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Abstract

In this paper, we study power conservation techniques
for multi-attribute queries on wireless data broadcast chan-
nels. Indexing data on broadcast channels can improve
client filtering capability, while clustering and scheduling
can reduce both access time and tune-in time. Thus, in-
dexing techniques should be coupled with clustering and
scheduling methods to reduce the battery power consump-
tion of mobile computers. In this study, three indexing
schemes for multi-attribute queries, namely, index tree, sig-
nature, and hybrid index, are discussed. We develop cost
models for these three indexing schemes and evaluate their
performance based on multi-attribute queries on wireless
data broadcast channels.

1 Introduction

Wireless communication and mobile computing have
gained much attention from the computer and communica
tion research community. Among the various issues under
study, efficient utilization of limited wirel ess bandwidth and
battery power is critical for disseminating information to a
large user population.

Wireless broadcast is an attractive approach for data dis-
semination, because it allows simultaneous information ac-
cess by an arbitrary number of users, and thus facilitates
efficient bandwidth usage. Meanwhile, mobile computers
accessing data by monitoring broadcast channels consume
less battery power than those accessing data by sending re-
guests through traditional point-to-point communications.
A lot of studies on data broadcast have appeared in the lit-
erature[1, 2, 9, 10, 3].

Power conservation techniques for broadcast data man-
agement include indexing methods and data organization
methods (i.e., clustering and scheduling). Among the pro-
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posed indexing techniques, signature[8] and index-tree [7]
methods represent two major classes® of indexing tech-
niques for data broadcast. Evaluation has been conducted
on each of the indexing technique. In recent papers [4, 5],
we examined these two indexing techniques based on clus-
tering and scheduling, and proposed a hybrid indexing
method which combined the strength of the signature and
index-tree methods.

All of the above studies focused on data management
techniques for single-attribute based queries. In the red
world applications, data items usually contain multiple at-
tributes. Thus, multi-attribute based queries may provide
more precise information to the users. In this paper, we
investigate the issues of multiple-attribute based queries
on wireless data broadcast channels. We study three dif-
ferent power conservative indexing techniques, namely in-
dex tree, signature, and hybrid, and their supporting data
organizations for broadcast of multi-attribute data items.
For each method, query processing algorithms for multi-
attribute queries are presented. We develop cost modelsand
evaluate the access time? and tune-in time® for the multi-
ple attribute queries. Finaly, empirical comparisons of the
query performance are conducted.

The rest of the paper is organized as follows. Section
2 gives an informal introduction of the broadcast channels.
In Section 3, indexing techniques and access methods for
multiple attributes are introduced. Section 4 evaluates the
indexing techniques and query efficiency for multiple at-
tributes. Finally, Section 5 concludes the paper.

2 Wirdess Data Broadcast

In awireless data broadcast environment, a base station
maintains a set of records for formatted data and multime-

1In [6], hashing and flexible indexing methods were explored.

2The average time elapsed from the moment a query is issued to the
moment when all the requested data frames are received.

3The period of time spent by a mobile computer staying active in order
to obtain the requested data.



dia such as text, image, audio and video. To facilitate our
discussion, we assume that each record consists of a num-
ber of common attributes. To support broadcast data deliv-
ery, the base station periodically deliverstheserecordsto its
clients as a series of data frames through one shared broad-
cast channel. A data frame, the logical unit of informa-
tion broadcasted on the air, consists of packets* which are
the physical units of broadcast. A frame contains a header
for synchronization and meta-information that indicates the
type and length of the frame. Since data frames are peri-
odically broadcast, a complete broadcast of data framesis
called abroadcast cycle. From the user’s viewpoint, broad-
cast data are perceived as a stream of frames flowing along
the time axis. Logically, there is no specific start and end
frame for a broadcast cycle. A broadcast cycle starts with
any frame and ends when the frame appears again. Updates
to the frames are reflected between successive broadcast cy-
cles. To receivethe framesfrom the air, mobile applications
or users issue queries which specify values for one or mul-
tiple common attributes to their mobile computers. Asare-
sult, the mobile computers monitor the broadcast channels
and return the frames that satisfy these queries.

Indexing techniques is based on the idea that by inter-
leaving auxiliary information with data frames on broadcast
channels, mobile computers are able to predict the arrival
of requested data frames. Hence, by staying in doze mode
most of the time and only waking up to receive the data
when they arrive (also called selected tune-in), power con-
sumption of the mobile clients can be conserved. Since only
the qualified data are retrieved into the mobile clients, CPU
time and cache space are al so saved.

