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Power characteristics of single-mode semiconductor lasers 
Jarosiava Z. Wilcox 
TR W Space and Technology Group, Redondo Beach, California 90278 

Lee W. Casperson 
School of Engineering and Applied Science, University of California, Los Angeles, California 90024 

(Received 13 December 1983; accepted for publication 17 February 1984) 

The basic aspects of power calculations for high-gain semiconductor lasers are briefly reviewed, 
and a straightforward one-dimensional model is described. The relative importance of 
spontaneous emission, distributed losses, band-to-band absorption, and high single-pass gain are 
investigated in detail. 

I. INTRODUCTiON 

One of the basic and easily measured properties of a 
laser oscillator is the total output power. Accordingly, it 
would be especially useful if analytic models were available 
for calculating laser power, at least for those lasers of great
est practical interest. In fact, many such models have been 
developed, and for most lasers, power characteristics can be 
predicted with confidence. Semiconductor lasers have prov
en to be among the most difficult to model, and many aspects 
of diode laser performance are still only poorly understood. 
On the other hand, these same lasers are among the most 
important in terms of practical applications, and successful 
models might have a substantial economic value. The pur
pose of this study is to examine in some detail the power 
characteristics predicted by relatively simple, diode laser 
models. 

Laser action in semiconductors was first reported by 
Ha1l et al., I Nathan et al., 2 Holonyak and Bevacqua,3 and 
Quist et al.,4 in late 1962. It was not long afterward that the 
unique difficulties of modeling semiconductor laser charac
teristics began to be fully appreciated. One particular diffi
culty concerns the very high gain of the laser medium and 
the low reflectivities of typical cleaved laser reflectors. The 
power characteristics of diode lasers including the effects of 
large single-pass gain were first investigated by Scott. 5-7 

Those studies also included the possibility of longitudinal 
spatial hole burning due to standing wave effects in the re
gions of the laser where the right and left traveling waves are 
of approximately equal amplitUde. Similar calculations were 
carried out by Rigrod, excluding any standing wave effects. 8 

In these studies, neither Scott nor Rigrod included the possi
bility of distributed losses or spontaneous emission input. 
The strong z dependence of the fields in a high-gain semicon
ductor laser was also demonstrated experimentally by Ul
brich and Pilkuhn.9 

The specific topic oflongitudinal spatial hole burning in 
low-gain semiconductor lasers was studied by Statz et al. in 
connection with rnultimode oscillation. 10 However, Daniel
meyer argued that under most circumstances carrier diffu
sion would effectively eliminate longitudinal hole burning in 
semiconductors. II More recently, Streifer et al. have sug
gested again that hole burning is a signficant factor in deter
mining a laser's mode structure, 12 but other authors consider 

this effect to be actually or potentially unimportant. 13
-

IS For 
simplicity and consistency with most previous work, longi
tudinal spatial hole burning is not included in the following 
analysis. 

The possibility of analytically including distributed 
losses as well as high gain in calculating a laser output was 
first discussed in detail in a later paper by Rigrod,16 and for 
extremely high-power levels by Whiteaway and Thomp
son. 17 In principle at least, such results could be important 
for diode lasers, where the level of distributed losses is al
ways very high. The exact solutions obtained by Rigrod are 
in the form of implicit transcendental equations, and a more 
extensive discussion of those solutions has been given by 
Schindler. IS 

Spontaneous emission is an effect that influences very 
strongly the power curves of diode lasers. Compared to most 
other laser systems, the amount of spontaneous emission 
noise which enters a diode laser mode is always very high. 
Analytic expressions for the power characteristics of noisy 
low-gain single-mode lasers were derived by Haug l9 and by 
Siegman.2o The corresponding multimode results were ob
tained by Casperson and compared with diode laser data.21 

Approximate solutions of the same equations have been dis
cussed by Suematsu et al., and detailed experimental confir
mation has been obtained.22 The implication of those studies 
is that spontaneous emission is extremely important in diode 
lasers operating below threshold or in the threshold transi
tion region. 

