Imperial College London

Power Characterisation for the Fabric in Fine-Grain Reconfigurable Architectures

Tobias Becker, Peter Jamieson, Wayne Luk, Peter Y. K. Cheung, Imperial College London

Tero Rissa, Nokia Devices R&D

Overview

- Motivation
- 2. Groundhog 2009 benchmark suite
- 3. Benchmarking challenges
- 4. Benchmark circuit: Random number generator
- 5. Benchmark method: Activity modes
- Implementation and Reporting
- 7. Results
- 8. Conclusion

Motivation

- Design challenges for mobile devices
 - Time to market, NRE
 - Logistics
 - Fast evolving standards
- FPGA for mobile applications
 - good: flexible, performance
 - bad: area, power
- Power benchmark
 - Groundhog 2009

Groundhog 2009

- B.0 Fabric Analysis:
 - Application independent
 - Characterise power consumption of reconfigurable devices in different modes of activity
 - Evaluate low-power modes
 - Evaluate suitability of devices for low-power designs
 - Drive architectural improvements for power efficiency in future devices
- B.1 B.6
 - Application specific benchmarks (see FCCM09)

Benchmarking Challenges

Challenges

- target wide range on devices
- fair comparison without optimisation potential
- extensible for future features or architectures
- Previous work
 - often based on MCNC benchmarks
 - circuits small and not representative
 - no stimuli
 - does not target low-power modes

B.0 Fabric Analysis - Basic Concepts

- Use dense and scalable circuit with high toggle rate and without optimisation potential
 - random number generator (RNG)
- Define and characterise power in different processing scenarios
 - "activity modes"
 - includes sleep states
- Characterise thermal aspects of device, how does it heat up during processing

Benchmark Circuit

- Use Random Number Generators (RNG)
 - high logic and routing utilisation
 - high and uniform toggle rate
 - no potential for logic optimisation or optimised placement and routing
 - 512 LUTs/FFs per core
 - scalable, use multiple cores and aim for 90% logic utilisation

Activity Modes

- Measure power in different activation levels rather than looking at dynamic and static power directly
- Activation levels are specified by behaviour
 - active
 - inactive
 - device specific low-power extensions

Activity Modes

Define behaviour of activity modes

	Standard		Device-specific	
	Active	Inactive	Sleep	Hibernate
Processing	Yes	No	No	No
Retain State	-	Yes	Yes	No
Wakeup Time	-	Instant	500 μs	50 ms

Implementation

- Use clock buffer to implement basic activity modes
- External controller switches between "active" an "inactive"
- Connect outputs via XOR chain to avoid logic optimisation

Virtex-II Pro 30 48 RNGs

Measurements

- For "cold" devices:
 - measure power in each activity modes
- For "hot" devices:
 - measure over duty cycle:
 - switch between active and inactive
 - vary between 0% 100%
 - wait until temperature has reached final value
 - measure active and inactive component

 Temperature stabilises

 Sample point for measuring instantaneous active power

 temp
 control

 Sample point for measuring instantaneous active power

measuring inactive power

Environment and reporting

- Reduce environmental influences
 - device on PCB
 - no active cooling, limit airflow
 - ambient temperature 25 °C
- Reporting
 - normalise results to device size
 - diagram and table
 - report all relevant details

Experiment

Fabric analysis of four FPGAs

Device	Process technology	Core voltage	LUTs/FFs
Virtex-II Pro 30	130 nm	1.5 V	27.4 k
Spartan-3E 500	90 nm	1.2 V	9.3 k
Spartan-3AN 700	90 nm	1.2 V	11.8 k
Virtex-5 LX50T	65 nm	1.0 V	28.9 k

SPL09

Results - Temperature

surface temperature on package

Results – Active Power

active power

Results – Inactive Power

inactive power

Results – Low-Power Modes

- Low-power mode in Spartan-3 FPGAs
 - Disables clock circuits
 - Wakeup time 100 500 μs
 - 3x reduction in suspend mode
 - Insufficient for mobile applications, need µW range

	Active	Inactive	Suspend
P _{int} [mW]	1349	18.7	18.1
P _{aux} [mW]	44	43.6	5.8
P _{total} [mW]	1393	62.3	23.9

Xilinx Spartan-3AN 700

Conclusion

- Low-power benchmarks for FPGAs
- B.0: Application independent method for fabric characterisation
- Method based on RNGS and activity modes
- Our measurement show:
 - Process technology improves active power
 - Inactive power increases
 - Lower temperatures reduce deterioration of inactive power
 - Low-power modes currently not sufficient enough
- Download Groundhog 2009:

http://cc.doc.ic.ac.uk/projects/GROUNDHOG/