In addition to indexing, broadcast data organization and
data access methods are two other magjor factors determin-
ing the access time and the tune-in time of mobile comput-
ers. Inthefollowing, wefirst discuss the assumptions about
scheduling and clustering we make in this paper. Theinten-
tion is to fix the related parameters about data organization
on broadcast channel, so that we can focus on the indexing
techniques and access methods in the next section.

Data scheduling determines the contents of the broad-
cast cycle and the broadcast frequency of the data frames
[1, 9, 10] (i.e., the hot data set for broadcast and the rela-
tive broadcast frequency of each frame). A simple broad-
cast schedule, called flat broadcast, is to broadcast each
data frame once in every cycle [1]. Since the client access
pattern for an attribute is usually skewed (i.e., some data
are accessed more frequently than others), another schedul-
ing method, called broadcast disks, was proposed in [1].
Broadcast disks broadcast important data more often than
the other data to reduce the average access time for queries
based on that attribute value. However, broadcast disks in-

4In our analysis, we assume that the size of a data frame is a multiple
of the packet size.

crease the length of a broadcast cycle and the client has to
spend more time to retrieve the less commonly requested
data. For multi-attribute data records, a cycle can be orga-
nized in broadcast disks based on one of attributes. Due
to data frame duplication, queries other than that attribute
may take longer to answer. Therefore, broadcast disks are
not efficient for datarecordswith multiple attributes. Inthis
paper we assume that flat broadcast scheduling is used.

Data clustering refers to arranging the data items with
the same value for a specific attribute to appear consecu-
tively in a broadcast cycle [5, 6, 7]. By monitoring the ar-
rival of the first data item with the desired attribute value,
the client can retrieve all of the successive data items with
the same attribute value. However, similar to data schedul-
ing, a broadcast cycle can only be clustered based on one
attribute. We call this attribute the clustered attribute and
the other attributes the non-clustered attributes. Although
the other attributes are non-clustered in the cycle, a second
attribute can be chosen to cluster the data items within a
data cluster of the clustered attribute. In turns, a third at-
tribute can be chosen to cluster the data items within a data
cluster of the second attribute.

For each non-clustered attribute, the broadcast cycle can
be partitioned into a number of segments called meta seg-
ments[7], each of which holding a sequence of frameswith
non-decreasing (or non-increasing) values of that attribute.
Thus, when we look at each individual meta segment, the
dataframesare clustered on that attribute and indexing tech-
niques designed for clustered data broadcast can still be ap-
plied within the meta segment. To facilitate our study, we
define the number of meta segments in the broadcast cycle
for an attribute as the scattering factor ® of the attribute. For
multiple attributes, the broadcast cycle is partitioned into
meta segments for each attribute in the order of decreas-
ing access frequency. The scattering factors of an attribute
increases as the importance of the attribute decreases. Orga-
nizing data broadcast with the clustering structure discussed
above can improveretrieval efficiency. Thus, in this paper,
we assume that the data frames within a broadcast cycle
are partitioned into meta segments based on the first r at-
tributes.

3 Multiple Attribute Indexing Techniques

In this section, we investigate the application of the in-
dex tree, the signature and the hybrid techniques to broad-
cast datawith multiple attributes. The cost models of access
time and tune-in time for the investigated indexing tech-
niques are derived. The comparisons among these three
techniques based on access time and tune-in time are pre-
sented in the next section. To save space, we do not repeat

5To simplify our discussion, we neglect the variance of the meta seg-
ment size.



the basic index tree, signature and hybrid techniquesin the
paper. Reader can refer to [5, 7, 8] for detail.

Before we discuss the multi-attribute indexing tech-
niques and their associated access methods, we first de-
scribe the system parameters used in the study. We assume
that there are m common attributes in each data frame and
the attributes are sorted based on their access frequency. Let
the ordered attributes be a1 ,as,...,a,, and their probabili-
ties contained in a query be p1,p2,....pm, Where p; > piy1
(1 <1i < m). a1, cdled major attribute, is the most fre-
guently accessed attribute and all other attributes are called
minor attributes. The minor attribute a,,, is the least ac-
cessed attribute. Indexes are built on multiple attributes
(i.e. the frequently accessed attributes, a1 ,as,...,a, Where
1 < r < m). Therest of the system parameters are defined
in Table 1.

