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Nonequilibrium, atmospheric pressure discharges are rapidly becoming an important technological
component in material processing applications. Amongst their attractive features is the ability to
achieve enhanced gas phase chemistry without the need for elevated gas temperatures. To further
enhance the plasma chemistry, pulsed operation with pulse widths in the nanoseconds range has
been suggested. We report on a specially designed, dielectric barrier discharge based diffuse pulsed
discharge and its electrical characteristics. Two current pulses corresponding to two consecutive
discharges are generated per voltage pulse. The second discharge, which occurs at the falling edge
of the voltage pulse, is induced by the charges stored on the electrode dielectric during the initial
discharge. Therefore, the power supplied to ignite the first discharge is partly stored to later ignite
a second discharge when the applied voltage decays. This process ultimately leads to a much
improved power transfer to the plasma. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1777392]

Dielectric barrier discharges(DBDs) are traditionally
driven by sine wave voltages with magnitudes in the kV
range and frequencies in the kHz range. Depending on the
operating parameters, DBDs can generate either filamentary
or diffuse plasmas. Both types of discharges have been found
useful for a variety of applications, such as ozone
generation,1 vacuum ultraviolet radiation sources,2 and bio-
logical sterilization.3 To improve the energy transfer effi-
ciency, voltage pulses with sub-microsecond rise and fall
times have been proposed by several investigators. Liu and
Neiger 4 have shown that at low pressures, two discharges
are ignited per pulse: One at the rising edge and a second
discharge at the falling edge of the voltage pulse. Here, we
report experimental results showing that a similar mecha-
nism occurs for a DBD operated at atmospheric pressure.
Current measurements show two narrow current pulses, a
positive one a short time after the voltage rising edge and a
negative one at the falling edge of the voltage pulse. The
negative current pulse is caused by the voltage induced by
the charge accumulation on the dielectric during the first cur-
rent pulse. These current pulses have peaks of few amperes
and are about 100 ns wide. The total current(sum of the
capacitive displacement current and the conduction current)
and the discharge current are presented and discussed. The
voltages across the dielectric and the gas gap are calculated
and correlated to the current measurements. Finally, the dif-
ferent components of the power(stored and dissipated) are
calculated and their impact on the power budget is eluci-
dated.

A discharge device based on a modified DBD-type con-
figuration is used in this study. It comprises two parallel
electrodes separated by a gap. One of the electrodes is made
of a 2 in.32 in. aluminum plate covered by an alumina
sAl2O3d sheet. The dimensions of the Alumina sheet are:
7537531 mm3. The other electrode is made of a copper
disk (diameter of 5.7 cm) with several holes through which
the operating gas is injected. The diameter of the holes is
about 1 mm. The distance between nearby holes is 5 mm.
This electrode is not covered by a dielectric. The distance of
the gap between the electrodes is adjustable from 1 mm to
few centimeters. The gas flows out of the holes and into the
discharge gap. Figure 1 is a schematic of the discharge setup.
Figure 2 shows the experimental setup for the current-
voltage measurements. The high voltage pulse generator is
capable of producing pulses with amplitudes up to 10 kV,
pulse widths variable from 200 ns to dc, and with a repeti-
tion rate up to 10 khz. The rise and fall times of the voltage
pulses are about 100 ns. Voltages are measured by a P6015
Tektronix high voltage probe and currents by a A6312 Tek-
tronix current probe. The voltage and current wave forms are
viewed by a Tektronix TDS 784D wideband digital oscillo-
scope. For high pulse repetition rates and for adequately high
voltages(the value of which depends on the gap distance) we
were able to generate stable diffuse plasmas for both helium/
air and argon/air gas mixtures.

Figure 3 shows the applied voltage pulse and the corre-
sponding total current for a gap distance of 2.5 mm. Helium
with about 1% mixture of air was used. The voltage pulse
repetition rate is 1 khz. Two distinct current pulses are
clearly visible. The first pulse occurs at the rising front of the
voltage pulse and the second current pulse occurs at the fall-
ing front of the voltage. These current pulses include both

a)Author to whom correspondence should be addressed; electronic mail:
mlarouss@odu.edu
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the displacement current(which is also present when no
plasma is generated) and the conduction current, which flows
as soon as a conduction channel is formed when the gap
breaks down(discharge ignition). To find the actual dis-
charge current, the displacement current(due to cable ca-
pacitance, the dielectric capacitance, and the gas gap capaci-
tance) is subtracted from the total measured current. The
discharge electrical model used in our calculations is shown
in Fig. 4. The capacitorsCcables48 pFd, Cds145 pFd, and
Cgscalculated,9 pFd represent the cable capacitance, the
equivalent capacitance of the dielectric, and the equivalent
capacitance of the gas gap. The displacement current is due
to the combination of these capacitors. The resistanceRp

represents the finite conductivity of the plasma and corre-
sponds to power dissipation.

