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Power-Constrained Edge Computing with Maximum

Processing Capacity for IoT Networks
Min Qin, Li Chen, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE,

F. Richard Yu, Fellow, IEEE, Guo Wei

Abstract—Mobile edge computing (MEC) plays an important
role in next-generation networks. It aims to enhance processing
capacity and offer low-latency computing services for Internet of
Things (IoT). In this paper, we investigate a resource allocation
policy to maximize the available processing capacity (APC) for
MEC IoT networks with constrained power and unpredictable
tasks. First, the APC which describes the computing ability and
speed of a served IoT device is defined. Then its expression is
derived by analyzing the relationship between task partitioning
and resource allocation. Based on this expression, the power
allocation solution for the single-user MEC system with a
single subcarrier is studied and the factors that affect the APC
improvement are considered. For the multiuser MEC system,
an optimization problem of APC with a general utility function
is formulated and several fundamental criteria for resource
allocation are derived. By leveraging these criteria, a binary-
search water-filling algorithm is proposed to solve the power
allocation between local CPU and multiple subcarriers, and a
suboptimal algorithm is proposed to assign the subcarriers among
users. Finally, the validity of the proposed algorithms is verified
by Monte Carlo simulation.

Index Terms—Available processing capacity, computation of-
floading, IoT, mobile edge computing, resource allocation.

I. INTRODUCTION

W
ITH the wide utilization of Internet of Things (IoT)

[1, 2], e.g., mobiles, wearable devices, sensors and

vehicles, the demand for high-speed, low-latency and dynami-

cally configurable computing resources at the edge of cellular

networks is exploding exponentially. Although more and more

powerful CPUs are developed for these mobile things, the

computing demand required by the new applications increases

even more. Moreover, due to the death of Moore’s Law [3]

and insurmountable batteries [4], it is almost impossible to
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break the computation bottleneck on the terminal side. This

motivates the development of mobile edge computing (MEC)

[5–9], which provides abundant and low-latency computing

services in the proximity of users as an important part of

the IoT architecture [10, 11]. This kind of computing systems

inherit most of the advantages of mobile cloud computing (M-

CC) [12] but avoid the problems of long latency and overload

in the core networks. The concept of MEC is gaining more

interest in recent years. Lots of works have been studied in the

literature, including MEC server platform, system architecture,

mobility management (virtual machine (VM) migration) and

resource management. In this paper, we propose a novel

resource allocation policy to maximize the processing capacity

of an MEC system.
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Fig. 1. Unpredictable task model. (The abscissa stands for time and each
rectangle represents a task, where the length of the rectangle denotes the
execution latency limit and the width denotes the amount of computation per
second. Thus, the area of the rectangle denotes the total computation required
by the task. Since the tasks are unpredictable, an alternative choice for the
methods based on tasks is buffering the tasks and dealing with them in the
next scheduling interval. But it causes extra latency, which is intolerant for
real-time applications.)

Most of the previous works assume that the tasks to be

conducted are known to the resource manager. Thus, their

policies, named as methods based on tasks, can be carried

out based on the information of computation demand and

input data in the next scheduling interval. However, practical

scenarios are much more complicated in IoT networks:

1) The tasks of IoT devices aren’t predictable. Most tasks

arrive randomly (e.g., the interactive instructions for

vehicle control) or continuously (e.g., the data stream

from sensors and the real-time video on surveillance

equipment) and vary with time, as shown in Fig. 1.

2) The IoT networks can’t afford the huge signaling cost

incurred by the feedback of all task information, which is



required by the conventional allocation policy for MEC.

3) For IoT devices, the available power is strictly con-

strained due to the battery life [1].

Therefore, it is worth investigating a method that adapts

the unpredictable computation demand, avoids the feedback

overhead, and takes account of the power limitation.

Observe that the allocation policies in communication sys-

tems are developed by maximizing the throughput capacity

[13] while the communication demand also varies randomly.

Motivated by this observation, we propose available processing

capacity (APC) to describe the computing ability and speed

obtained by a served user in MEC. Then, a resource allocation

policy to maximize the APC of users under power constraint

is developed to satisfy user’s required processing capacity

(RPC) with the best effort. Since the policy is based on the

instantaneous variable of APC, it is not necessary for the

resource manager to know the future tasks. Also, since the

device sends feedback to the resource manager only when the

demand is not satisfied, the overhead of this policy is much

less than that of the method based on tasks.

The main contributions of this paper are summarized as

following:

• The definition and expression of APC are given. The APC

is expressed as a concave function of power and subcarri-

ers by analyzing the relationship between the optimal task

partitioning schedule and the resource allocation policy.

• For the single-user MEC system, a closed-form solution

for power allocation is derived. We analyze the optimal

solutions for four typical cases with different channel and

power conditions. The analysis confirms that MEC server

can improve the user’s APC significantly.

• For the multiuser MEC system, some assignment criteria

are derived from the optimization problem of APC with

a general utility function first. Based on these criteria,

a binary-search water-filling algorithm and a suboptimal

algorithm are presented to solve the power and subcarrier

allocation problems, respectively.