It would be useful to include all of the effects mentioned 
above in a single model of semiconductor laser oscillation, 
and obviously there are many additional effects that might 
be included as well. However, if one is not a bit selective in 
developing a laser model, the analysis quickly becomes in
tractable. One generalization of the previously mentioned 
results has been given by Hunter and Hunter. 23 Those auth
ors have analyzed a one-dimensional single-mode laser in
cluding high gain, distributed losses, and a spontaneous 
emission input, and the results are again in the form of im
plicit transcendental equations. However, since band-to
band absorption is not included, diode laser behavior can not 
be directly interpreted. A recent analysis by Streifer et al. has 
been oriented specifically to semiconductor lasers and has 
included high-gain, band-to-band absorption, spontaneous 
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emission, and multimode effects but excluding saturation. 24 

Very recently, Cassidy has carried out a semianalytica1 com
parison of diode laser models assuming high and low single
pass gain but excluding saturable band-to-band absorp
tion.25 Other authors have chosen to place their laser models 
directly on a computer without any analytical simplifica
tions.26 This procedure has the obvious advantage that in 
principle any model that can be formulated can be solved. 
On the other hand, the solutions may be very slow and costly 
while providing relatively little insight into the underlying 
physical phenomena. The study presented here has been car
ried out in the belief that there is still value in formulations 
which, at least in part, can be solved analytically. 

At the outset, it is appropriate to comment on the gen
eral idea of developing a single-mode model for use with 
semiconductor diode lasers. All laser models inevitably in
volve some approximations (often well obscured), and, in the 
present case, the principal limitation may be found to be our 
restriction to a single-cavity mode. Because of this restric
tion, some quantitative discrepancies can occur when the 
models are applied to multimode devices below or around 
threshold. However, most useful diode lasers are effectively 
single mode when operated above threshold. Also, some 
newer devices use very short cavities or frequency-selective 
filters which make the single-mode model appropriate for all 
operating conditions. Furthermore, as shown below, the di
ode equations are simply related to the equations for other 
laser types, so the results that we obtain are also applicable to 
nondiode single-mode laser systems. 

In Sec. II, a diode laser formalism is developed includ
ing the effects of spontaneous emission, band-to-band ab
sorption, and a large value of the single-pass gain. Some ana
lytic solutions are possible, and exact numerical results are 
given in Sec. III. For several limiting cases, the equations can 
be solved exactly, and a discussion of such limits is included 
in Sec. IV. An approximate explicit formula for power out
put above threshold in high-gain lasers is described in Ap
pendix A, and the results can be expressed in terms of mea
surable quantities using the formulas found in Appendix B. 
For many purposes, the simpler approximations provide an 
adequate description of diode laser performance. 

II. THEORY 

The basic rate equations governing the populations and 
the intensity in many types of single-mode laser can be writ
ten: 

and 

an2 = S2 - A2n2 - B(n2 - n.)(I + + I -I, (1) 
at 

ani = SI + A 21nZ - A1n, + B (n z - nd(I + + I -), (2) 
at 

n aI± aI± 
7-at±a;-

= hvB (n z - n,)/± - aI± + hvA2,Cn2• (3) 

where n2 and n I are the population densities of the upper and 
lower states of the laser transition, S2 and SI are the corre
sponding pump rates. A2 and A, are the corresponding total 
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z=o 

FIG. 1. Schematic distribution of light intensity in the longitudinal direc· 
tion for a laser with mirror refiectivities R, and R r • 

EinsteinA coefficients for spontaneous decay, andA2\ repre
sents that part of the spontaneous decay that goes directly 
from level 2 to level 1. The intensities of the right and left 
traveling waves are represented by I + and I - , respectively, 
B is an effective Einstein B coefficient for the transition, C 
indicates the fraction of the total spontaneous emission that 
is added to the lasing mode, n is the index of refraction, and a 
is the internal absorption loss coefficient. The distribution of 
light intensities in a laser with the mirror reflectivities R( and 
R r is shown schematically in Fig. 1. 

