overall

sample size N for the simulation. Power analyses based on

this very large sample size produce non-centrality param-

eters which can subsequently be used to calculate power

for other, more realistic sample sizes. Second, one can

choose a smaller overall sample size, and accept that not all

possible groups will be represented in the power calcula-

tions. This choice is usually justified since very small

groups (e.g., including 2 subjects out of a possible 10,000)

do not contribute much to the power. However, power

calculations are more precise when all groups are repre-

sented in the simulation, i.e., overall N is large.

Furthermore, it is in principle possible that the presence of

all groups is required for model identification.

Note that packages like Mx and R will estimate the

number of data vectors required for a power of e.g. 80%,

given the proportion of subjects in each group. So while

Nk C q + 1 is required for exact simulation, Mx will

return an overall sample size N, in which many groups may

represented by fewer than q + 1 observations, which is in

line with what one would expect to observe in research

practice. Using the exact data simulation script subse-

quently to simulate data with the sample size advertised by

Mx would not result in a power of 80% since the groups

with Nk \ q observations are not represented in the simu-

lated data and thus do not contribute to the power.

Having discussed the concept of power, and the exact

data simulation procedure, we will now illustrate the vir-

tues of exact data simulation with three behavior genetics

examples. We chose Mx to analyze the simulated data

because of the program’s inbuilt option to calculate the

sample size required for different power levels given the

non-centrality parameter. However, the non-centrality

parameter can also be obtained through other software

(e.g., LISREL, Mplus). The calculation of sample sizes

required for different power levels can then be done using

other programs like R. The R-scripts used to simulate the

data, and the Mx scripts used to analyze the data are

available in the Mx scripts library.4 A small R-script for

power computations based on non-centrality parameters

can be downloaded from the library as well.

Illustration 1: multivariate ACE-model with data

MCAR

Let us consider a four-variate ACE-model with data

obtained from MZ and DZ twins (no additional family

members). We assume a model with one common genetic

factor, one common shared environmental factor, and

specifics for A, C and E for all four traits. The model is

illustrated in Fig. 3. Parameter values are chosen such that

additive genetic influences, shared environmental influ-

ences, and non-shared environmental influences explain

50%, 30% and 20% of the total variance, respectively. Of

the additive genetic variance, 60% is attributable to the

common genetic factor (i.e., 30% of the total variance), and

40% to the specifics of A (i.e., 20% of the total variance).

Of the shared environmental variance, 50% is attributable

to the common shared environmental factor (i.e., 15% of

the total variance), and 50% to the specifics of C (i.e., 15%

of the total variance). Table 1 contains the correlation

matrices for the MZ and DZ twins in the case that data are

not missing. Means for all traits are equal to zero. We

consider the power to reject the alternative hypothesis that

the genetic specifics for all four traits explain not 20% but

Table 1 Illustration 1: Four-

variate cross-trait-cross-twin

MZ correlations (below

diagonal) and DZ correlation

(above diagonal) for data

without missingness

Note: Sample size N is not

reported; as the simulations are

exact, this correlation matrix

should result independent of the

sample size chosen for the

simulations when data are not

missing

Twin 1 Twin 2

Trait1 Trait2 Trait3 Trait4 Trait1 Trait2 Trait3 Trait4

Twin 1 Trait1 1.00 .45 .45 .45 .55 .30 .30 .30

Trait2 .45 1.00 .45 .45 .30 .55 .30 .30

Trait3 .45 .45 1.00 .45 .30 .30 .55 .30

Trait4 .45 .45 .45 1.00 .30 .30 .30 .55

Twin 2 Trait1 .80 .45 .45 .45 1.00 .45 .45 .45

Trait2 .45 .80 .45 .45 .45 1.00 .45 .45

Trait3 .45 .45 .80 .45 .45 .45 1.00 .45

Trait4 .45 .45 .45 .80 .45 .45 .45 1.00

4 http://www.psy.vu.nl/mxbib/

5 Note that typically, one will want to know whether the specifics can

be discarded from the model altogether, i.e., whether the values of the

specifics deviate significantly from zero. However, fixing variance

parameters to zero, i.e., on the boundary of the parameter space,

causes the null distribution of the test statistic T to follow a mixture of

central v2 distributions, rather than the usual central v2(df) distribu-

tion (see e.g., Carey 2005; Dominicus et al. 2006). In determining the

critical value given the choice of a, one would then have to refer to

this mixture distribution, rather than to the central v2(df). To keep

things simple, we therefore chose to fix the variance parameter not to

zero, but to a value much smaller than the actual value. If this value is

not too close to the boundary, the null distribution of the test statistic

T is the standard central v2(df).