The remainder of this paper is organized as follows. First,

related works are introduced in Section II. Then, Section III

presents the system model and the definition and expression

of APC. In Section IV, the single-user MEC system is inves-

tigated. The power and subcarrier allocation algorithms for

the multiuser MEC system are proposed in Section V. The

performance of the proposed algorithms is evaluated in Section

VI. Finally, we conclude this paper.

II. RELATED WORK

A resource allocation policy for MEC consists of two parts:

the computation offloading part and the resource allocation

part. The former concentrates on the problem of task partition-

ing [14–19] in terms of energy consumption and/or execution

delay. The latter focuses on regulating the communication rates

between the users and MEC server, due to the limited spectrum

and power in such a system. In many cases, computation

offloading is studied in single-user scenarios, while in mul-

tiuser scenarios [20–27], both parts are considered since the
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Fig. 2. The system model for multiuser mobile edge computing in the IoT
network.

users share the limited communication resource. Both single-

user and multiuser scenarios have been extensively studied in

previous work.

For single-user scenarios, Yang et al. [14] initiated the first

work to study the task partitioning problem for mobile data

stream applications to achieve high processing throughput in

MEC. Liu et al. [15] proposed an optimal allocation policy by

minimizing execution delay via a one-dimensional search al-

gorithm considering the application buffer queuing state, avail-

able processing power and channel state information between

the user and the MEC server. Mao et al. [16] adopted both

the execution delay and task failure as the performance metric

with dynamic voltage and frequency scaling (DVFS) [28]

and energy harvesting techniques [29]. For a similar single-

user framework, You et al. [17] considered low-complexity

users harvesting energy with microwave power transfer. The

optimal objective of this work was translated into minimizing

the energy consumption of the users under offloading latency

constraints, which was also adopted by Wang et al. in [18]

considering single MEC server and multiple MEC servers

respectively. For a single user to multiple MEC servers, an

offloading policy for multiple tasks was proposed by Dinh et

al. in [19], with minimizing the maximum execution latency

of tasks.

For multiuser scenarios, a multiuser and multi-cell MEC

system was considered by Sardellitti et al. in [20], where

the communication and computation resources were jointly

optimized to minimize the energy consumption with latency

constraints. Chen et al. proposed a decentralized solution in

[21], which was based on a game-theoretic formulation of

the problem. A trade-off between the energy consumption

and the execution delay for multiuser systems was discussed

in [22, 23]. Recently, You et al. [24] developed an energy-

efficient allocation policies for a multiuser MEC system, in

which TDMA and OFDMA were considered respectively.

Computation offloading and resource allocation in wireless

cellular networks with a single MEC server were investigated

for indivisible tasks by Wang et al. in [25, 26]. A virtual full-

duplex MEC framework, where users are served by small cell

base stations equipped with edge computing and caching, was

proposed by Tan et al. in [27].



III. SYSTEM MODEL

Consider a single-cell scenario, where an access point (AP)

equipped with one MEC server (cloudlet) serves K active IoT

devices/users, denoted as a set K = {1, 2, ...,K}, as shown

in Fig. 2. For each user, the computation may be processed at

local CPU or offloaded to the MEC server. The available power

of the user is assigned to a local computing module (CPU

module) and an RF transmitter (RF module), correspondingly.

In our system, all users aim to maximize their processing

capacity. Therefore, they are expected to take full advantage

of the CPU and RF modules under the power and subcarrier

constraints.

In this section, we introduce the communication and compu-

tation models, since both important in the MEC system. Then,

we derive a specific expression for the user’s APC based on

its definition.

A. Communication Model

We assume that the MEC system adopts OFDMA [24, 30]

with N orthogonal subcarriers, denoted as a set N =
{1, 2, ..., N}. Each subcarrier has a bandwidth of B̄. Both

the users and the AP are equipped with a single antenna.

Therefore, there are K independent communication links from

the K users to the AP and each link may utilize several

subcarriers. The uplink transmission rate RTx,i of user i’s link

is given by

RTx,i =
∑

n∈N

ρi,nB̄log2 (1 + pi,ngi,n), (1)

where ρi,n ∈ {0, 1} is an indictor variable, pi,n denotes the

power allocated to subcarrier n by user i, gi,n = ∥hi,n∥2/N0

denotes the channel gain of user i on subcarrier n, N0 is the

power spectral density of the additive white Gaussian noise

(fixed to 1 in this paper) and hi,n is the channel response.

ρi,n = 1 while subcarrier n is assigned to user i and ρi,n = 0
while otherwise. To avoid interference among users, each

subcarrier can be assigned to one user at most. Thus, the

indictor variable satisfies

K∑

i=1

ρi,n ≤ 1. (2)

This model can be extended to multiple transmit and receive

antennas by modifying the transmission rate expression.