Table 1. System Parameter
Information frame number in a broadcast cycle
Average packet number in an information frame
Attribute number in aframe
Indexed attribute number in aframe (0 < r < m)
Attribute number inaquery (1 < g < m)
percentage of frames with required attribute value
p; | Probability of queriesbased ona;

3|l =

|| =

~.

A multi-attribute query usually contains multiple at-
tributes and consists of many combinations of Boolean op-
erators, such as conjunction (A) and disjunction(v). Since
it is difficult to consider all combinations in a study, we
choose the queries with either al conjunction or al dis-
junction operators as the representative multiple attribute
queriesfor evaluation.

Let Q{a},...,a,} denote a query with ¢ attributes,
where the attributes a} (1 < ¢ < ¢ < m) are sorted
according to the order they are indexed. Without loss of
generality, we assume that ¢ attributes are the first ¢ fre-
quently accessed attributes, ay, ..., a,. @{a1 A...Aa,} and
Q{a1 V...V a,} aretheonly two query expressions. This
is the minimal configuration to cover the common queries
involved.

To provide the comparison baseline, we first introduce
the non index approach (denoted non-index). Since every
arriving frame must be retrieved into the client cache to
check against the attribute values specified in the query, the
tune-intimeisvery long and isequal to the accesstime. The
estimated accesstime and tune-intimefor Q{a1 A...Aa4}
isasfollows.

Alar N...Nag) = Tl AN...Nay)
= P-F-(1/2+8))
wherea; isclustered. A andT', hereafter, are used to denote

the access time and tune-in time of the queries. For Q{a; V
...V aq}, the client must scan the entire broadcast cycle to

retrieve the desired frames:
Al V... Vag)=T(@V...Va;) = P-F

3.1 The Index Tree Method

For amultiple-attribute data set, we can build index trees
for each attribute separately. Several factors influence the
order of attribute indexesin a cycle. To reduce index tree
overhead for multiple attributes, the index tree should be
built in the order that the attribute with the highest selectiv-
ity isindexed first. Inthisway, the clustered dataframescan
be received successively. On the other hand, to achieve the
best average system performance, index should be built in
the order of access frequency such that the higher the access
frequency the higher the priority in choosing an attribute for
indexing. From the index point of view, an index built on
an attribute with a lower selectivity is better, because low
selectivity attribute has high partitioning power and conse-
quently high filtering capability. Obviously, the factors of
selectivity and access probability have contradicting effects.
We have to balance the access probability and the attribute
selectivity to determinethe order of attributesto beindexed.

Based on research results in [5, 7], data access is more
efficient for clustered attribute than for non-clustered at-
tribute. For example, both access time and tune-in time are
improved by clustering. In addition, index built on clus-
tered attribute requires less overhead than that built on non-
clustered attributes. Since data frames can be clustered on
at most one attribute, we choose to cluster data framesin a
broadcast cycle based on major attribute (i.e., a1). Thus, the
minor attributesare non-clustered. Let I = {a,...,a,} be
the set of indexed attributes. The broadcast cycle is parti-
tioned separately for each attribute in I ordered from a | to
a,. Hence, the scattering factor for a;, denoted as M, in-
creases with 7. The index tree overhead of a; depends on
M;. Hence, the smaller the subscript of the attribute in I,
the lower the index overhead.

Since the broadcast channel is a linear medium and the
index information increases the length of the cycle, index
for an attribute influences the performance of queries based
on not only that attribute but of those based on other at-
tributes as well. When M; (where i > r) is too large,
constructing a distributed indexing tree on a ; does not help
improve tune-in time much but resultsin a high index over-
head. For example, the broadcast cycle can become very
long and the access time for queries based on any attribute
increases considerably. In this case, non-index is a better
approach.

The velue of M; depends on S; and the inter-relation
among a;, where 1 < ¢ < j. However, the dependency
among the attributes is difficult to determine because it is
most likely semantic-based and it may vary from applica-
tion to application. To simplify the cost model, we as-



sumethat the attributes are randomand independent. Based
on this assumption, a simple estimate on M; is M; =

1/TI0 s;.

Table 2. Parameter for Index Tree

h; | Height of the whole index tree built for a;

t; | Height of the replicated tree part for a;

N | Number of packetsin anindex tree node

n | Search-key plus pointer number a node holds

Table 2 describes the parameter settings for index tree
cost models. In addition, we let X [h] and X [¢] be the total
number of nodes of thefull index tree and the replicated part
of the index tree, respectively. Also, the number of nodes
in the i-th level of the index tree is denoted as L[i]. For
multi-attribute indexing, extra index information increases
thecyclelengthto P-F+N-37"_, E; packets where E; is
the total number of index nodes allocatedto a ;. For a; (j #
1), thereis an index tree constructed for each meta segment.
Therefore, there are M ; index trees corresponding to a ;.
Since eachindex treehas X [h ;] + L[t; 4+ 1] — 1 index nodes
alocated for a; within a meta segment, the total overhead
incurred in building index trees for a ; in a broadcast cycle
isEj = Mj - (X[h;] + L[t; + 1] — 1) nodes.