GaAs diode lasers are, for many purposes, two level 
systems, and with slight modification Eqs. (1 H3) can be used 
to represent most of their important saturation characteris
tics. Thus, in the spontaneous emission terms, n2 might be 
replaced by nc , the excess above the thermal equilibrium 
concentration of electrons in the conduction band, and n, 
can become n v , the excess of electrons in the valence band. In 
the stimulated emission terms, n2 and n, are replaced by total 
concentrations of electrons in the corresponding bands. 
Then, with some obvious simplifications for a two-level sys
tem, Eqs. PH3) become 

anc =Sc -An, -B(n, -nu +..:1no)(I+ +1-), (4) 
at 

anv = Sv + An, + B(ne - nu + AnoHI + + I -I, (5) 
at 

and 

n aI ± aI ± 
---+--
c at-az 

= hvB (nc - nu + i!Jno)I± - aI ± + hvACn" (6) 

where ..1no is the thermal equilibrium concentration differ
ence (..1 no < 0). If one assumes in addition that charge neutra
lity is maintained (ne + nu = 0), only two equations are nec
essary, and these can be written 

(7) 

and 

n aI ± aI ± 
---+--
c at-az 

= hvB (2ne + ..1no)/± - aI ± + hvACnc ' (8) 

In one form or another, these equations have been the start
ing point for most analytical treatments of diode laser power 
characteristics. 
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It is convenient to introduce the net intensity gain coef
ficientg = hvB (2nc + Ano). With this definition, the steady
state solution of Eq. (7) is 

g = 2hvBS IA + hvBAno 
1 + (2B IA )(1 + + 1-) 

l+x++x-' 
(9) 

where we have introduced the unsaturated gain 
go = 2hvBS lA, the unsaturated band-to-band absorption 
g' = - hvBAno, and the normalized intensities 
x ± = (2B I A )I ±. With these definitions, Eq. (8) can be 
written 

dx± ± Tz= (g - a)x± + (g+g')C. (10) 

Equations (9) and (10) are a complete set which, in prin
ciple, can be integrated subject to the boundary conditions 
imposed by the resonator mirrors. First, it is helpful to intro
duce the new dependent variables u ± = x ± + C so that 
Eqs. (9) and (10) reduce to 

and 

go-g' 
g = --="---=':----

1 - 2C+ u+ + u-

du± 
±-=(g-a)u± +(a+g')C. 

dz 

(11) 

(12) 

Next, it is useful to introduce the normalized intensity sum 
and difference v± = u+ ± u-, and now Eqs. (11) and (12) 
can be combined and written 

go-g' 
g= , 

1 - 2C+ v+ 
(13) 

and 

dv+ 
-=(g-a)v-, 
dz 

dv-- = (g - a)v+ + 2(a + g')C. 
dz 

(14) 

(15) 

IfEq. (15) is divided by Eq. (14) and combined with Eq. (13), 
one obtains the single equation 

v-dv- =(v+ + 2(a+ g')C(I-2C+V+))dv+.(16) go -g' -a(l- 2C+ v+) 

This equation may be readily integrated, and the result is 

--=--- 2(a +g')C 

2 2 a 

(17) 

where a is an integration constant. Equation (17) is a rela
tionship between the intensities of the right and left traveling 
waves, which is valid for all values of position z in the laser. 
The constant can be expressed in terms of the intensity at one 
end of the laser by means of the boundary conditions at the 
laser mirrors. These conditions can be written 

(18) 

and 

(19) 

where the subscripts I and r refer to the left and right ends of 
the laser, respectively, and the R 's refer to the corresponding 
mirror reflectivities. For example, in terms of x/ , the inte
gration constant is 

Alternatively, with the replacements x / _x,+ and R r -+ 1 I R r' the constant can be written in terms of x,+ . Furthermore, 
since a can be expressed in terms of either x/or x,+ , equating the two expressions yields an algebraic relationship between x /+ 

and x,+ . Finally, the actual intensity at any point in the laser can be obtained by using Eq. (17) to eliminate v - from Eq. (14). 
This yields the first-order differential equation: 

d;; = C !;~! v+ - a ){ v + 2 - 4(a: g')C[ v+ + go: g' :In( go: g' - 1 + 2C - v+ )] + 2a} 1/2, (21) 

where a is given by Eq. (20). This equation can be integrated 
numerically over the resonator length L subject again to the 
boundary conditions. Equation (21) can also be integrated 
analytically in severa11imiting cases: (i) at high power levels 
above the lasing threshold where the spontaneous emission 
can be neglected (C::::;O); (ii) at low power levels below the 
lasing threshold (v+ ::::;C<l); and (iii) for a = 0 as is the case 
in many gas lasers. In any case, integration of Eq. (21) yields 
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yet another relationship (either numerical or analytical) 
between intensities at the ends of the laser, and a combina
tion of the two relationships can be solved for, say, x,+. 