206 Behav Genet (2008) 38:202–211

123

http://www.psy.vu.nl/mxbib/


only 5% of the total variance,5 i.e., one common genetic

factor is (almost) sufficient to explain all genetic variance

and covariance in the four traits. If there are no missing

data (situation S1), then one could simply use summary

statistics to obtain power information, as this is a 2-group

analysis. However, suppose we want to study the influence

of data missing completely at random (MCAR) on the

power to reject the hypothesis that all genetic specifics are

zero. Here we consider two scenarios. First, we study the

case that the probability of data being MCAR is 20% for all

variables (situation S2). Given that we have q = 2 9 4

observations per family, this kind of missingness could

yield 28 - 1 = 255 possible data patterns, i.e., 255 dif-

ferent groups (we discard the group in which all data are

missing). In that case, power calculations using summary

statistics are impractical, whereas exact data simulation is

feasible. Note that some data patterns are rather unlikely,

e.g., the probability of observing a valid observation for the

first trait of the first twin only, while all other observations

in the family are missing, is .8*(.27) = 1.024-05.

Remember that the Cholesky decomposition cannot be

calculated if the number of observations in a group Nk does

not equal at least q + 1, so the simulated N needs to be

very large if one wants all data patterns to be present in the

simulated data set (about (q + 1)/1.024-05 & 900,000).

Yet, as very rare observations will hardly contribute to the

power (5 of the 900,000 cases in the present example), one

can just as well adopt a smaller sample size, and accept the

fact that some groups (i.e., patterns of observations) will

not be represented, and calculate power given the most

likely patterns of observations.

Second, we study the case where the probability of data

being MCAR is 40% for the first two variables, and zero

for the second two (situation S3). This could be a realistic

scenario in practice, for example, when a questionnaire

study that measures two traits is extended during the data

collection to include two additional traits, or when data

from different studies are combined (one study in which all

four traits were measured, while another study only

included measurements of two traits for, e.g., economical

reasons). Given that we have q = 2 9 4 observations per

family of which only four variables show missingness, this

would yield 24 = 16 possible data patterns, i.e., 16 dif-

ferent groups. With only 16 groups, power calculations

using summary statistics would be feasible. However, one

efficiently setup exact data simulation script can handle

both this simple pattern of missingness, and more complex.

For the simulations we chose an overall sample size of

50,000 families (1/3 MZ, 2/3 DZ), which means that for

situations S1 and S3, all groups (data patterns) are repre-

sented (50,000 and 49,999 cases simulated, respectively),

while for situation S2, only the 163 most likely groups of

the possible 255 are represented (49,999 cases simulated).

The three simulated data sets were subsequently ana-

lyzed in Mx. In the Mx-script, we specify different groups

for the MZ and DZ twins. Because we use full information

maximum likelihood to accommodate the missingness, we

do not need to specify different groups for all possible

missing data patterns. The Mx command ‘option power’

(a = .05, df = 4) was used to obtain an estimation of the

total sample size that would be required for a power of

Fig. 3 Four-variate ACE-model with common factors for additive

genetic and shared environmental effects, and specifics for A, C and E

Table 2 Expectations for a tri-allelic locus following the standard biometric model when dominance is assumed absent

Genotype AA AB BB AC BC CC

Genotype frequency fij p2 2pq q2 2pr 2qr r2

Genotypic value gij x (x + y)/2 y x + z/2 = -y/2 y + z/2 = -x/2 z

lqtl ¼ fij � gij ¼ p2xþ 2pq½ðxþ yÞ=2� þ q2yþ 2prð�y=2Þ þ 2qrð�x=2Þ þ zr2

r2
qtl ¼ fij ðgij � lqtlÞ2 ¼ p2ðx� lqtlÞ2 þ 2pqð½ðxþ yÞ=2� � lqtlÞ2 þ q2ðy� lqtlÞ2 þ 2prð½�y=2� � lqtlÞ2 þ 2qrð½�x=2� � lqtl)

2

þ r2(z� lqtl)
2

Note: p, q, and r denote the frequencies of alleles A, B and C, respectively; x is the genotypic value associated with genotype AA, y the genotypic

value associated with genotype BB. As Eð�gijÞ ¼ 0; the genotypic value for genotype CC is z = -x - y (i.e., x + y + z = 0). lqtl denotes the

expected contribution of the QTL to the population mean, and r2
qtl denotes the expected contribution of the QTL to the population variance

(adapted from Falconer and Mackay 1996)
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80%, given the current proportions of subjects in each

group.