To simplify the cost models, we average the index tree
overhead to each data frame so that the size of aframeis
considered to consist of a data part and an index overhead
part. Of course, the actual index tree overhead for each data
frameis different, but from the statistical point of view we
can assumethat all dataframes have the same averageindex
tree overhead which is TREE = N - 3'_| E;/F. The
replicated index tree part for a; is broadcast every 1/L[t; +
1] of each meta segment. The data frames are divided into
M; - L[t; + 1] data segments with replicated index nodes at
the beginning of each data segment. Thelength of each data
segmentis (P-F+N -3, Ej)/(M;- L[t; +1]). Hence,
the initial probe time for the index tree built for a; can be
estimated as follows[7],

P-F+N-Z§:1E]
2. M; - L[t; + 1]
Inthefollowing paragraph, for conjunction operators (A)
and digunction operators (V), their access methods are de-
scribed and then the cost formulae are derived. The general
access method for Q{ay A --- Aag}is:

Search: FOR each query attribute a; DO
e Initial probe for the index tree built based on a;
within the data segment qualified for a;_1.
e Search the index tree built based on a;: the client
follows a list of pointers to find out the arrival
time of the desired data frame.

PROBE"* =

Retrieval: Scan the current meta segment for the desired
data frames. At the end of the meta segment a jump

is made to the other meta segments where the client
should examine whether that meta segment is qualified
for the attributes a, . . ., a, contained in the query.
Theaccesstimefor Q{a; A...Aa,} isupper bounded by:
AT () AL A ay)
= initia probetime for major attribute index +
waiting time for first desired data segment +
access time for desired data within the segment
P-F+N-Y'_
2

Thetune-intimefor Q{a1 A ... Aa,} dependson the num-
ber of levelsin the index trees for a;, 1 < i < r and the
selectivity of the conjunction query. Theinitial probe of the
client is to find the occurrence of the control index for a ;.
The control index directs the client to the required higher
level index tree nodes for a;. A search in the index treeis
conducted and the last pointer in the index tree pointsto the
occurrence of the desired data segment. Within that data
segment, a probe for index tree for a, is conducted. Once
the index tree for as is obtained, a search in the index tree
is carried out to find the data segment which matches as.
The filtering process continues with all other attributes in-
volved with the query. Finally, the data frames of interests
arereceived. Thetune-intimeis obtained as follows:

T (qy A /\aq)
= (1+ Zh

wherel = min(r,q) and Hﬁzl S; isthe number of matched

itemsfor @Q{a1 A ... Aa}.

For Q{a1 V ...V a,}, the client monitors the channel
for every index tree built on the attributes in the query as
if the client queries each of the ¢ attributes simultaneously,
but within one scan. The following is the access method:
Initial probe: For any index trees built on a4, ..., a,, the

client tunesinto the broadcast channel and determines
when the next index tree nodes for the data frames are
broadcast.

Search: For each index tree built on a;, .. ., a,, the client
follows alist of pointersto find out the arrival time of
the desired data frame.

Retrieval: The client tunes into the broadcast channel to
download all the qualified frames.

= PROBEY" 4 4P-S-

l
N+ (1+F- HS

i=1

The accesstimefor Q{a: Vv . ..
AT (g V..V ay,)
= initial probetime +
waiting time for retrieving all desired frames

Voag}is,

= PROBE;+P-F+N-)Y E;
j=1



and thetune-intimefor Q{a; Vv ...
ifr<gq
T, Vv...Va,) = r-N+P-F

V a,} isasfollows:

dse(ie,g<r)

Tidz (@1 V... Vay)

1+Zh
P. ZM +F.P- Z ’+IS’< >

where the number of true matchesis no greater than P - F' -
! (=1)itigi < 3 > and S =maz{S;:1<i<q}.

