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Abstract

Power consumption is a key factor in modern ICT infrastructure, es-
pecially in the expanding world of High Performance Computing, Cloud
Computing and Big Data. Such consumption is bound to become an even
greater issue as supercomputers are envisioned to enter the Exascale by
2020, granted that they obtain an order of magnitude energy efficiency
gain. An important component in many strategies devised to decrease
energy usage is “power capping”, i.e., the possibility to constrain the sys-
tem power consumption within certain power budget. In this paper we
propose two novel approaches for power capped workload dispatching and
we demonstrate them on a real-life high-performance machine: the Eurora
supercomputer hosted at CINECA computing center in Bologna. Power
capping is a feature not included in the commercial Portable Batch Sys-
tem (PBS) dispatcher currently in use on Eurora. The first method is
based on a heuristic technique while the second one relies on a hybrid
strategy which combines a CP and a heuristic approach. Both systems
are evaluated and compared on simulated job traces.

1 Introduction

Supercomputer peak performance is expected to reach the ExaFLOP level in
2018-2020 [14], however energy efficiency is a key challenge to be addressed to
reach this milestone. Today’s most powerful Supercomputer is Tianhe-2 which
reaches 33.2 PetaFlops with 17.8 MWatts of power dissipation [13]. Exascale
supercomputers built upon today’s technology would led to an unsustainable
power demand (hundreds of MWatts) while according to [9] an acceptable range
for an Exascale supercomputer is 20MWatts; for this goal, current supercom-
puter systems must obtain significantly higher energy efficiency, with a limit
of 50GFlops/W. Today’s most efficient supercomputer achieves 5.2 GFlops/W,
thus we still need to close an order of magnitude gap to fulfill the Exascale
requirements.

Almost all the power consumed by HPC systems is converted into heat. In
addition to the power strictly needed for the computation - which measures
only the computational efficiency - the cooling infrastructure must be taken



into account, with its additional power consumption. The extra infrastructure
needed for cooling down the HPC systems has been proved to be a decisively
limiting factor for the energy performance [3]; a common approach taken to
address this problem is the shift from air cooling to the more efficient liquid
cooling [10].

Hardware heterogeneity as well as dynamic power management have started
to be investigated to reduce the energy consumption [16][2]. These low-power
techniques have been derived from the embedded system domain where they
have proven their effectiveness [1]. However, a supercomputer is different from
a mobile handset or a desktop machine. It has a different scale, it cannot be
decoupled by the cooling infrastructures and its usage mode is peculiar: it is
composed by a set of scientific computing applications which run on different
datasets with a predicted end time [6]. Finally supercomputers are expensive (6
orders of magnitude more than an embedded device [21]) making it impossible
for researchers to have them on their desk. These features have limited the
development of ad-hoc power management solutions.

Current supercomputers cooling infrastructures are designed to withstand
power consumption at the peak performance point. However, the typical super-
computer workload is far below the 100% resource utilization and also the jobs
submitted by different users are subject to different computational requirements[29].
Hence, cooling infrastructures are often over-designed. To reduce overheads
induced by cooling over-provisioning several works suggest to optimize job dis-
patching (resource allocation plus scheduling) exploiting non-uniformity in ther-
mal and power evolutions [8][19][20][23]. Currently most of these works are
based on simulations and model assumptions which unfortunately are not ma-
ture enough to be implemented on HPC systems in production, yet.