III. GENERAL RESULTS 

As indicated above, general numerical solutions of the 
laser equations can be readily obtained. To simplify the pre-
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sentation, it is helpful to introduce a normalized threshold 
parameter in place of the unsaturated gain, and the conven
tional definition is 

(22) 

where the threshold gain g,h can be related to the unsaturat
ing internal absorption, the band-to-band absorption, and 
the mirror losses by 

g,h =g' + a -In(R[R,)/2L. (23) 

Next, it is necessary to specify some typical numerical 
values of the various parameters of GaAs(Al) diode lasers. 
As an example, we assume a laser length of 300 J.Lm and 
mirror reflectivities of R[ = R, = 0.3. For a length of 300 
J.Lm, Petermann calculates the spontaneous emission factor 
to be in the range 10-5 to 10-4

, depending on the laser astig
matism.27 Estimates for a vary from 15 cm- 1 up to 100 
cm - 1, depending on the laser structure and the material 
quality,28.29 with typical values in the range of 35-45 
cm -1. 12,30 We have adopted the value a = 40 cm - 1 for our 
initial calculations. Stem has calculated the spectral depen
dence of the band-ta-band absorption coefficient obtaining 
the result g' = 190 cm- I for GaAS.31 Other authors have 
used 150,12 190,32 217 cm - I, 33 and other values. We consid
er here only the fundamental transverse mode, for which the 
confinement factor r of optical power in the active region 
ranges between 0.1 and 0.6. The precise value of r depends 
on the aluminum content in the adjacent confining layers 
and on geometrical parameters such as, e.g., the active layer 
thickness. With a confinement factor of r = 0.2 the effective 
value of the band-to-band absorption coefficient would be 
reduced from about 190 cm - 1 to g' = 38 cm -I, and this is a 
reasonable value for CDH LOC lasers with an active layer 
thickness of about 0.1 J.Lm. 28

,32. 

Numerical solutions of the equations given above can 
be readily obtained using a Runge-Kutta method for the z 

integrations with an iterative technique to match the bound
ary conditions at the resonator mirrors. Typical results are 
shown in Fig. 2 using the parameter values mentioned above 

r 

FIG. 2. General curves of normalized laser intensity incident on the right
hand laser facet x, as a function of the threshold parameter r for various 
values of the noise parameter C. The other values used in this figure include 
the mirror reflectivities R, = 0.3 and R, = 0.3, nonsaturating distributed 
intensity loss rate a = 40 em-I, band-ta-band absorption coefficient 
g' = 38 cm -I, and length L = 300 fLm. 
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with a series of values for the spontaneous emission param
eter C. These results have the general form that is commonly 
observed in threshold data for all types oflasers. The lowest 
curve corresponds to a noise value C = 10-4 and is almost 
indistinguishable on this scale from the results that would be 
obtained in the limit C = O. A comparison with experimen
tal data for semiconductor lasers suggests that, if all other 
parameter values are about right, the noise parameter is per
haps somewhat larger than the values mentioned above. This 
is due, in part, to the enhancement factor for narrow-stripe 
gain-guided lasers, and this factor can be as large as a factor 
of to. 34 Multimode effects can also influence the threshold 
transition.2 I ,22 

IV. SPECIAL CASES 

Even though the laser equations that have been devel
oped in the previous sections can be integrated numerically 
without approximations, it is still worthwhile to consider 
certain limiting cases and simplifications. These limits are 
generally much easier to evaluate and yield additional in
sight into the relative importance of the various laser param
eters. In some cases, quantitatively useful results can be ob
tained without the need for complex numerical calculations. 