3.2 Signature for Multiple Attributes

Table 3. Parameters for Signature Scheme

P; | aframefase drop probability for a;

be asimple signature false drop probability

P] | anintegrated sig. false drop probability

k number of framesindexed by an integrated sig.

l; average number of true matchesin aframe group
P number of bitsin apacket

Rs | number of packetsasimple signature takes

Ry | number of packetsof an integrated sig. takes

s number of bit strings superimposed into a sig.

For the index tree method, thereis an index tree for each
indexed attribute. Therefore, the index overhead is directly
proportional to the number of indexed attributes. For the
signature method, one signature can provideindex informa-
tion to all attributes. The index overhead is much lessinflu-
enced by the number of attributes and the access method is
simpler than the index tree method.

Table 3 defines the parameters for signature cost mod-
els. For multi-attribute indexing, the multi-level signature
method is the best approach [8, 5] and is used in this paper
for dataindexing. We assumethat every attributeisindexed
in the signature (i.e.,, r = m). The the signature false drop
probability for either simple signature or integrated signa-
ture can be estimated as follows [8]:

LEMMA 1 (Optimal false drop probability) Given the
size of a signature, R, hereafter denotes either Rg or
Ry, and the number of bit strings superimposed into the

signature s, the false drop probability for the signatureis:
Pf _PI 92— R-(pIn2)/s

We define P; asthe false drop probability of adataframe
for queries based on a;. P; has two components PJ{ and

Pfs, which, respectively, reflects the false drops introduced

by the integrated signature and the simple signature. Based
on [8], we derive the estimate of P; asfollow:

P = ((1/k—=T[Si/l;1)-Pf-(k-Rs/P+k-P;)+
[Si/li] - (k _li)'Pf)/( - 5;) (2)

To simplify our discussion, we assume that frames with
the same attribute value for a; (1 < i < m) are evenly
distributed in each meta segment. Consequently, the aver-
age number of frames with the same value for a; in each
metasegment is [F - S;/M;]. Let k be the number of data
frames grouped in an integrated signature. The number of
distinct attribute valuesin & dataframes can be estimated as
[k/[F-S;/M;]]. For framesin ameta segment partitioned
for a;, the average number of qualified frames correspond-
ing to amatched integrated signature, called locality of true
matches; (1 < 1; < kfor1 < i < r), can be estimated as,

For randomly distributed frames, the locality of true
matches corresponding to a; (r < i < m), l;, equasto
1. Since each dataframe contains m attribute values® corre-
sponding to ay, ..., a,, the expected distinct superimposed
bit strings, s, for an integrated signature can be estimated
as, s =y .-, [k/l;], where [k/l;] is the expected number
of distinct bit strings superimposed for a;.

To simplify the estimates of the tune-in time, the ini-
tial probe for the integrated signature is a true match.
The average waiting time for retrieving one data frame is
SIGs + SIGy + P, where SIGg and SIG |, the average
simple and integrated signature overheads for a data frame,
canbecaculaedas SIGs = Rs and SIG; = Ry /k.

Generally speaking the length of asignature (R s or Ry)
isvery small comparedto adataframe(i.e.,, P >> R). Oth-
erwise, both the access time and the tune-in time would be
large. Therefore, the time for the client to filter out the par-
tial signature and the partial dataframe, called initial probe
time, can be be approximated as half of the dataframe size,
PROBE = P/2. Thetune-intimein the initia probe pe-
riod isthe expected sum of thetimewhen the client is active
for filtering a partial simple signature, a partial integrated
signature, and a partial data frame. For similar reasons, the
tune-intimefor filtering apartial signatureis negligibleand
theinitia tune-in time can be approximated as P/2.

One magjor difference between the index tree and the sig-
nature method is that an index tree node is good for only
one indexed attribute, while a signature contains the infor-
mation for all indexed attributes. Therefore, the client first
retrieves the signature into the cache, by scanning that sig-
nature, the client knows whether the associated data frame
matches more than one attribute. Only when the signature

6We assume that the hashed attribute values for different attributes are
not the same (i.e., independent event). Therefore, the number of distinct
bit strings superimposed into a simple signature for m attributesis m.



matchesall query attributes, isthe corresponding dataframe
fetched into the cache.

We devel op the access method for queries @{ai A ... A
aq} as follows. Signature match for a4 is conducted first.
Matched signatures (either true match or false drops) are
subjected to further signature matches based on the other
query attribute values.

Initial probe: The client tunes into the broadcast channel
for thefirst recelved signature
Filtering: For each signature received in a broadcast cycle
do the following:
for each query attribute a;,

IF the signature does not match the query
signature based on attribute a ;

THEN repeat the filtering step
Retrieval and checking: Theclient retrievesframescorre-

sponding to the matched signature for further checking
to eliminate false drops. Repeat filtering step.