With the goal of increasing the energy efficiency, modern supercomputers
adopt complex and hybrid cooling solutions which try to limit the active cool-
ing (chiller, air conditioner) by allowing direct heat exchange with the ambient
(Free-cooling). Authors in [12] show for the 2013’s top GEEN500 supercom-
puter that the cooling costs increase four times when the ambient temperature
moves from 10°C to 40°C. Moreover the authors show that for a given ambient
temperature there is a well-defined maximum power budget which guarantees
efficient cooling. With an ambient temperature of 10°C the power budget which
maximizes the efficiency is 45KWatt while at 40°C is 15KWatt. Unfortunately,
today’s I'Ts infrastructure can control its power consumption only reducing the
power and performance of each computing node. This approach is not suitable
for HPC system where users require to execute their application in a portion
of the machine with guaranteed performance. A solution commonly adopted in
HPC systems is power capping[25][17][15][27][22], which means forcing a super-
computer not to consume more than a certain amount of power at any given
time. In this paper we study a technique to achieve a power capping by acting
on the number of job entering the system.

We propose two different methods to enforce power capping constraints on a
real supercomputer: 1) a Priority Rules Based algorithm and 2) a novel hybrid
approach which combines a CP and a heuristic technique.



2 System Description and Motivations for Using
CP

The Eurora Supercomputer: As described in [7] Eurora has a heteroge-
neous architecture based on nodes (blades). The system has 64 nodes, each
with 2 octa~-core CPUs and 2 expansion cards configured to host an accelerator
module: currently, 32 nodes host 2 powerful NVidia GPUs, while the remain-
ing ones are equipped with 2 Intel MIC accelerators. Every node has 16GB of
installed RAM memory. A few nodes (external to the rack) allow the interac-
tion between Eurora and the outside world, in particular a login node connects
Eurora to the users and runs the job dispatcher (PBS). A key element of the
energy efficiency of the supercomputer is a hot liquid cooling system, i.e. the
water inside the system can reach up to 50°C. This obviously allows to save a lot
of energy, since no power is used to actively cool down the water; furthermore
the heat in excess can be reused as an energy source for other activities.

The PBS Dispatcher: The tool currently used to manage the workload on
Eurora system is PBS [28] (Portable Batch System), a proprietary job scheduler
by Altair PBS Works which has the task of allocating computational activities,
i.e. batch jobs, among available computing resources. The main components
of PBS are a server (which manages the jobs) and several daemons running
on the execution hosts (i.e. the 64 nodes of Eurora), which track the resource
usage and answer to polling requests about the host state issued by the server
component.

Jobs are submitted by the users into one of multiple queues, each one char-
acterized by different access requirements and by a different estimated waiting
time. Users submit their jobs by specifying 1) the number of required nodes;
2) the number of required cores per node; 3) the number of required GPUs and
MICs per node (never both of them at the same time); 4) the amount of required
memory per node; 5) the maximum execution time. All processes that exceed
their maximum execution time are killed. The main available queues on the
Eurora system are called debug, parallel, and longpar. PBS periodically selects
a job to be executed considering the current state of the nodes - trying to find
enough available resources to start the job. If there are not enough available
resources the job is returned to its queue and PBS considers the following can-
didate. The choices are guided by priority values and hard-coded constraints
defined by the Eurora administrators with the aim to have a good machine uti-
lization and small waiting times. For more detailed information regarding the
system see [6].

Why CP? In its current state, the PBS system works mostly as an on-line
heuristic, incurring the risk to make poor resource assignments due to the lack
of an overall plan; furthermore, it does not include a power capping feature yet.
Other than that, as we shown in our previous work the lack of an overall plan
may lead to poor resource assignments. The task of obtaining a dispatching



plan on Eurora can be naturally framed as a resource allocation and scheduling
problem, for which CP has a long track of success stories. Nevertheless since
the problem is very complex and we are constrained by very strict time limits
(due to the real-time requirements of a supercomputer dispatcher) it is simply
not possible to always find a optimal solutions. Therefore, we used CP in
combination with multiple heuristic approaches in order to quickly find the
resource allocation and schedule needed.

3 Problem Definition

We give now a more detailed definition of the problem. Each job i enters the
system at a certain arrival time ¢;, by being submitted to a specific queue
(depending on the user choices and on the job characteristics). By analyzing
existing execution traces coming from PBS, we have determined an estimated
waiting time for each queue, which applies to each job it contains: we refer to
this value as ewt;.