We find that for situation S1 (no missingness), 302

families are required for 80% power to reject the alterna-

tive hypothesis that the genetic specifics for all four traits

explain 5% rather than 20% of the variance each, while for

situations S2 (20% missingness for all variables) and S3

(40% missingness for only variable 1 and 2) the number of

families required to obtain 80% power is estimated at 494

and 474, respectively. We hasten to note that these results

are not informative for the case that data are missing at

random (MAR), rather than MCAR (see Schafer and

Graham 2002, for a comprehensive review on missingness

and statistical procedures for handling missing data).

These power calculations took about 2 min for each

situation S. Within the Monte Carlo framework, acquisition

of similar power results would take at least T times as long

for each situation S (where T is the number of replications

one chooses to do). Given that the time required to write

the data simulation script is equal for Monte Carlo simu-

lation and exact simulation, it is clear that exact simulation

saves a lot of time.

Illustration 2: gene by environment interaction with

latent G and measured, categorical E

Gene by Environment (G 9 E) interaction is an important

issue. From the perspective of the power study, a problem

with the presence of G 9 E when the E is continuously

distributed is that it renders single summary statistics

insufficient; in the presence of G 9 E, (co)variances and

means depend on the level of the environmental moderator,

as we have seen in Eqs. 3–6. Purcell (2002) showed how G

9 E on the means and variances can be modeled if G is

latent, and E is measured.

In power calculations in the G 9 E context, one can

adopt a multi-group design, if the environmental modera-

tor is categorical. For example, consider a classical

ACE-twin design. If the environmental moderator is

dichotomous (e.g., males versus females, young versus

old, smoking versus non-smoking), the sample consisting

of MZ and DZ twin pairs can be split up into twin pairs

who are concordant with respect to the moderator (e.g.,

both twins do, or do not, smoke), and twin pairs who are

discordant with respect to the moderator (only one of the

twins in a pair smokes). With a dichotomous moderator

and only two subjects per family, power calculations using

summary statistics are feasible as there are only three

distinguishable groups (not accounting for the distinction

between MZ and DZ twins). However, suppose that you

have measured an environmental moderator with 4 levels

(coded 0, 1, 2, 3) in twin-pairs and their parents. With four

persons per family and four possible moderator levels,

there are 44 = 256 possible family configurations. In that

case, multi-group analysis with summary statistics is

impractical, and exact data simulation may be used

instead.

For this illustration, parameters a, c, and e were all set to

1, such that the total variance equaled 3 (excluding mod-

erating and main effects). The moderator, which was

assumed independent of genotype in this illustration, was

coded 0 to 3, such that the group with 0 on the moderator

can be considered the baseline condition. The probability

for all moderation levels was set to .25, and moderation

levels were modeled as independent across family mem-

bers (i.e., the probability for each family member’s

moderation level was independent of the moderation levels

of the other family members). Moderation in C, E and the

means was fixed to 0, but the regression weight of the

moderator was set to .2 for the additive genetic effects,

such that the moderator explained 20% of the variance in

the total population (i.e., 0%, 13%, 24%, and 34% of the

variance, respectively, depending on the level of the

moderator). The model is illustrated in Fig. 4. For the

simulation, we chose an overall sample size N of 10,000

(1/3 MZ and 2/3 DZ twins).

Given these simulated data, we want to estimate the

power to reject the alternative hypothesis that all moderator

effects on the variances are zero (i.e., no G 9 E, or C 9 E,

or E 9 E). In practice, one would fix all regression weights

concerning the moderating effects on the variances (ba, bc,

and be) to zero at once, resulting in a test with 3 degrees of

freedom.

The data were analyzed in Mx: different groups were

specified for the MZ and DZ twins, and the moderator

featured as a so-called definition variable. The ‘option

Fig. 4 Univariate ACE-model for parents and twin-offspring, includ-

ing moderation on the variances and the means
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power’ command (a = .05, df = 3) was again used to

obtain an estimation of the total sample size that would be

required for a power of 80%, given the current proportions

of subjects in each group.