B. Computation Model

Assume that the user equipment can dynamically adjust the

CPU’s computational frequency to adopt the power consump-

tion and execution latency with the DVFS technique [28]. For

user i, the computational power pi,0 can be modeled as

pi,0 = fκ
i ζi, (3)

where fi, in unit of Hz, is the CPU’s computational frequency

of user i and ζi > 0 is the effective capacitance coefficient

depending on chip architecture. The value κ (κ ≥ 2) is a

constant [31]. For simplicity, we set κ = 2 and assume that the

local CPU is a single core architecture with a frequency upper

bound of fmax,i. Thus, the computational power satisfies 0 ≤
pi,0 ≤ f2

max,iζi. Constrained by the energy harvesting ability

or the battery power, the available power of user i is fixed to

Pi. Therefore, considering both the CPU and RF modules, the

constraint for the sum of all the powers is written as

pi,0

︸︷︷︸

CPU module

+

N∑

n=1

pi,n

︸ ︷︷ ︸

RF module

≤ Pi. (4)

Note that the receive power of the RF module is ignored since

the feedback from the MEC server to users is negligible in

most IoT networks.

As for the MEC server, we have the following three as-

sumptions:

1) The MEC server has a multi-core architecture with much

higher frequency and draws energy from power grid

straightforwardly since it is located on AP.

2) The multiple-VM technique [32] is leveraged to make

the server able to serve multiple users simultaneously.

3) The live prefetching strategy [33] is applied, in which

the MEC server is fetching the input information of the

next task while the current offloaded task is computed.

Based on these assumptions, the latency of the offloaded part

is mainly determined by the transmitting latency. Therefore,

the execution latency in the MEC server can also be ignored.

C. Available Processing Capacity

Consider a user with unpredictable tasks as shown in Fig. 1.

The RPC is the sum of computation demands per second from

all tasks. As the tasks arrive and terminate, the user’s RPC

varies randomly. To complete the tasks without extra latency,

a sufficient condition is making the user’s APC larger than the

RPC all the time. The APC, which describes the instantaneous

computing ability and speed obtained by a served user, is

defined as follows.

Definition 1 (APC). If ωi is the maximum available compu-

tation obtained by user i between t to t+∆t in time, user i’s
APC at instant t is written as

Ci = lim
∆t→0

ωi

∆t
. (5)

It is evident that a user’s APC is related to task partitioning,

power allocation, and wireless channel state. According to the

definition, we need to find the amount of computation during

a fixed period for a user. It is hard to find that, while finding

the execution latency for given computation is much easier,

which is also suitable for the above definition.

Model the computation of user i as a divisible task (αi, ωi)
[34], where αi, in unit of bit, denotes the input data of the

task, and ωi denotes the required computation, i.e., the number

of CPU cycles. Assume that the task can be arbitrarily divided

into any two parts in bits and the amount of computation

corresponding to 1-bit input data can be written as ηi = ωi/αi,

which is named as the computation-input ratio (CIR). To deal

with the task, li bits of input data αi are supposed to be

offloaded to the MEC server via the wireless communication



link and the remainder of the task is executed locally. Com-

bining the task model with the aforementioned communication

and computation models gives the minimum time cost for the

computation as

tcost,i = min
PPP i,ρρρi,li

max




(αi − li) ηi
√

pi,0ζi
−1

,
li

RTx,i



 , (6)

where PPP i = [pi,0, pi,1, ..., pi,N ]T, ρρρi = [ρi,1, ..., ρi,N ]T and

RTx,i is the transmission rate in (1). Equation (6) shows that the

minimum time cost can be determined by task partitioning and

resource allocation policies. When power PPP i and subcarrier ρρρi
are given and the task is fully divisible, we have the following

lemma.

Lemma 1 (Execution Latency for Given Computation). For

fully divisible computation ωi, the execution latency can be

written as

∆ti(PPP i, ρρρi) =
ωi

√

pi,0ζi
−1 + ηiRTx,i

, (7)

and the optimal task partitioning strategy is

li =
αiηiRTx,i

√

pi,0ζi
−1 + ηiRTx,i

. (8)

Proof. See Appendix A.

Lemma 1 reveals that both the execution latency and the

optimal task partitioning are determined by the power and

subcarrier allocation policies. By combining Lemma 1 and

Definition 1, we have the following proposition.

Proposition 1 (Expression of APC). For an arbitrary power

and subcarrier allocation, the expression of APC can be written

as

Ci(PPP i, ρρρi) = lim
∆ti→0

ωi

∆ti
=

√

pi,0ζi
−1

︸ ︷︷ ︸

Clocal

+ ηiRTx,i
︸ ︷︷ ︸

Cremote

. (9)

Proof. Take (7) in Lemma 1 into Definition 1 leading to the

proposition.

Proposition 1 presents the fact that, in the MEC system, a

user’s APC is determined by the local computing capacity and

the transmission rate heading to the MEC server together. The

former is denoted as Clocal and the latter is denoted as Cremote

which is the product of the transmission rate and CIR.

Remark 1 (RPC Constraint). For the proposed system, the

target of the resource allocation is to make the APC satisfy

the RPC for each user as

Ci ≥ Creq,i, ∀i ∈ K . (10)

Remark 2 (Server Capacity Constraint). Although the ex-

ecution latency in the server is negligible according to the

computation model, the total computation offloaded by all the

users must be less than the processing capacity of the MEC

server as ∑

i∈K

ηiRTx,i ≤ Cserver, (11)

where Cserver denotes the processing capacity of the MEC

server.