When submitting the job, the user has to specify several pieces of informa-
tion, including the maximum allowed execution time D;, the maximum number
of nodes to be used rn;, and the required resources (cores, memory, GPUs,
MICs). By convention, the PBS system considers each job as if it was divided
into a set of exactly rn; identical “job units”, to be mapped each on a single
node. Formally, let R be a set of indexes corresponding to the resource types
(cores, memory, GPUs, MICs), and let the capacity of a node k € K for resource
r € R be denoted as capy . Let rq;, be the requirement of a unit of job 7 for
resource r. The dispatching problem at time 7 requires to assign a start time
s; > T to each waiting job 4 and a node to each of its units. All the resource
and power capacity limits should be respected, taking into account the presence
of jobs already in execution. Once the problem is solved, only the jobs having
s; = 7 are actually dispatched. The single activities have no deadline or release
time (i.e. they do not have to end within or start after a certain date), nor the
global makespan is constrained by any upper bound.

Along with the aforementioned resources in this problem we introduce an
additional finite resource, the power. This will allow us to model and enforce the
power capping constraint. The power capping level, i.e. the maximal amount of
power consumed by the system at any given time, is specified by the user and
represents the capacity of the fake power resource; the sum of all the power con-
sumed by the running job plus the sum of power values related to idle resources
must never exceed the given limit throughout the execution of the whole sched-
ule. Another important thing to notice is that the power “resource” has not a
linear behaviour in terms of the computational workload: the first activation of
a core in a node causes greater power consumptions for the remaining cores in
that node.

The goal is to reduce the waiting times, as a measure of the Quality of
Service guaranteed to the supercomputer users.



4 The PRB approach

First, we implemented a dispatcher which belongs to a class of scheduling tech-
niques known in the literature as Priority Rules Based scheduling (PRB)[18].
The main idea underlying this approach is to order a set of tasks which need to
be scheduled, constructing the ordered list by assigning priority for each task.
Tasks are selected in the order of their priorities and each selected task is as-
signed to a node; even the resource are ordered and the ones with higher priority
are preferred - if available. This is an heuristic technique and it is obviously
not able to guarantee an optimal solution but has the great advantage of being
extremely fast.

The jobs are ordered w.r.t to their expected wait times, with the “job de-
mand” (job requirements multiplied by the job estimated duration) used to
break ties. Therefore, jobs which are expected to wait less have higher priority,
subsequently jobs with smaller requirements and shorter durations are preferred
over heavier and longer ones. The mapper selects one job at time and maps it
on a available node with sufficient resources. The nodes are ordered using two
criteria: 1) at first, more energy efficient nodes are preferred (i.e. cores that
operate at higher frequencies also consume more power) 2) in case of ties, we
favour nodes based on their current load (nodes with fewer free resources are
preferred!).

The PRB algorithm proceeds iteratively trying to dispatch all the activities
that need to be run and terminates only when there are no more jobs to dispatch.
We suppose that at time ¢ = 0 all the resources are fully available, therefore the
PRB algorithm starts by simply trying to fit as many activities as possible on
the machine, respecting all resource constraints and considering both jobs and
nodes in the order defined by the priority rules. Jobs that cannot start at time
0 are scheduled at the first available time slot. At each time-event the algorithm
will try to allocate and start as many waiting jobs as possible and it will keep
postponing those whose requirements cannot be met yet.

The algorithm considers and enforces constraints on all the resources of the
system, including power.