For Q{ai A ... A a,}, theaccesstimeis:
A% (ay A A ay)
= initial probetime +
filtering time for the first desired frame +
retrieving time for all the desired frames
= PROBE +CYCLE/2+ S, F
= P/2+F - (SIGr+ SIGs+P)/2+P-S,-F

Thetune-intimefor Q{a1 A ... A a4} is

T (a1 A ... A ay)
= thetune-intimeintheinitia probe period +
true match data frames in the broadcast +
every integrated signaturein half the cycle +
simple sig associated with qualified integrated sig +
false drop dataframesin half the cycle

P g F
= 5+P-F'£[15i+5'(31/k+fsl/ll]k'Rs)

+false drop dataframesin half the broadcast

IN

P g F
5—|—P-F~HS¢+§~(R1//€+ [S1/li]k - Rs)

i=1

q
+P-F-Y (q-S™"-DTH7 /2

i=1

where the number of true matches is estimated as F' -
4.8 8 =maz{S; : 1 <i < q}. Pjisgivenin
Equation (1). P; - (1 — S;) isthe false drop probability for
a;. D =max{P;- (1-5;):1<i<q}.
For aquery @Q{a1 V...V a,}, theaccessmethodis:

Initial probe: The client tunes into the broadcast channel
for the frame signature in a broadcast cycle.

Filtering: The client tunes into retrieve the signatures ar-
riving and matches the frame signatures with the sig-
natures for any attribute veluesinay, - - -, aq.

Retrieval and checking: For the matched signatures, the
client tunes into get the corresponding data frames
from the channel for further checking to eliminate false
drops.

The accesstimefor Q{a, V...V a,}is

A% (ay V... Vay,)
= initial probetime + abroadcast cycle
= P/2+F (SIG;r+ SIGs + P)

and thetune-intimefor Q{a; V...V a,} isupper bounded
by:
T (a1 V...V ay)
= tune-intimeintheinitial probe period +
true match data framesin the cycle +
every integrated signature in the cycle +
simple sig associated with qualified integrated sig +
false drop dataframesin the cycle

P/2+F~P-i(—1)i+15i< e > +

7

IN

F-(R;/k+[Si1/l]k-Rs)+
false drop data framesin the whole broadcast

P/2+F~P-2q:(—1)i+1si< g > +
F-(R;/k+ f;;/ll]k“RS)—F

P'F‘zq:((l—si)'Pz’)

IN

where the number of true matchesisno greater than P - F -
! (—pittg ( g ) and S = maz{S; : 1 <i < q}.

3.3 The Hybrid Methods

The hybrid index consists of two parts. sparseindex tree
and signature. The sparsetreeis built on the mgjor attribute
and used for global filtering. The multi-level signature is
used to carry out the local filtering based on attribute values
specified inthe queries. Inthisway, theindex tree part helps
improvetune-intime of theclient. The averagewaiting time
for retrieving one data frame from the broadcast cycle can
be expressed as.

TREE+SIG+P = N-(X[ti+1]—1)/F+R-(14+1/k)+P



where TREE and SIG respectively are the index over-
heads of the index tree part and the signature part of a
frame. The average number of data frames in one data
block, F[B], can be calculated in a similar way as in the
index tree method, which is F'/L[t, + 1]. Thus, the over-
heads of the index tree and the signatures in a data block
aeF[B]-TREE and F[B]-SIG, respectively. Hence, the
averageinitia probetimefor the signature and the length of
acycleisgiven by:

PROBE"?
CYCLE""

(TREE + SIG + P)/2
(TREE + SIG + P) - F

The access method for a query Q{ai A ... A a,} iSas
follows:
If a; isthemajor attribute
e based on the single index tree access protocol to
retrieve the frame block which contains all the
frames satisfying the value for a
e successive signature matches based on
{as,...,as} are conducted to filter out the
desired frames

Else based on the signature access method to retrieve the
qualified frames based on {ay,...,a,}. The sparse
index tree is skipped.