IV. APC IMPROVEMENT FOR SINGLE USER

To reveal how the APC is improved by the MEC server,

a single-user MEC system is analyzed in this section. We

first formulate an optimization problem to maximize the APC

of the system and derive a closed-form solution. Then, we

investigate some special points in the feasible sets of several

typical solutions for the optimization problem.

To simplify the analysis, we consider a special case of

the proposed MEC system, with a single user and a single

available subcarrier, i.e., K = 1, N = 1. The user’s power is

limited by P and the server knows the uplink channel state

information. Using the above definition and constraints, we

can obtain the following optimization problem:

P0 : max
p0,p1

C

s.t.

C1 : p0 + p1 ≤ P

C2 : C ≥ Creq

C3 : Clocal(p0) ≤ fmax

C4 : Cremote(p1) ≤ Cserver

C5 : p0, p1 ≥ 0,

(12)

where C = Clocal(p0) + Cremote(p1), p0 denotes the power

allocated to the CPU module and p1 denotes the power allo-

cated to the RF module. To solve P0, we have the following

proposition.

Proposition 2. P0 is a convex problem. If constraints C2-C4

are ignored, the optimal solution can be written as

po0 = min

(
1

4ζυ2
, P

)

, po1 =

[
ηB̄/ ln 2

υ
− 1

g

]+

, (13)

where 1
υ = 2ζ(

√

(ηB̄/ln 2)2 + 1
ζ (P + 1

g )−ηB̄/ln 2), [x]
+
,

max [0, x].

Proof. See Appendix B.

Since Clocal(p0) and Cremote(p1) are concave in p0 and p1
respectively, the optimization problem can be illustrated as Fig.

3. In the figure, the curve represents the power constraint,

line lreq represents the user’s RPC, line lfmax
represents the

upper frequency bound of the CPU and line lserver represents

the server capacity constraint. When the effective capacitance

coefficient ζ and CIR η are fixed, the uplink channel state is the

only factor that affects the power constraint curve according

to the definition of APC. Fig. 3 (a-d) show several typical

solutions for the optimization problem with different uplink

channel states and available powers. Note that p∗0 and p∗1 are

the optimal powers with all constraints.

Case 1 (High-gain channel and enough power): When

C(po0, p
o
1) ≥ Creq

Clocal(p
o
0) ≤ fmax

Cremote(p
o
1) ≤ Cserver,

(14)
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Fig. 3. The APC improvement provided by the MEC server. (The horizontal axis shows Cremote and the vertical axis shows Clocal.)

then
p∗0 = po0

p∗1 = po0.
(15)

The uplink channel state is proper so that the optimal point

is obtained on the curve as shown in Fig. 3(a). Point P1 is

the point of tangency of the power constraint curve and the

straight line Clocal + Cremote = c where c is a constant. This

point, named as the best effort point, is achieved when the user

fully utilizes its power and reaches the maximum APC. Point

P3 represents that all the power is allocated to the CPU module

and point P4 is obtained when all the power is allocated to

the RF module. Obviously, by allocating power to the CPU

and RF module properly, we can obtain much more APC for

the user than computing locally only.

Especially, while all the points in the feasible area satisfy

the RPC constraint, there is a point P2 which is with minimum

power consumption. This point is actually the energy-efficient

point in previous work [17, 24], where the energy consumption

is minimized on the premise of matching the RPC demand.

Case 2 (Low-gain channel and few power): When

C(po0, p
o
1) < Creq, (16)

the solution doesn’t exist. Fig. 3(b) shows the case when the

uplink channel suffers from deep fading and the user’s power is

not enough to reach the required APC. Therefore, the feasible

area does not exist. To avoid this, the resource manager should

assign more communication resource to the user and improve

the communication rate from the user to the server shown as

the dashed curve in the figure.

Case 3 (Low-gain channel and enough power): When

C(po0, p
o
1) ≥ Creq

Clocal(p
o
0) > fmax

Cremote(p
o
1) ≤ Cserver,

(17)

then

p∗0 = f2
maxζ

p∗1 = P − p∗0.
(18)

The case in Fig. 3(c) happens while the uplink channel fades

deeply but the available power is enough. It is easy to find

that the tangency point P1 is out of the feasible area and the

optimal point is P2 where the CPU works with its maximum

frequency.

What’s more interesting is that the tangency point is some-

times obtained at the intersection of the power constraints

curve and the Clocal axis, shown as the dashed curve in Fig.

3(c). It happens when the uplink channel fades deeply and
ηB̄/ ln 2

υ < 1
g . In this case, all the power should be allocated

to the CPU module. Hence, p∗1 = 0.



Case 4 (High-gain channel and few power): When

C(po0, p
o
1) ≥ Creq

Clocal(p
o
0) ≤ fmax

Cremote(p
o
1) > Cserver,

(19)

then

p∗1 = g−1(2Cserverη
−1B̄−1 − 1)

p∗0 = P − p∗1.
(20)

Fig. 3(d) indicates the case that the tangency point P1 is

out of the server capacity constraint and P2 is the optimal

one. It happens when ζ is very small and the uplink channel

state is comparatively good. But the tangency point can never

appear at the Cremote axis, which will be explained in the power

allocation part of the next section.