Algorithm 1 shows the pseudo code of the PRB algorithm. Lines 1-6 ini-
tialize the algorithm; J is the set of activities to be scheduled and R is the
set of nodes (ordered with the order ByRules() function which encapsulates
the priority rules). Then the algorithm proceeds while there are still jobs to
be scheduled; at every iteration we try to start as many jobs as possible (line
8). Each job unit is considered (line 10) and the availability of resources on
every node is taken into account; the function checkAvailability(rn;,r) (line
12) returns true if there are enough available resources on node r to map unit
rn;. If it is possible the unit is then mapped and the system usage is updated
(updateUsages(rn;, R), line 13), vice versa we register that at least a job unit
could not be mapped (line 16). If all the units of a job have been mapped
(line 17-21), then the job can actually start and is removed from the pool of

IThis criterion should decrease the fragmentation of the system, trying to fit as many job
as possible on the same node



Algorithm 1: PRB algorithm

1 time - 0;

2 startTimes <+— (;

3 endTimes <— (;

4 runningJobs +— 0;

5 order ByRules(R);

6 order ByRules(J);

7 while J # () do

8 for j € J do

9 canBeM apped < true;
10 for rn; € j do
11 for r € R do
12 if check Availability(rn;,r) then
13 updateU sages(rn;, R);
14 L break;

15 else

16 ‘ canBeM apped <+ false

17 if canBeM apped = true then

18 J— J—={j}

19 runningJobs = runningJobs U {j};
20 startTimes(j) + time;
21 endTimes(j) < time + duration(j);
22 else
23 L undoUpdates(j, R);
24 order ByRules(R);
25 order ByRules(J);
26 time < min(endTimes);

jobs that still need to be scheduled. Conversely, if the job cannot start we
must undo the possible changes made to the system usage we made in advance
(updateUsages(rn;, R), line 23). Finally, after having dealt with all schedulable
jobs we reorder the activities and nodes (the activity pool is changed and the
nodes order depends on the usages), lines 24-25, and compute the closest time
point where some used resource becomes free, following time-event, i.e. the
minimal end time of the running activities (line 26).

It is important to note that since in this problem we have no deadline on the
single activities nor a constraint on the global makespan, the PRB algorithm will
always find a feasible solution, for example delaying the least important jobs
until enough resources become available due to the completion of previously
started tasks.



5 Hybrid Approach

As previously discussed in [6] the task of obtaining a proactive dispatching plan
on Eurora can be naturally framed as a resource allocation and scheduling prob-
lem. Constraint Programming (CP) techniques have shown great success when
dealing with this kind of problem, thanks to the expressive and flexible language
used to model the problem and powerful algorithms to quickly find good quality
solutions[5]. In this Section we describe the mixed approach we used to solve the
resource allocation and scheduling problem under power capping constraints.

The key idea of our method is to decompose the allocation and scheduling
problem in two stages: 1) obtain a schedule using a relaxed CP model of the
problem 2) find a feasible mapping using a heuristic technique. Since we used
a relaxed model in the first stage, the schedule obtained may contain some
inconsistencies; these are fixed during the mapping phase, thus we eventually
obtain a feasible solution, i.e. a feasible allocation and schedule for all the jobs.
This two stages are repeated n times, where n has been empirically chosen after
an exploratory analysis, keeping in mind the trade-off between the quality of
the solution and the computational time required to find one. To make this
interaction effective, we devised a feedback mechanism between the second and
the first stage, i.e. from the infeasibilities found during the allocation phase we
learn new constraints that will guide the search of new scheduling solutions at
following iterations.

In this work we implemented the power capping requirements as an addi-
tional constraint: on top of the finite resources available in the system such as
CPUs or memory, we treat the power as an additional resource with its own
capacity (i.e. the user-specified power cap), which we cannot “over-consume”
at any moment[11]. In this way, the power used in the active nodes (i.e. those
on which a job is running) summed to the power consumed by the idle nodes
will never exceed the given threshold.

The next sections will describe in more detail the two stages of the decom-
posed approach.