Therefore, the accesstime for Q{a1 A ... A a4} is:

A" AL N ay)
= PROBE™' 4+ CYCLE™*/2+F.S,-P
(TREE+ SIG+P)-(1+F)/2+F-S,-P
The tune-in time primarily depends on the initial probe of
the client to determine the next occurrence of the sparsein-
dex, the access time for the index tree part which equalsto
the number of levelst; of the sparse index tree, the tune-in

time for the data block B, and the selectivity of the query
Q{a1 A ... ANag}. Therefore, it is upper bounded by:

T" (a1 A ... ANay)

= (1+t1)-N+T(B)+(1+F~ﬁ5j)~P

where T'(B) is the tune-in time for filtering the data block
B with the signature method, which can be estimated as:
T(B) = everysiginthedatablock B +

false drop dataframesin datablock B (2)

For Q{a; V ...V a4}, the sparse index tree part does
not help the retrieval of multiple attributes and the access
method is similar to the multi-level signature. Thus, the
accesstimefor Q{a; V...V a4} is

AMb(qy v ...V a,) = PROBE™® + CYCLE""
= (TREE+ SIG+P)-(1/2+F)

In order to skip each of the index tree, we assume that
the client needs to retrieve one tree node to get the con-
trol information such as the size of the sparseindex tree and
the size of the data block. Therefore, the tune-in time for
Q{a1V...Va,}is

Ty V... Va,) =N+T%a; V...Va,)

where, T%¥9(ay V ...V a,) represents the tune-in time for
the corresponding signature scheme used (i.e., multi-level
signature).

4 Evaluation of Query Performance

In this section, we make analytical comparisons of the
performance for the multi-attribute indexes discussed in the
previous sections. The comparisonsare based on the formu-
lae developed in Section 3. The access time and the tune-in
time for the index tree, signature, and hybrid methods, are
evaluated. The study addresses two kinds of Boolean query
expressions; conjunction and disjunction.

Table 4 lists the parameter settings used in the compar-
isons. We assume that the broadcast data file contains 10
atributes (i.e., a1, - - -, a10). For multiple attribute queries,
three most frequently accessed attributes (i.e., a;, 1 < i <
3) are included in the queries. Flat broadcast schedule is
used for data broadcasting. A data frame consists of 1000
packets and a packet contains 64 bits. For the index tree,
each tree node, which consists of 100 packets, contains 128
search-key plus pointers. For the signature method, the
frame group size is 4. To simplify the discussion, the se-
lectivity of all attributesis set to the same value (i.e., 0.01).

For the index tree method, the index overhead is pro-
portiona to the number of attributes. For the signature and
the hybrid methods, the index overhead is much less influ-
enced by the number of attributes. Therefore, among the 10
attributes, the first six frequently accessed attributes are in-
dexedin theindex tree method and all attributes areindexed
for the signature and the hybrid methods. The index treeis
balanced (all leaves are on the same level), and each node
has the same number of children.

To show the experimental results in a clear way, access
time overhead is computed with respect to non-index ap-
proach. ON the other hand, tune-in time for non-index ap-
proach is included in the figures as a baseline for tune-in
time comparisons. We first investigate multi-attribute con-
junction queries. Then, we evaluate the multi-attribute dis-
junction queries.

4.1 Conjunction Queries
In this set of experiments, we assume the conjunction

gueries are used and the queries contain three most fre-
guently accessed attributes a1, a2, and a3. Figures 1



Table 4. Parameters of the cost models

P=10°
N =100

F =10" ~ 10°
n =128

S =0.01 p=64
k=4

and 2 illustrate the access time and the tune-in time for
Q{a1 Naz ANaz} whenthecyclelengthisvaried. Obviously,
the accesstime of the index tree method is much worse than
the other two index methods. Thisis because the index tree
overhead for non-clustered attributes (i.e., a;, i > 1) isvery
large. Based on the construction of the multiple-attribute
index tree, the less the attribute accessed, the higher itsin-
dex overhead. On the other hand, for the signature and the
hybrid methods, the index overhead is almost independent
of the number of attributes and is much less than that of the
index tree. The sparse index tree in the hybrid method has
avery low overhead. As a result, the access time for the
signature and the hybrid methodsis similar (Figure 1).
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Figure 1. Access Time for Conjunction Query
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Figure 2. Tune-in Time for Conjunction Query

When the tune-in time is considered (refer to Figure 2),
the signature method performs worse than the other two in-
dex methods and the index tree shows a marginally better
performance than the hybrid method. This is because the

tune-in time for signature false drop is greater than that for
searching in the index tree. All three index methods give
a considerably better performance than the non-index ap-
proach.
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Figure 3 showsthetune-intime asafunction of the query
selectivity for Q{a; Aas Aaz } wherethe cyclelengthis 10°.
For any query selectivity, theindex tree dways hasthe sim-
ilar performance as the hybrid method. For small query se-
lectivity, the signature does worse than the other two. How-
ever, as the query selectivity is increased, all three methods
give similar performance, because for large selectivity the
tune-intime for theretrieval of the qualified data dominates
the tune-in time of the queries.
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Figure 4. Tune-in Time vs Query Number