With the probability for all moderation levels fixed to

.25, all 256 groups were represented in both the MZ and the

DZ twins in the simulated data file (9,984 cases simulated),

and for the chosen values, the analysis shows that we

would need 165 families for a power of 80%. If we were to

change the moderator level probabilities from .25 for every

level to .4, .3, .2, and .1 for levels 0, 1, 2 and 3 respectively,

then 179 and 225 groups would be represented in MZ and

DZ twins, respectively (9,705 cases simulated). In that

case, 206 families would be required for a power of 80%

even though the moderator effect (ba) is unchanged.

These power calculations took at most 1 minute in total.

Again, acquisition of similar power results would take at

least T times as long within the Monte Carlo framework

(where T is the number of replications). Assembling the

data simulation script takes equally long for both types of

simulation, so overall, exact simulation saves time.

Illustration 3: association for a tri-allelic locus with

different allele frequencies

The aim of association studies is to determine whether

genetic variation is associated with the risk for disease or the

expression of a continuously distributed trait. Association

studies may produce false positives, i.e., significant associ-

ation in the absence of any true genetic effects. Population

stratification is one source of false positives, i.e., the mixture

of two populations with different allele frequencies and

different phenotypic means. Fulker et al. (1999) showed that

this type of spurious association can be avoided in a family-

based study design. In this illustration, we focus on the sit-

uation in which data are available for pairs of siblings.

Although this design allows for the simultaneous modeling

of linkage and association, we limit the analysis to the

association, but note that linkage information (i.e., IBD

sharing estimation) could be included in exact data simula-

tion scripts. For the present illustration, however, we assume

that the locus under study is the QTL itself and not a marker

in linkage disequilibrium with the QTL.

If a locus is diallelic, 22 = 4 genotypes can be distin-

guished: AA, AB, BA and BB (of course, in practice, there

are only 2 + 1 = 3 distinguishable groups as AB and BA

are the same, but when simulating the data exactly, it is

convenient simply to treat them as different groups). These

22 genotypes give rise to (22)2 = 16 possible combinations

of siblings (not accounting order), i.e., a 16 group analysis.

Note that this is the simplest case: with 3 alleles, the

number of possible sib-pairs is already (32)2 = 81, and

when the locus under study is a polymorphic marker, with,

say, 15 possible alleles, the number of distinguishable sib-

pairs is (152)2 = 50,625. Clearly, multi-group analyses with

sufficient summary statistics quickly become impractical as

the number of alleles––or loci––increases.

We illustrate the use of exact data simulation in the

context of the sib-pair association design, for a tri-allelic

locus with alleles A, B, and C, with frequencies p, q, and r,

respectively. The aim of this particular power calculation is

to determine the influence of the allele frequencies on the

power to detect a QTL. The biometrical model for a tri-

allelic locus is summarized in Table 2. As with the more

familiar diallelic case, the expected genotypic value Eð�gijÞ
is assumed zero, so that everything is scaled in terms of

deviations. In the case of three alleles, 2 genotypic values

are distinguished, which were both fixed to .206, so that

AA was associated with an increase of .206, BB with an

increase of .206, and CC with a decrease of-.206 to

.206 = -.412. Dominance was assumed to be absent, so

the genotypic effect for the heterozygous genotypes AB,

AC and BC was calculated as the mean of the effects of the

homozygous groups. In the case of equal allele frequencies

(p = q = r = 1/3), this QTL explains 2.5% of the variance

(as determined using regular regression with the phenotype

as dependent variable and genotype as predictor). Note that

the variance explained by the QTL depends on the allele

frequencies, so even though the genotypic values remain

the same across all simulations, varying the allele fre-

quencies affects the effect size of the QTL effect. For all

simulations, background variance was decomposed such

that additive genetic effects explained 30%, and unique

environmental influences (E) explained 70% of the vari-

ance that remained after the QTL-effects was taken into

account. Overall sample size N was fixed to 10,000 (note

that because of rounding, the actual N modeled will not be

equal to the overall sample size N of 10,000; see Table 3).

Note that between and within effects were exactly equal

(i.e., B = W) as we did not model population stratification;

all between and within parameters can thus be fixed to be

equal without loss of fit. The overall test for genetic

association then involves fixing the genotypic effects for all

6 distinguishable genotypes (AA, AB, AC, BB, BC, and

CC) to zero, i.e., 6 degrees of freedom.