5.1 Scheduling Problem

The scheduling problem consists in deciding the start times of a set of activities
1 € I satisfying the finite resource constraints and the power capping constraint.
Since all the job-units belonging to the same jobs must start at the same time,
during the scheduling phase we can overlook the different units since we need
only the start time for each job. Whereas in the actual problem the resources
are split among several nodes, the relaxed version we use in our two-stages
approach considers all the resources of the same type (cores, memory, GPUs,
MICs) as a pool of resource with a capacity Cap! which is the sum of all the
single resource capacities, Capl = 3 rek CaPkr V7 € R. As mentioned before
the power is considered as an additional resource type of the system, so we have
a set of indexes R’ corresponding to the resource types (cores, memory, GPUs,
MICs plus the power); the overall capacity C’apgower is equal to the user-defined



power cap.

The CP model employs other relaxations: 1) only the power required by
running jobs (active power) is considered, i.e. we use a lower bound of the total
power consumed in the system, 2) we assume that the jobs always run on the
nodes which require less power and 3) we overlook the non-linear behaviour of
the power consumption. These relaxations may produce infeasible solutions,
since a feasible schedule must take into account that the resource are actually
split among heterogeneous nodes and consider also the idle nodes for the power
capping. The following stage of our method will naturally fix these possible
infeasibilities during the allocation phase.

We define the scheduling model using Conditional Intervals Variables (CVI)[24].
A CVI 7 represents an interval of time: the start of the interval is referred to as
s(7) and its end as e(7); the duration is d(7). The interval may or may not be
present, depending on the value of its existence expression x(7) (if not present it
does not affect the model). CVIs can be subject to several different constraints,
among them the cumulative constraint[4] to model finite capacity resources.

Vre R cumulative(t, req,., Capz) (1)

where 7 is the vector with all the interval vars, where regq, are the job require-
ments for resource r - using past execution traces we learned a simple model to
estimate the power consumed by a job based on its requirements. As mentioned
in section 3 this model is not linear. The cumulative constraints in 1 enforce
that at any given time, the sum of all job requirements will not exceed the
available capacity (for every resource type).

With this model it would be easy to define several different goals, depending
on the metric we optimize. Currently we use as objective function the weighted
queue time, i.e. we want to minimize the sum of the waiting times of all the
jobs, weighted on estimated waiting time for each job (greater weights to job
which should not wait long):

. max ewt;
mmz Tti(s(ﬂ') —4) (2)
iel

To solve the scheduling model we implemented a custom search strategy
derived from the Schedule Or Postpone strategy [26]. The criteria used to
select an activity among all the available ones at each decision node follows
the priority rules used in the heuristic algorithm, thus preferring jobs that can
start first and whose resource demand is lower. This strategy proved to be very
effective and able to rapidly find good solutions w.r.t. the objective function
we are considering in this problem. With different goals we should change the
search strategy accordingly (as with the priority rules).

5.2 Allocation Problem

The allocation problem consists in mapping each job unit on a node. Fur-
thermore, in our approach the allocation stage is also in charge of fixing the



infeasibilities generated at the previous stage. In order to solve this problem we
developed an algorithm which falls in the PRB category. Typical PRB sched-
ulers decide both mapping and start times, whereas in our hybrid approach we
need only to allocate the jobs.

The behaviour of this algorithm (also referred as mapper) is very close to the
PRB one described in Section 4 and in particular the rules used to order jobs
and resources are identical. The key difference is that now we already know the
start and end times of the activities (at least the possible ones, they may change
if any infeasibility is detected). This algorithm proceeds by time-step: at each
time event t it considers only the jobs that should start at time ¢ according to
the relaxed CP model described previously, while the simple PRB algorithm
considers at each time-event all the activities that still need to be scheduled.

During this phase the power is also taken into account, again seen as a
finite resource with capacity defined by the power cap; here we consider both
active and idle nodes powers. If the job can be mapped somewhere in the
system the start time ¢ from the previous stage is kept, otherwise - if there
are not enough resources available to satisfy the requirements - the previously
computed start time is discarded and the job will become eligible to be scheduled
at the next time-step ¢ . At the next time event ¢ all the jobs that should start
are considered, plus the jobs that possibly have been postponed due to scarce
resources at the previous time-step. Through this postponing we are fixing the
infeasibilities inherited from the relaxed CP model.