A. Below threshold 

In one well-known limit, the laser is considered to al
ways remain below threshold, so that the intensity is too 
weak to saturate the amplifying medium. While this limit 
can be obtained directly from Eq. (21), it is actually simpler 
to start from the unsaturated version of Eq. (10). 

dx± (g , )x± C ±Tz= o-g -a +go 

=gx± +goC, (24) 

where g is the net effective gain. This equation can be inte
grated for the right and left propagating intensities, and the 
results are 

and 

x + = g~C [exp(gz) - 1] + x t exp(gz) 
g 

x- = g~C [exp(gz) - 1] + x,- exp(gz). 
g 

(25) 

(26) 

With the boundary conditions given in Eqs. (18) and (19), 
these equations may be solved to obtain, for example, 

x + = CgoL [I - exp(gL l[ I + R[ exp(gL )] . (27) 
, g R[R, exp(2gL ) - 1 

Evidently, in this limit the light output is directly propor
tional to the spontaneous emission coefficient C. 

Equation (27) is plotted in Fig. 3 together with the cor
responding exact solution of the laser equations. As one 
should anticipate, the approximation is excell.ent for oper
ation well below threshold but it diverges to infinity as the 
threshold is approached. The numerical coefficients used in 
these plots are the same as those used in Fig. 2. 
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r 

FIG. 3. Comparison of the simple (a) below-threshold and (e) above-thresh· 
old limits with the (b) general solution of the laser equations. All parameter 
values are the same as in Fig. 2, except that only a noise value ofC = 10- 2 

has been used. 

B. Above threshold 

When a laser operates above threshold, the spontane
ous emission has relatively little effect on the output power. 
Mathematically, this fact is represented by the condition x ± 

>C. Thus, for operation well above threshold, Eq. (17) re
duces to the relationship 

v - 2 = V + 2 + 20, (28) 

and in terms of the normalized intensities this is 

x+ x- = - a12. (29) 

From Eq. (20), the integration constant can be written 

a = - 2x/ 2/R I • 

Also, in the limit of small C, Eq. (21) reduces to 

dv+ = (go-g' _a)<v+ 2 +2a)II2. 
dz 1 + v+ 

Using v+ = x+ + x- with Eq. (29), Eq. (31) becomes 

(30) 

(31) 

dx+ = x+(X+(go - g' -: a) - a(x + 2 - a12)), (32) 
dz x+ +x+ -a12 

and if g' were equal to zero, this would be the same as Eq. (2) 
of Rigrod. 8 Integrating Eq. (32) and using Eq. (30) in the 
resulting equation to eliminate a yields the transcendental 
equation for x/ 

aL -In(R R )1/2 = go - g' ]n (F(Xr+ )) (33) 
I r .1 1/2 F(x/) , 

where 

.1 = (go - g' - a)2 - 4a2Rrx/ 2 

and 

(34) 

, 2a + .. 1/2 
F(xt) = go - g - a - X j 

- ""'. (35) 
go-g' - a - 2ax j+ +.11/2 

Equations (33H35) can be evaluated by any of several 
iterative techniques. A typical plot of these results is given in 
Fig. 3 using the numerical coefficients obtained previously. 
This plot is in reasonable agreement with the exact solution, 
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and the agreement would be stilI better with more realistic 
(smaller) values of the noise parameter C. 

Although straightforward in their derivation, the pre
ceding equations only determine the intensity implicitly. It 
would be very useful if explicit formulas could be obtained. 
In high-gain lasers above threshold, the distributed losses 
represented by the parameter a are less than the gain from 
stimulated emission. In this event, approximate explicit for
mulas for the intensity can be obtained by appropriately ex
panding Eq. (33). This possibility is discussed in Appendix A 
and the resulting formula [Eq. (A2) with the parameter G 
given by Eq. (A 7)] is plotted in Fig. 6. Notice that (i) to derive 
Eq. (A2), no assumption about the homogeneity 16 of the sat
uration was made; (ii) the final formula (A2) reduces to its 
correct limit set by the absorption losses as the laser is 
lengthened; and (iii) the plot is in very good agreement with 
Fig. 2 which was prepared by solving the transcendental Eq. 
(33). 

C. Negligible distributed losses 

The general equations governing laser oscillation also 
simplify substantially for lasers in which distributed losses 
can be neglected entirely (a<ig\). In this limit, Eq. (17) re
duces to 

v - 2 V + 2 2g'C [ v + 2 ] -=-+-- (1-2C)v++-, +a',(36) 
2 2 go - g' 2 

where a' = a + b and where b is independent of v ± . Using 
Eq. (36) and boundary conditions at the laser mirrors, the 
integration constant can be written in tenns of the intensity 
at one end ofthe laser (e.g., vl±) as 

, v,- 2 pvt 2 qvl+ 
a =--------. 