The discharge current is shown in Fig. 5. The first pulse
of the discharge current starts after the applied voltage
reaches a certain value, which depends on the gap distance.
The delay between the start of the voltage pulse and that of
the first discharge current pulse is about 100 ns. After the
first pulse occurrence, the discharge current remains zero un-
til the arrival of the falling front of the voltage. About 50 ns

after the beginning of the falling front, a current pulse is
observed. This corresponds to a second breakdown of the
gap. This second discharge ignites because of the voltage
induced by the charges, which have accumulated on the sur-
face of the dielectric plate during the first discharge.

Figure 6 shows the applied voltageVa, the voltage across
the dielectricVd, and the voltage across the discharge gapVg

(the locations of these voltages are shown in Fig. 4). The
voltage across the dielectric is calculated by the ratio of the
time integral of the current through the DBD,IDBD, and the
dielectric capacitanceCd sCd=145 pFd. The voltage across
the gas gap is simply given byVg=Va−Vd. Note thatVg

exhibits a negative pulse when the applied voltageVa decays.
This negative pulse is induced by the charges previously col-
lected on the surface of the dielectric plate. The voltage
across the dielectric,Vd, starts increasing only after the dis-
charge is initiated(point 1 in Fig. 6), which is few nanosec-
onds after the rising front of the applied voltage pulse. Then
Vd rises rapidly when the discharge current increases(point
2). This rise is due to charges from the plasma volume being
collected on the surface of the dielectric. When the first dis-
charge extinguishes,Vg goes to zero andVd becomes equal
to Va and remains at that level until the arrival of the falling
front of Va, at which time(marked 3 in Fig. 6) Vg increases
(negatively) andVd starts decaying. The increase of the mag-
nitude ofVg leads to the breakdown of the gap and initiation
of a second discharge. At the point marked 4, the dielectric
capacitance discharges itself rapidly through the plasma, the
discharge extinguishes, and bothVd and Vg go to a zero
value. When another pulse of the applied voltage arrives, the
whole scenario described above is repeated again. Therefore
increasing the repetition rate of the applied voltage leads to a

FIG. 2. Experimental setup of the discharge system with diagnostics.

FIG. 3. Total currentI tot and applied voltageVa vs time.

FIG. 4. Discharge model used for discharge current, dielectric voltage, and
gas voltage calculations.

FIG. 1. Three-dimensional illustration of the DBD-based device used in the
experiments.
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higher frequency of occurrence of the double discharges and
to a more temporally stable plasma.

Figure 7 shows the total power supplied or received by
the power supplyPsupp and the power dissipated in the
plasma,Pgas. Psuppis the product ofI tot (shown in Fig. 3) and
the applied voltageVa. Pgas is the product ofIdischarge(shown
in Fig. 5) and Vg (shown in Fig. 6). During the first rising
front of the applied voltagePsupp includes both the power
dissipated in the plasma and the reactive power stored in the
various capacitors(cable, dielectric, and gas). At the falling
front of the applied voltage the sign ofPsupp is negative

which represents a power returned to the power source. This
“recuperated” power helps lower the power budget in the
sense that some of the originally supplied power is restored
to the source. The curve representingPgas shows the power
dissipated in the plasma during the first and the second dis-
charges. What is of importance in this curve is the fact that
the second discharge occurs without any power contribution
from the power source.

In summary, we have shown that a relatively large vol-
ume diffuse DBD can be generated at atmospheric pressure
with repetitive narrow voltage pulses. Two discharges are
generated per single voltage pulse. The second discharge oc-
curs without any power contribution from the driving source.
This is because the power used to generate the first discharge
is partly stored to generate a second one when the applied
voltage decays. Although the power dissipated is in the kilo-
watt range, the actual energy needed is only few milli-Joules
since the pulses are narrow(few hundred nanoseconds) and
the power is transferred from source to load and vice versa
only during the rise and fall times of the voltage pulse, which
are few tens of nanoseconds long.
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FIG. 5. Discharge currentIdischargeand applied voltage vs time. Points 1, 2,
3, and 4 correspond to the same marked points as in Fig. 6. These points
correspond to characteristic times of discharge ignition(point 1 and point 4),
beginning of the negative gas voltage pulse(point 3), and point of sharp
increase in dielectric voltage and positive discharge current pulse(point 2).

FIG. 6. Applied voltageVa, dielectric voltageVd, and gas voltageVg vs
time.

FIG. 7. Applied voltage, supply powerPsupp, and gas dissipated powerPg vs
time. WhenPsupp is positive the power is supplied from source to load, and
whenPsupp is negative the power is restored from load to source.
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