Again, since in this problem we have no constraints on the total duration of
a schedule, it is always possible to delay a job until the system will have enough
available resources to run it, thus this method is guaranteed to find a feasible
solution.

5.3 Interaction between the stages

We designed a basic interaction mechanism between the two stages with the
goal to find better quality solutions. The main idea is to exploit the information
regarding the infeasibilities found during the allocation phase to lead the search
of new solutions for the relaxed scheduling problems. In particular whenever we
detect a resource over-usage at time tau which requires a job to be postponed
during the second stage of our model we know that the set of job running
at time 7 is a Conflict Set (not minimal), i.e. not all activities in the set
can run concurrently. A possible solution for a conflict set is for example to
introduce precedence relationships among activities (thus eliminating jobs from
the conflict set) until the infeasibility is resolved.

In our approach we use the conflict set detected in the mapping phase to
generate a new set of constraints which impose that not all jobs in the set will
run at the same time. We then introduce in the CP model a fake cumulative
constraint for each conflict set. The jobs included in such cumulative constraint
are those included in the conflict set, each of them with a “resource” demand
of one; the capacity not to be exceeded is given by the conflict set size minus
one. These cumulative constraints enforce that the jobs involved will not run at



the same time. This mechanism does not guarantee yet that the new solution
found by the CP scheduler will be feasible since the conflict sets we detect are
not minimal, nevertheless it provides a way to help the CP model to produce
solutions which will require less “fixing” by the mapper.

In conjunction with the additional cumulative constraint at each iteration
we also cast a further constraint on the objective variable in order to force the
new solution to improve in comparison to the previous one.

6 Added Value of CP

The dispatcher we realized is currently a prototype: it will eventually be de-
ployed on the Eurora supercomputer, but this requires still considerable devel-
opment and research effort (at the same time a previous version without power
capping of this model[6] has already successfully been implemented). At this
stage we are interested in investigating the kind of impact that introducing a
power capping feature may have on the dispatcher behaviour and performance.

The dispatcher we realized can work in two different modes: off-line, i.e. the
resource allocation and the schedule are computed before the actual execution,
and on-line, i.e. allocation and scheduling decisions are taken at run-time,
upon the arrival of new tasks in the system. Clearly the actual implementation
on the supercomputer would require the on-line strategy since the workload is
submitted by users and not statically decided a priori. At the same time we
decided to use the off-line strategy to perform the experiments described in
this paper since we wanted to test our approaches with reproducible conditions.
We also needed our techniques to be stable in order to implement them on a
production system and the off-line strategy allows us to better verify that.

The proposed methods were implemented using or-tools?, Google’s software
suite for combinatorial optimization. We performed an evaluation of all our
approaches on PBS execution traces collected from Eurora in a timespan of
several months. From the whole set of traces we extracted different batches
of jobs submitted at various times and we used them to generate several job
instances of different size, i.e. the number of jobs per instance (a couple of
hundreds of instances for each size). Since in this experimental evaluation we
were concerned only in the off-line approach the real enter queue times were
disregarded and in our instances we assume that all jobs enter the system at
the same time. The main performance metric considered is the time spent by
the jobs in the queues while waiting their execution to begin (ideally as low as
possible).

6.1 Evaluation of Our Models

We decided to make our experiments using two artificial versions of the Eurora
machine: A) a machine composed with 8 nodes and B) a machine with 32 nodes.
In addition to the real traces (set base) we generated two more sets of instances,

2https://developers.google.com /optimization /
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one which is composed by especially computationally intensive jobs, in terms
of resource requested (highLoad), and one which presents jobs composed by
an unusually high number of job-units (manyUnits). These additional groups
were generated using selected subsets of the original traces. From these sets we
randomly selected subsets of smaller instances with dimension of 25, 40, 50, 60,
80, 100, 150 and 200 jobs; for each size we used 50 different instances in our
tests. The instances of dimension 25 and 50 were run on the smaller machine A
while the remaining instances executed on machine B.