222 
(37) 

Also, the end intensities can be related by the algebraic 
expression 

VI- 2 - pvt 2 - qvt = Vr- 2 - pV/ 2 - qvr+ , (38) 

wherep and q are given by 

2 'C 
p= 1 +-g- (39) 

go-g' 

and 

4g'C(1- 2C) 
q= . 

go-g' 
(40) 

Finally, if Eq. (36) is used to eliminate v-, Eq. (14) for the z 
dependence of the intensity is 

dv+ go-g' (pv+'+qV++2a')1/2. (41) 
dz 1- 2C+ v+ 

Equation (41) can be integrated analytically. Using Eq. 
(37) and a similar equation for v!, in the resulting equation 
yields 

(g ')L + - - 2 1/2 - 2 + P 0 - g VI - Vr 1/2 _ 1 __ P Vr + :pVr + q 
-'-----....:....---p - III • (42) 

I - 2C 2p 1/2VI- + 2pvt + q 

Equation (42) is a transcendental equation relating the inten
sities at the ends of the laser. When combined with Eq. (38) 
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FIG. 4. Comparison of the (a) general light-pump curve (using Ct = 40 
em-I, C = 10-2, g' = 38 em-I, and other parameters as in Fig. 2) with the 
low-loss special cases (b) (a = Oem -I, C"" 10- 2, andg' = 38 em-I) and (c) 
(a = 0 em-I, C = 10- 2, andg' = Oem-I). 

and the boundary conditions, these equations can be solved 
for the intensities at the ends of the laser. The results ob
tained here, neglecting distributed losses, are plotted in Fig. 
4 together with the more general solution described pre
viously, which assumes a distributed loss of a = 40 cm -1. It 
can be observed that in these units the main effect of neglect
ing a is to scale up the output intensity for a given value of 
the threshold parameter. 

A further substantial simplification occurs if g' is also 
negligible. This limit would correspond to the many laser 
systems in which absorption by the lower state is unimpor
tant. If g' is set to zero, Eqs. (36) and (38) simplify to, respec
tively, 

(x+ + e)( x- + e) = - a'/2 (43) 

and 

(x/ + C)( x,- + C) = (x,+ + C)( x r- + e), (44) 

and this result has also been discussed in connection with 
mirrorless lasers. 35 The final formula given in Eq. (42) re
duces to 

goL + (x/ - x,-) - (xr+ - x r-) (xr+ + e) 
------------------------=In . 

1 -2e x/ + e (45) 

Equations (44) and (45) can now be combined with the 
boundary conditions to obtain a relationship for the intensi
ty incident on the laser mirrors, and these results are also 
plotted in Fig. 4. It is clear that the main effect of neglecting 
g' is to reduce the laser output. 

D. low gain approximation 

The power characteristics of a diode laser can be calcu
lated in a relatively straightforward way if the net gain per 
pass is assumed to be small. This assumption forms the basis 
for many laser studies, but its validity for diode lasers is not 
self evident. Even when the low-gain approximation is not 
strictly valid, however, the enormous simplifications that 
result may still justify its use. 

If the gain per pass is sma[1, both x+ and x- may be 
approximated by a single parameter X,36 and Eqs. (9) and (10) 
become 
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and 

dx - = (g - a) x + (g + g')C 
dz 

g=go-g'. 
1 + 2x 

(46) 

(47) 

Equating the increase in intensity in one round trip with the 
mirror losses leads to the result 

..1 x = 2(go-g')L(x+C) -2L(ax-g'e) 
1 +2x 

= (1 - Rdx + (I - Rr}x. (48) 

This is a quadratic equation in x, and in standard form it 
looks like 

x 2 
- ~,(go - g' + 2Cg' - a') - ~ = 0, (49) 

where distributed losses and mirror losses have been com
bined in the parameter 

(l-R,)+(l-Rr) 
a'=a+ . 

2L 

Also, in this approximation Eq. (23) is replaced by 

gth =g' +a'. 