Although the optimal points in Case 1, 3 and 4 are different,

the user’s APC is significantly enhanced by the MEC server

for all three cases. In Case 2, the RPC is unreachable due to

the limited power and deeply faded channel. In summary, the

APC of an MEC system is determined by the communication

resource and the available power, meanwhile constrained by

the frequency upper bound of local CPU and the server

capacity.

V. MULTIUSER RESOURCE ALLOCATION

For a multiuser MEC system, to enhance the users’ APC,

not only the available power is allocated between the CPU

module and the subcarriers, but also the subcarriers should be

assigned among users. Before investigating the allocation pol-

icy, we propose a general utility function as the performance

metric to meet the practical allocation principles first. Then, by

solving the optimization problem, we derive several criteria for

the power and subcarrier allocation and propose some efficient

algorithms based on these criteria. Furthermore, the subcarrier

assignment criteria for three specific utility functions, i.e.,

sum APC maximization, proportional fairness and max-min

fairness, are analyzed respectively.

A. Problem Formulation

Definition 2 (Utility Function). Define Ui(Ci) as the utility

function of user i, if Ui is a concave and twice differentiable

function in the domain R
+, and Ũi is strictly increasing in R,

where Ũi denotes the extend-value extension of the function

Ui which assigns the value −∞ to points not in the domain

of Ui. Define the utility function of the whole MEC system

as

U =
∑

i∈K

Ui(Ci). (21)

For instance, the utility function for maximizing the APC

of the system can be written as U =
∑

i∈K
wiCi, where wi

denotes the weighting coefficient of user i. When there are no

priorities among the users, wi = 1 for i ∈ K . Considering the

utility function and all the constraints in the system model, we

can formulate the resource allocation problem as

Porigin : max
PPP,ρρρ

∑

i∈K

Ui (Ci)

s.t.

(2), (4), (10), (11)

0 ≤ pi,0 ≤ f2
max,iζi, ∀i ∈ K

pi,n ≥ 0, ∀i ∈ K , n ∈ {0} ∪ N

ρi,n ∈ {0, 1} , ∀i ∈ K , n ∈ N
(22)

where PPP = {pi,n}K×(N+1)
i∈K ,n∈{0}∪N

and ρρρ = {ρi,n}K×N
i∈K ,n∈N

.

Since the subcarrier indictor ρi,n belongs to a set of integers,

Porigin is a mixed integer optimization problem, which is hard

to solve. However, if ρi,n is relaxed to a real value in [0, 1], the

problem becomes more tractable [30]. Define p̃i,n = pi,nρi,n,

where ρi,0 ≡ 1, i ∈ K and n ∈ {0} ∪ N . Thus, user i’s APC

can be rewritten as

Ci(P̃̃P̃P ,ρρρ) =

√

p̃i,0ζi
−1 + ηi

N∑

n=1

ρi,nB̄log2

(

1 +
p̃i,n
ρi,n

gi,n

)

,

(23)

where P̃̃P̃P = {p̃i,j}K×(N+1)
i∈K ,n∈{0}∪N

.

Proposition 3. If ρi,n is relaxed to [0, 1], both Ci and U are

jointly concave in (P̃̃P̃P ,ρρρ).

Proof. See Appendix C.

This proposition indicates that the objective function of the

original problem can be relaxed to a concave function. Porigin

can be rewritten as

P1 : max
P̃̃P̃P ,ρρρ

∑

i∈K

Ui (Ci)

s.t.

C1 :

K∑

i=1

N∑

n=1

ηiρi,nB̄log2

(

1 +
p̃i,n
ρi,n

gi,n

)

≤ Cserver

(24)

C2 :
N∑

n=0

p̃i,n ≤ Pi, ∀i ∈ K

C3 :
K∑

i=1

ρi,n ≤ 1, ∀n ∈ N

C4 : Ci ≥ Creq,i, ∀i ∈ K

C5 : 0 ≤ p̃i,0 ≤ f2
maxζi, ∀i ∈ K

C6 : p̃i,n ≥ 0, ∀i ∈ K , n ∈ {0} ∪ N

C7 : 0 ≤ ρi,n ≤ 1, ∀i ∈ K , n ∈ N

The objective function is concave as stated in Proposition 3.

Since Ci is concave as stated in Proposition 3, constraint C4

is convex. The rest of the constraints are all linear. However,

the problem P1 is non-convex because the left side of ‘≤’

in constraint C1 is a concave function. In general, a non-

zero duality gap exists if we solve a non-convex problem by

solving its dual. However, it has been proved that the duality

gap is always zero when this kind of non-convex optimization

problem satisfies certain conditions.



Lemma 2 (Condition for Zero Duality Gap). Let P and D
denote the optimal values of the primal and the dual problem

in (24), respectively. If the number of subcarriers is sufficiently

large, then strong duality holds and the duality gap is always

zero, i.e., P = D.

Proof. Please refer to the proof of Lemma 2 in [35].