On each instance we ran the PRB algorithm (PRB), the hybrid approach
with no feedback iteration (DEC_noFeedBack) and the hybrid approach with
feedback (DEC_feedBack). We tested the hybrid approach both with and with-
out the interaction between the two layers because the method without feedback
is much faster than the one with the interaction, therefore better suited to a
real-time application as a HPC dispatcher. The CP component of the decom-
posed method has a timeout which forces the termination of the search phase.
The timeout is set to 5 seconds; if the solver finds no solution within the time
limit, the search is restarted with a increased timeout (we multiply by 2 the
previous timeout), until we reach a maximum value of 60 seconds - which is ac-
tually never reached in our experiments. The PRB is extremely fast as finding
a solution takes only a fraction of second even with the larger instances; DEC_-
noFeedBack requires up to 3-4 seconds with the larger instances (but usually
a lower quality solution is found in less than a second) and the DEC_noFeed-
Back requires significant larger times to compute a solution due to the multiple
iterations, in particular up to 15-20 seconds with the instances of 200 jobs.

Fach experiment was repeated with different values of power capping to
explore how the bound on the power influences the behaviour of the developed
dispatcher.

At every run we measured the average weighted queue time of the solution,
that is the average time spent waiting by the jobs, weighted with the expected
wait time (given by the queue of the job). As a unit of measure we use the
Ezxpected Wait Time, (EWT), i.e. the ratio between the real wait time and the
expected one. A EWT value of 1 tells us that a job has waited exactly as long
as it was expecting; values smaller than 1 indicate that the job started before
the expected start time and values larger than one that the job started later
than expected. To evaluate the performance of the different approaches we then
compute the ratio between the average weight queue time obtained by PRB and
by the two hybrid methods; finally we plot these ratios in the figures presented
in the rest of the section. Since the best average queue times are the lowest
ones, it is clear that if the value of the ratio goes below one the PRB approach
is performing better, while when the the value is above one then the hybrid
approaches are obtaining better results.

The following figures will show the ratios in the y-axis while the x-axis will
specify the power capping level; we only show significant power capping levels,
i.e. the one larger enough to allow a solution to the problem, hence the x-scale
range may vary.
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Machine with 8 nodes Figures 1, 2 and 3 show the results of the experiments
with the machine with 8 nodes; each figure corresponds respectively to the base
workload set of instances (both size 25 and 50 jobs), the highLoad case and
finally the manyUnits case. The solid lines represent the ratios between the
average queue times obtained by PRB and those obtained by DEC_feedBack;
conversely, the dashed line is the ratio between PRB and DEC_noFeedBack. As
we can see in Figure 1 with an average workload the hybrid approaches usually
outperform the heuristic algorithm, markedly in the 25 jobs case and especially
at tighter power capping. With less tight power capping levels usually the hybrid
approaches and PRB offer more similar results; this is reasonable since when
the power constraints are more relaxed the allocation and scheduling decisions
are more straightforward and the more advanced reasoning offered by CP is less
necessary.

(a) (b)
25 50
Jobs Jobs

Figure 1: 8 Node - Base Set

It is easy also to see that the hybrid method with the feedback mechanism
always outperforms the feedback-less as we expected: the feedback-less solution
has always inferior quality w.r.t. to those generated by the method with the
interaction - the solution produced by DEC._feedBack is the same produced
by DEC_noFeedBack. Our focus should be on the extent of the improvement
guaranteed by the feedback mechanism in relation to the longer time required
to reach a solution. For example, Fig.1 (corresponding to the original Eurora
workloads) shows that the feedback method offers clear advantages, in particular
with tighter power constraints (around 10%-15% gain over the feedback-less
one), a fact that could justify its use despite the longer times required to reach
a solution. Conversely Figure 2 reveals that the two hybrid approaches offer very
similar performance if the workload is very intensive, leading us to prefer the
faster DEC_noFeedBack in these circumstances in case of the implementation
of the real dispatcher.