(50) 

(51) 

The solutions ofEq. (48) are plotted in Fig. 5 and com
pared with the exact solutions of the high-gain laser equa
tions. Evidently, the main effect of neglecting the large sin
gle-pass gain is to underestimate the laser output. 

V. DISCUSSION 

In this study, we have reviewed techniques for calculat
ing the power characteristics of single-mode diode lasers, 
and several new analytical and semianalytical procedures 
have been developed. By comparing these various proce
dures, it becomes possible to decide in a rational way what 
might be the most appropriate model to use in characterizing 
a particular laser configuration. Many of these models in
volve simple solutions of transcendental equations rather 
than numerical integration of differential equations, and in 
some cases explicit intensity formulas can be obtained. 
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FIG. 5. Comparison of (a) the general solution of the laser equations (using 
C = 10 - ~ and otherwise the same parameters as in Fig. 2). and (b) the corre
sponding low-gain approximation. 
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Some more specific consequences of these models can 
also be noted. First, for most laser applications, the effective 
noise parameter C can be neglected entirely if its value is 
below about 10-4

• For diode lasers the spontaneous emis
sion noise has a significant effect near the laser threshold, but 
for other laser types, noise could be neglected even near 
threshold with a consequent simplification of the analysis. In 
particular, a transcendental equation is obtained; and if the 
distributed losses are less than the gain from stimulated 
emission, the intensity above threshold is given by an explicit 
formula. 

Several additional effects have also been considered 
here including distributed losses, band-to-band absorption, 
and large single-pass gain. Distributed losses tend to reduce 
the slope of the power curve above threshold, while the effect 
of neglecting band-to-band absorption is to underestimate 
the laser output for a given value of the pumping parameter 
r. Using the low-gain approximation may also reduce the 
theoretical laser output. Thus, in all cases, neglect of these 
effects leads to quantitative errors in the predicted laser pow
er characteristics, though for some qualitative applications 
the results may still be adequate. The techniques and graphs 
presented here should provide an imprOVed basis for decid
ing how detailed a laser model is needed for a particular 
application. 

Finally, it may be useflll to relate the threshold condi
tion to device physical and geometrical parameters. This 
possibility is discussed in Appendix B for "well-behaved" 
lasers with a constant thickness of the active layer. An ex
plicit formula for the light intensity above threshold is de
scribed in Appendix A. Using this formula and integrating 
over the laser cross section, Appendix B also gives an explicit 
expression for the output power in injection lasers above 
threshold in terms of the injection current and other device 
parameters. 
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APPENDIX A: EXPLICIT EXPRESSION FOR x/ ABOVE 
THRESHOLD 

Since Eqs. (33H3S) only determine x/ implicitly, they 
are somewhat cumbersome to use. To more clearly exhibit 
the main features of the power output characteristics, an 
explicit formula would be desirable. An approximate for
mula can be obtained by expanding Eq. (33) in the limit that 
the internal absorption loss is less than the gain from stimu
lated emission, or more specifically when 

a< go -g' (AI) 
1+ 2x/(R,)I/2 

Keeping only the lowest order corrections in (go - gth), this 
yields, after some algebra 
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l __ a_ 
+ L (go - gth) go - g' 

x ~ --------~~~----, R (1+ 2aL(gO-gth) G)' 
(go -g') 

(A2) 

wheregth is defined by Eq. (23) of the main text andR and G 
are given by 

R = [1 + (R,IR J)I/2] {I - (R,R J)I/2] (A3) 

and 

(A4) 

Equation (A2) provides a qualitatively correct descrip
tion of the light output above threshold. Notice that for 
a = 0, Eq. (A2) reduces to the familiar expression that is 
linear with the excess gain (go - gth) and is used for describ
ing the light output for many types of lasers. For diode la
sers, a is not negligible, resulting in a reduced slope. Notice, 
furthermore, that for very large a, Eq. (A2) shows that the 
light output can become nonlinear; with increasing pumping 
levels, the output is first superlinear and then approaches a 
linear asymptote with a reduced slope 

1 
1. . + R 
tmtt x, 

Bo>S,h L (go - gth ) 
(AS) 