By leveraging Lemma 2, it is possible to solve the opti-

mization problem (24) by solving its dual. For simplicity, we

assume that the number of subcarriers is large enough1. Hence

the duality gap can be ignored and the Karush-Kuhn-Tucker

(KKT) conditions are necessary and sufficient for the optimal

value of this problem. Since relaxation is used, the optimal

value of P1 is suboptimal for Porg . By analyzing the KKT

conditions, we can derive some criteria for resource allocation

and obtain a suboptimal solution for the original problem. To

obtain the KKT conditions, we first obtain the Lagrangian

function of P1, which is written as

L(P̃̃P̃P ,ρρρ,βββ, γ,υυυ,λλλ)

=
∑

i∈K

Ui (Ci) +
∑

i∈K

βi [Ci − Creq,i]

+ γ

[

Cserver −
∑

i∈K

N∑

n=1

ηiρi,nB̄log2

(

1 +
p̃i,n
ρi,n

gi,n

)]

+
∑

i∈K

υi

[

Pi −
N∑

n=0

p̃i,n

]

+
N∑

n=1

λn

[

1−
∑

i∈K

ρi,n

]

s.t. C5,C6,C7,

(25)

where βββ ≽ 0 is the Lagrange multiplier vector related to

the RPC constraint C4, γ ≥ 0 is the Lagrange multiplier

associated with the maximum server capacity constraint C1,

and υυυ ≽ 0 and λλλ ≽ 0 is the Lagrange multiplier vector

corresponding to the power constraint C2 and the subcarrier

indicator constraint C3, respectively.

The necessary and sufficient conditions for the optimal value

of P1 are obtained as

∂L

∂p̃∗i,n
=(U ′

i (Ci) + βi − γ)

[
ηiB̄gi,n/ ln 2

ρi,n + p̃i,ngi,n

]

− υi

{

< 0, p̃∗i,n = 0

= 0, p̃∗i,n > 0
, ∀i ∈ K , n ∈ N

(26)

∂L

∂p̃∗i,0
=
U ′

i (Ci) + βi
√

4p̃i,0ζi
− υi







< 0, p̃∗i,0 = 0

= 0, 0 < p̃∗i,0 < f2
max,iζi

> 0, p̃∗i,n = f2
max,iζi

, ∀i ∈ K

(27)

∂L

∂ρ∗i,n
=(U ′

i (Ci) + βi − γ)ηiFi,n − λn







< 0, ρ∗i,n = 0

= 0, 0 < ρ∗i,n < 1

> 0, ρ∗i,n = 1

, ∀i ∈ K , n ∈ N ,

(28)

1The simulation in [35] shows that the duality gap is nearly zero for 10
subcarrier and small enough for even less subcarrires in an OFDMA system.

where Fi,n = B̄
[

log2
(
1 + p∗i,ngi,n

)
− p∗

i,ngi,n/ ln 2

1+p∗

i,n
gi,n

]

. Based

on (26), (27) and (28), several criteria are discussed in the

next sub-sections.

B. Power Allocation

Proposition 4. For a given subcarrier assignment, the optimal

solution for power allocation is

p∗i,0 =
p̃∗i,0
ρi,0

= min

(

(1 + β̃i)
2

4υ̃2
i ζi

, Pi, f
2
maxζi

)

, ∀i ∈ K , (29)

p∗i,n=
p̃∗i,n
ρi,n

=

[

(1+β̃i−γ̃i)ηiB̄

υ̃i ln 2
− 1

gi,n

]+

,∀i∈K , n∈N , (30)

where γ̃i = γ/U ′
i(Ci), β̃i = βi/U

′
i(Ci) and υ̃i = υi/U

′
i(Ci).

Proof. As the utility function Ui(Ci) is monotonically in-

creasing in Ci, U ′
i(Ci) > 0. Hence, dividing the Lagrange

multipliers by the derivative of utility function leads to new

multipliers γ̃i, β̃i and υ̃i. By solving the KKT conditions (26)

and (27) straightly, we can obtain the proposed results with

the new multipliers.

Notice that Equation (30), which allocates the power to the

subcarriers, is the standard water-filling algorithm. While the

other one, which calculates the power allocated to the CPU

module, is another story. Before reaching the up bound of the

local computation power, pi,0 is proportional to the square of

the water level during the water-filling process. Assume that

there are j subcarriers, denoted as a set Nj , that have been

allocated power. In other words, the reciprocals of channel

gains of these j subcarriers are below the water level. To

maximize the APC, user i tends to take full advantage of the

available power2. Therefore, the available power Pi equals the

sum of transmitting powers and local computation power. By

rearranging terms, we have a following equation

Pi +
∑

n∈Nj

1

gi,n
=

(1 + β̃i − γ̃i)ηiB̄

υ̃i ln 2
j +

(1 + β̃i)
2

4υ̃2
i ζi

. (31)

If the Lagrange multipliers β̃i and γ̃i are given, Equation

(31) is a quadratic polynomial in 1/υ̃i for a given set of subcar-

riers Nj . Since the discriminant is positive, the polynomial has

two distinct real roots and 1/υ̃i is the positive one. Because

the transmitting power must be positive, the channel gains

of the subcarriers in Nj must satisfy
(1+β̃i−γ̃)ηiB̄

υ̃i ln 2 > 1
gi,n

.