The simulated sib-pair data were analyzed in Mx, using

the ‘option power’ command (a = .05,df = 6) to obtain

the sample size required for a power of 80%, given the

current proportions of subjects in each group. The results

presented in Table 3 show that the power to detect a QTL

with certain genotypic values depends on the allele fre-

quencies. As expected, the power is greatest when the

frequency for the allele with the largest genotypic value

(allele C) is highest.
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With exact data simulation, these power calculations

took about 2 min for each choice of allele frequencies.

Again, it would take at least T times as long to obtain

similar power results within the Monte Carlo framework

(where T is the number of replications), while the time

required to write the data simulation script takes equally

long for both types of simulation.

Conclusion

In this paper we discussed a third method of power cal-

culation, which can be useful when sufficient summary

statistics are available in principle, but the number of

possible groups is so large to render a multi-group analysis

impractical. The illustrations presented in this paper

represent only a few of the possible (behavior genetics)

designs in which exact data simulation may prove useful.

Other models for which exact data simulation can be used

include random-effects models, latent growth curve mod-

els, simplex models, and (hierarchical) structural models,

either or not in the context of genetics, just to name a few.

Exact data simulation does not require more programming

skills, or programming time, than Monte Carlo simulation,

but one may save a lot of time analyzing the simulated data

and calculating power, especially when one wishes to

construct graphs of power vs. effect size.

In this paper, we used the Mx program to analyze the

simulated data because of its inbuilt power calculation

function. Another useful option of Mx in this context is the

possibility to output individual likelihood statistics for each

raw data group. This information can be used to identify

the groups that contribute most to the power to detect the

effects of interest. Of course, various other statistical

software packages (e.g., QTDT, LISREL, MPlus, R) can

also be used in combination with exact data simulation to

obtain the non-centrality parameters required for power

calculations.

We emphasize that the power results obtained through

exact data simulation are exactly similar to power results

obtained through the analysis of summary statistics, and,

just like power calculation using summary statistics,

asymptotically similar to results obtained through Monte

Carlo simulation (depending on the number of runs used in

Monte Carlo). Differences between those two customary

method of power calculation and exact data simulation

only occur when subgroups have very low probabilities and

the simulated overall sample size is not large enough to

include all possible groups to sufficient extent; these small

groups may then not be represented in the exact power

simulation, while they may be (more or less) represented in

other methods. However, as stated previously, the ensuing

differences with respect to the power results, are very small

as such small groups hardly contribute to the power any-

way. Even so, to avoid the exclusion of small groups, one

should choose a sufficiently large overall sample size in

exact simulation, such that all groups are represented. This

is perfectly doable, and does not alter the practicability of

the method as it still involves analyzing a single (yet lar-

ger) dataset. The non-centrality parameter obtained in the

analysis of the large simulated data set can subsequently be

used to calculate the power for smaller, more realistic

sample sizes. Alternatively, one may decide to accept the

absence of certain groups, and the implied slight underes-

timation of power. Happily, the discrepancy between the

intended N and the realized N is simple to calculate (as

demonstrated in the R script available in the Mx scripts

library), so that one can readily obtain an impression of the

implications of this decision.

Throughout the paper, we have assumed that the data,

conditional on group, are normally distributed, so that

sufficient statistics are in principle available. With respect

to situations that preclude sufficient statistics, the present

method may still have some use. For instance, a continuous

moderator in a G 9 E model, as discussed by Purcell

(2002), might be approximated by a 5 point or 7 point

Table 3 Results for illustration 3: Power calculations for sib-pair association with a tri-allelic locus with fixed genotypic values

Frequencies alleles

A, B, C

Effect size (%) Actual N Nr of groups

represented

v2(6) Observed

power

N required for

power of 80%

.33/.33/.33 2.5 9,639 81 837.824 1 157

.25/.5/.25 1.7 9,985 81 734.357 1 185

.45/.45/.1 .6 9,993 81 352.963 1 386

.1/.45/.45 2.8 9,992 80 966.698 1 141

Note: Effect size is defined as % of variance explained by QTL; Actual N refers to actual number of sib-pairs in the analysis; Nr of groups
represented refers to the number of groups, of the possible 81, that were represented in the analysis; v2(6): the v2-value of the test for association

when the genotypic effects for all 6 distinguishable genotypes are fixed to zero; Observed power refers to the power observed for the modeled

sample size N
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Likert scale, which would render exact simulation possible

in principle (see illustration 2).

Finally we note that the extension of this method to

discrete data would obviously be very useful, and does

seem feasible.
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