1 +2aLG 

However, since only the lowest order corrections in 
(go - gth) were kept in Eq. (A2), the numerical value of Gis 
not expected to be exactly correct. A better value of G can be 
obtained by requiring that the output approach an upper 
limit set by the absorption losses as the laser is lengthened. 
Using Eqs. (33) and (34) one obtains 

limi't + _ go - g' - a x - . 
L-+oo' 2a(R,)1/2 

(A6) 

Taking the corresponding limit of £--...fXJ in Eq. (A2) and 
comparing the result with Eq. (A6) suggests that 

G = (R,)1/2IR. (A7) 

A typical plot ofEq. (A2) with G defined by Eq. (A 7) is given 
in Fig. 6. The plot is in very good agreement with Fig. 2 of the 
main text which was prepared by solving the transcendental 
Eq. (33). Notice that rather than to introduce nonlinearities, 
the effect of a is to (nearly) uniformly reduce the slope every
where above theshold in Fig. 6. 
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FIG. 6. Comparison of (a) the general solution of the laser equations (using 
C = 0 and otherwise the same parameters as in Fig. 2). and (b) the corre
sponding explicit approximation. 
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It may be important to know how good an approxima
tion Eq. (A2) really is. Notice, first, that unlike Eq. (16) of 
Rigrod's 16 paper, though somewhat similar in form, deriva
tion ofEq. (A2) required no assumption about homogeneous 
saturation. Furthermore, Eq. (A2) is applicable also to lasers 
in which the absorption by the lower level may be large 
(g' #0). On the other hand, constraint (A I), to which Eq. (A2) 
is subjected, may be of concern. A careful inspection reveals 
however that Eq. (AI) is always satisfied above threshold, 
unless the total distributed losses are very large, i.e., unless 
aL> 1. Thus, Eq. (A2), with G defined by Eq. (A 7), is a good 
approximation to the exact solution in high-gain lasers ever
ywhere above threshold. 

APPENDIXB 

It may be useful to relate the threshold condition to 
device geometrical and physical parameters. This is accom
plished by integrating24 the starting Eqs. (7) and (8) over the 
laser cross section. In the so-called effective index approxi
mation for a constant thickness of the active layer,32 this 
yields equations which are particularily simple; the equa
tions are of the same form as Eqs. (7) and (8) except that the 
carrier density and flux intensities are replaced by their total 
and, where appropriate, overlapping populations. Thus 
I± -P ±, nc-Nc, nJ ±-NcP ± ISelf , and ,JnoI ± 

-F,Jn,J> ±, where P ± is the total energy flux, Nc is the 
electron population per unit length, F is the modal confine
ment factor in the transverse direction, and the laser effec
tive cross-section area is 

(Bl) 

where d is the active layer thickness and Wolf is the effective 
width in the lateral direction first introduced by Peter
mann27 

(B2) 

The pumping rate S is replaced by the integrated rate 
51 = SSdxdy, and for injection lasers is related to the injec
tion current J as 51 = TJiJ leL where T}i is the internal quan
tum efficiency and e is the electronic charge. 

Introducing normalized intensities x ± = (2BP± I 
ASelf ) and go = (2hvB51 I A Self ), the resulting equations are of 
the same form and are integrated in the same way as are Eqs. 
(9) and (to) of the main text. The threshold currentJ th is then 
calculated by setting go = gth from which 

(
ASelf ) J th = (eLITJ;) -- gth, 
2hvB 

(B3) 

where gth is given by Eq. (23) and in which g' is reduced by 
the factor r. 

In injection lasers, A has the meaning of the spontane
ous recombination lifetime, A = Ts- I. Using that 
- hvB,Jno = g', the unsaturated band-to-band absorption 

coefficient, Eqs. (B3) and (AS) for power output above 
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threshold can finally be rewritten in terms of measurable 
quantities as 

eL ,JnoSelf 

"Ii 2g' 
(B4) 

and 

hVTJ· Tr J J 
P tout = -e-' R (1 + 2aLG) ( - th)' 

(B5) 

where J is the injection current, Rand G are defined by Eqs. 
(A3) and (A 7), respectively, and Tr is the intensity transmis
sion coefficient of the right-hand mirror. We note that other 
results of this paper, the general ones or for other limiting 
cases, can be related to measurable quantities using similar 
transformations. 
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