To solve the power allocation problem, we only need to find

Nc including all the subcarriers, of which the channel gains

satisfy the above inequality. Meanwhile, taking into account

the upper bound of the local computation power, we fix p∗i,0

to f2
max,iζi, while

(1+β̃i)
2

4υ̃2
i
ζ

> f2
max,iζi. Based on the above

analysis, Algorithm 1, named as the binary-search water-filling

algorithm, is proposed.

Algorithm 1 gives the power allocation policy to maximize

the APC of users. This algorithm is distinguished from the

2Actually, they may not. Due to the server capacity limit and the upper
bound of the local computation power, users maybe not able to make full use
of the available power, which is further discussed in Remark 5.
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Fig. 4. The water-filling process for power allocation in MEC system.

Algorithm 1 Binary-search water-filling algorithm

1: Initialize:

Set l = 1, u = N .

2: Sort user i’s channel gains on all N subcarriers and g
(k)
i,n

denotes the kth largest one.

3: repeat

4: j = ⌊(l + u) /2⌋.

5: Solve the quadratic polynomial

Pi +

j
∑

k=1

1

g
(k)
i,n

=
(1 + β̃i − γ̃i)ηiB̄

υ̃i ln 2
j +

(1 + β̃i)
2

4υ̃2
i ζi

to obtain υ̃i(j).

6: if
(1+β̃i−γ̃i)ηiB̄

υ̃i(j) ln 2 > 1

g
(j)
i,n

then

7: l = j.

8: else

9: u = j.

10: end if

11: until u− l = 1;

12: υ̃i = υ̃i(l).

13: if
(1+β̃i)

2

4υ̃2
i
ζi

> f2
max,iζi then

14: p∗i,0 = f2
max,iζi.

15: Allocate the transmitting power p∗i,n utilizing

standard water-filling algorithm.

16: Close.

17: else

18: Obtain p∗i,0 and p∗i,n from (29) and (30) respectively.

19: end if

traditional water-filling algorithm, since the water level is

searched by binary-search process due to the existence of

the local computation power. If the power of the local CPU

is below the upper bound, we need to solve the quadratic

polynomial to obtain the water level when searching the active

subcarrier set Nj , shown as Fig. 4(a). If the power of the local

CPU reaches its upper bound, the remainder of the available

power is allocated to the subcarriers by the standard water-

filling algorithm, as shown in Fig. 4(b).

Define the water level of the local computation power as

L0 and the water level of the communication power as Ln.

In Fig. 4(a), where the local computation power is below the

upper bound, L0 can be written as

L0 =
1

4ζi

[

(1 + β̃i) ln 2

(1 + β̃i − γ̃i)ηiB̄

]2

L2
n. (32)

Equation (32) indicates that L0 is proportional to the square

of Ln.

Remark 3 (Impact of ζi and ηi). The ratio between L0 and

the square of Ln is determined by the effective capacitance

coefficient ζi and the CIR ηi. If ζi is large, which means the

chip architecture of user i can’t transform the power into the

computation capacity effectively, the power allocation policy

will allocate less power to the local computation. If ηi is

large, which means the tasks have much computation and

little input data, the policy will decrease the local computation

power and allocate more power to the RF module to offload

the computation to the MEC server. Obviously, the power

allocation policy agrees with our intuition to the MEC system.

Remark 4 (Impact of Wireless Channel). Wireless channel

has a profound effect on the power allocation policy. If the

channel of a subcarrier fades severely, therefore the channel

gain is very small so that the reciprocal of channel gain

is below the water level Ln (see Fig. 4(a)), the algorithm

won’t allocate any power to this subcarrier. Furthermore, if

the channel gains of all the subcarriers are small enough as

min
i
( 1
gi,n

) ≤ Ln, we will allocate no power to the RF module

and all the power is allocated to the CPU module. However, it

is impossible that all the power is allocated to the RF module

theoretically because the water-filling step for the local CPU

is always zero.

C. Subcarrier Assignment

Proposition 5. Subcarrier should be allocated to the user who

satisfies the following condition

i∗ = arg max
i∈K

[(U ′
i(Ci) + βi − γ)ηiFi,n] . (33)



Proof. Whether the problem Porg is convex or not, Equation

(28) is a necessary condition for the subcarrier indicator

parameter ρρρ. Since the value of ρi,n can only be 1 or 0 in

practice, exploiting Equation (28), we can obtain

ρ∗i,n =

{

1, λn < (U ′
i (Ci) + βi − γ)ηiFi,n

0, λn > (U ′
i (Ci) + βi − γ)ηiFi,n

(34)

Since one subcarrier can only be assigned to at most one user,

we should assign a proper value to the Lagrange multiplier λn,

so that there is only one user whose (U ′
i (Ci)+βi−γ)ηiFi,n

value is larger than λn. In other words, subcarrier n should

be assigned to the user who have the largest (U ′
i (Ci) + βi −

γ)ηiFi,n, as stated in Proposition 5.

Note that the second term of Fi,n is small and can be

ignored. Hence, ηiFi,n approximately equals the APC obtained

through subcarrier n by user i.

The proposed subcarrier assignment criterion can be adopt-

ed for the MEC system with different utility functions. To

further understand the subcarrier assignment criterion, we

consider the following three utilities.