(a) (b)
25 50
Jobs Jobs

Figure 2: 8 Node - HighLoad Set

If we consider the workload characterized by an unusually high amount of
job-units per job we can see slightly different results: as displayed in Figure 3,
DEC._feedBack definitely outperforms the other two methods with tight power
capping values, especially in the case of instances of 25 jobs. When the power
constraints get more relaxed the three approaches offers almost the same results.
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(a) (b)
25 50
Jobs Jobs

Figure 3: 8 Node - ManyUnits Set

Machine with 32 nodes In Figures 4 and 5 we can see the results of some
of the experiments done on the machine with 32 nodes (in particular we present
the case size 40 and 100); we present only a subset of the experiments made
due to space limitations, but the results not shown comply with those presented
here.

Figure 4 shows again the comparison between the two hybrid approaches
and the heuristic technique in the case of average workload. The pattern here is
slightly different from the 8-nodes case: after an initial phase where the hybrid
methods perform better, PRB offers better results for intermediate levels of
power capping (around 3000W); after that we can see a new gain offered by
the hybrid techniques until we reach a power capping level around 6000W (the
power constraint relaxes), where the three approaches provide more or less the
same results. It is evident again that the method with feedback outperforms
the feedback-less one, especially with the larger instances.

(a) (b)
40 100
Jobs Jobs

Figure 4: 32 Node - Base Set

In Figure 5 we can see the results obtained with the computationally more
intensive workload. In this case PRB performs generally better at lower power
capping levels until the power constraint become less tight and the three meth-
ods produce similar outcomes again.

(a) (b)
40 100
Jobs Jobs

Figure 5: 32 Node - Highload Set

We have performed a number of additional experiments, not shown here,
and we could summarize that with the machine with 32 nodes with average
workloads the hybrid approaches perform definitely better than the heuristic
technique for most power capping levels except a small range of intermediate
values (up to a 60% reduction of average queue times). On the contrary, if
we force very intensive workloads we obtain better outcomes with PRB, even
though with usually smaller, but still significant, differences (around 10%). We
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can also see that with these intensive workloads the difference between the two
hybrid approaches is minimal and this suggest that the basic feedback mecha-
nism needs to be refined.

7 Conclusions

In this paper we dealt with the allocation and scheduling problem on Eurora
HCP system subject to the power consumption constraint - power capping. We
presented two approaches to solve this problem: 1) a heuristic algorithm and
2) a novel, hybrid approach which combines a CP model for scheduling and
a heuristic component for the allocation. We compared the two approaches
using the average queue times as an evaluation metrics. Short waiting times
correspond to a higher quality of service for the system users.

We tackled a complex problem due to the limited amount of multiple, hetero-
geneous, resources and the additional constraint introduced by the finite power
budget. In addition to the complexity of the problem (scheduling and allocation
are NP-Hard problems) we also had to consider the real-time nature of the ap-
plication we wanted to develop, thus we had to focus on methods able to quickly
produce good solutions. In this preliminary study we shown that the quality of
the solution found by the different approaches varies with the levels of power
capping considered.

As along-term goal we plan to further develop the preliminary power capping
feature presented here in order to integrate it within the actual dispatcher we
already developed and implemented on Euora. In order to do that we will need
to develop methods to allow our approach to operate quickly enough to match
the frequency of job arrivals; the heuristic would be already fast enough but
the hybrid approach will require us to research new techniques in order to cope
with the real-sized version of Eurora - and possibly even larger systems.
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