Intuitively, a conjunction query with more attributes in
the predicates should result in asmaller set of qualified data
items. Thisisdemonstratedin Figure4 wherethe number of
attributesin aquery is varied while the cycle length is fixed
to 10°. Asthe number of attributes in a query increases, the
tune-in time for all index methods decreases as a result of



the decrease in the number of qualified data. The tune-in
time for the signature method is similar to that of the index
tree and the hybrid methods only for single attribute query.
For queries with more than one attribute, the signature has
an obvious poor performance than the other two. That is
because the tune-in time for eliminating fal se matches may
become too significant even though the tune-in time for re-
ceving qualified frames decreases. For queries with few at-
tributes (i.e., less than three), the index tree and the hybrid
methods have similar performance. However as the num-
ber of attributes in a query is increased, the hybrid method
outperformsthe index tree method. Due to the tune-in time
for each index trees, the curve representing the index tree
method goes up alittle bit after the number of attributesis
greater than three.

4.2 Disjunction Queries
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This section investigates the performance of disjunction
queries. In Figures 5 and 6, the access time and the tune-in
time for Q{a; V as V a3} are shown. Similar to conjunc-
tion queries, theindex tree method hasthe worst accesstime
among the three index methods and the other two have sim-
ilar access time. Figure 6 shows al three index methods

have much better tune-in time performance than the non-
index method. The hybrid and the signature have similar
tune-in time performance which is better than that of the
index tree.
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Figure 7. Tune-in Time vs Query Selectivity

The query selectivity is varied in Figure 7 while other
parameters are fixed. The tune-in time for the signature
and the hybrid methods is proportional to the selecrivity of
queries, while their performance are about the same. For
the index tree method, the tune-in time is similar to that of
other index methodswhen query selectivity isgreater 6%. It
has an odd performance when query selectivity is less than
6%. For example, the tune-in time first decreases and then
increases. Thisprobably isdueto two contradicting factors:
1) alarger selectivity may reduce the size of an index tree
and thus introduce lower index overhead; 2) alarger selec-
tivity may result in more qualified frames and thus higher
tune-in time for retrieving these frames. After the query se-
lectivity is greater than 6%, the retrieval factor dominates
the tune-in time of the query.
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In contrast to conjunction queries, the more attributesin-
volved in a digjunction query may result in the more qual-
ified data retrieved. Thus, Figure 8 shows a reversed per-
formance compared to Figure 4. For queries with many



attributes, the index tree does worse than the other two.
Thisisdueto theretrieval of each meta segment in each in-
dex tree. The number of meta segments retrieved increases
rapidly when the number of attributes involved in a query
increases.

5 Conclusions and Future Work

In this paper, we examined the problem of multi-attribute
queries for wireless data broadcast. We studied the index
tree, the signature, and the hybrid index methods for multi-
attribute queries. To facilitate our evaluation, we assumed
aquery involves al of the attributes either conjunctively or
digunctively.

We provided cost models of the three multi-attribute in-
dexing methods for the estimates of accesstime and tune-in
time and compared their performance. We found that thein-
dex tree method, while performing well for single-attribute
gueriesresultsin large access time overhead. Thisis dueto
the creation and replication of index trees for the indexed
attributes. Moreover, the index method has an update con-
gtraint, i.e., updates of a data frame are not reflected until
the next broadcast cycle. The comparisons revealed that
all index methods introduced certain access time overhead
whileimproving power conservation by reducing their tune-
in time. We conclude from our study that the hybrid is the
best choice for multi-attribute queries due to its good access
time and tune-in time. The signature method has the sim-
ilar performance as the hybrid method except conjunction
gueries. The index tree method is poor in access time for
any types of multi-attribute queries. It gives similar tune-in
time as the hybrid method for the conjunction queries.

In this paper, we only studied two simple multi-attribute
gueries: conjunction and disunction. In the future, we will
investigate more complicated ones such as, mixed conjunc-
tion and digjunction queries, join queries, and range queries
etc. In amobile computing environment, index information
is frequently accessed data. Caching this index informa-
tion in the clients may reduce both access time and tune-in
time considerably. One future research would incorporate
the index schemes with data caching algorithms to achieve
a better system performance.
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