1) Sum APC Maximization: The utility function is U =
∑

i∈K
wiRi where wi represents user i’s priority. U ′

i (Ri) =
wi, ∀i ∈ K . Thus, the subcarrier assignment criterion is recast

as

i∗ = arg max
i∈K

{(wi + βi − γ)ηiFi,n} . (35)

If the users have the same priority, Equation (35) implies that

the system should assign the subcarrier to the user who can

obtain the largest APC through it.

2) Proportional Fairness: Proportional fairness originated

from Kelly’s work [36, 37]. Users’ APC C is proportionally

fair when any change in C results in the sum of proportional

changes being non-positive, i.e.,

∑

i∈K

C̃i − Ci

Ci
(36)

where C̃i is any other feasible value and Ci is the pro-

portionally fair value for user i. Define the utility function

Ui (Ci) = ln (Ci). When the subcarriers are assigned by

maximizing
∑

i∈K
ln (Ci), we will obtain a proportionally fair

result, which is proved in [36]. With this utility, the subcarrier

assignment criterion is transformed to

i∗ = arg max
i∈K

{

(
1

Ci
+ βi − γ)ηiFi,n

}

. (37)

Ignoring the Lagrange multiplier γ, we can conclude that the

system tends to assign the subcarrier to the user who has the

largest ratio of the APC obtained through the subcarrier to the

user’s whole APC for now.

3) Max-Min Fairness: Also in [36, 37], to reach a max-min

fairness among users, the author proposed the following utility

function

Ui (Ci) = −
[

ln

(
A

Ci

)]a

, (38)

where a → ∞ and A is constant, which is large enough to

make Ci/A ∈ (0, 1), ∀i ∈ K . Thus, the subcarrier assignment

criterion is recast as

i∗ = arg max
i∈K

{

(
a

Ci

[

ln

(
A

Ci

)]a−1

+ βi − γ)ηiFi,n

}

.

(39)

Since a → ∞, the large term [ln (A/Ci)]
a−1

dominates the

value of the formula. Thus, the equation can be simplified to

i∗ = argmini∈K Ci, which implies that the system always

assigns a subcarrier to the user with lower APC for now.

According to the criterion in Proposition 5, Algorithm 2 is

obtained as follow.

Algorithm 2 Suboptimal Subcarrier Assignment Algorithm

1: Initialize:

Set Mi = ∅ ∀i ∈ K , n ∈ N .

Set N remain = N .
2: repeat

3: Set ci,n = 0, pi,0 = 0 and pi,n = 0 ∀i ∈ K , n ∈ N .

4: For each user, allocate the power Pi to the subcarriers

in Mi ∪ N remain utilizing Algorithm 1 and obtain pi,0,

pi,n.

5: ci,n = (U ′
i(Ci) + βi − γ)ηiFi,n, ∀n ∈ N remain.

6: For each n, find i∗ with ci∗,n ≥ ci,n, ∀i ∈ K .

7: For all (n, i∗), find n∗ with ci∗,n∗ ≥ ci∗,n.

8: Update Mi∗ = Mi∗ ∪{n∗}, N remain = N remain −{n∗}.

9: ρi∗,n∗ = 1.

10: until N remain = ∅ or pi,n = 0, ∀n ∈ N remain.

Algorithm 2 stipulates that each user can only obtain at

most one subcarrier in a loop. That is because, once a user

gets a subcarrier, its indicator ci,n in the criterion changes.

However, the indicators are not recalculated until the next

power allocation process. Hence, Algorithm 2 finds the best

user for each unassigned subcarrier first. If there are multiple

subcarriers paired to user i, user i only choose the one with

largest ci,n.

D. Solution to the Dual Problem

There are two constraints affecting the APC that a user can

obtain, the RPC constraint and the server capacity constraint.

These two constraints are reflected by the Lagrange multipliers

βi and γ in the KKT conditions. In our previous analysis,

these two Lagrange multipliers are regarded as constants.

However, they affect the APC of every user during the resource

allocation. Take γ as an example. When the sum of the

computation offloaded by all the users is more than the server

capacity, the policy should turn γ up to decrease the power

allocated to the RF module, thereby lowering the offloaded

computation.

These Lagrange multipliers need to be updated according

to the dual problem. From (25), the dual problem is written

as
D1 :

min D(γ,βββ,υυυ,λλλ)

s.t. γ ≥ 0,βββ ≽ 0, υυυ≽0,λλλ≽0,

(40)



where D(γ,βββ,υυυ,λλλ) = max
P̃̃P̃P ,ρρρ

L(P̃̃P̃P ,ρρρ,βββ, γ,υυυ,λλλ). As the objec-

tive function of the dual problem is linear in the Lagrange

multipliers, the dual problem is convex, and the Lagrange

multipliers can be solved by subgradient projection method.

In the previous subsection, we have solved υυυ and λλλ by binary-

search water-filling algorithm and analyzing the subcarrier

assignment criterion respectively. Therefore, we only need to

deal with γ and βββ.

Proposition 6. For the dual problem D1, the subgradients and

iteration methods of D(γ,βββ,υυυ,λλλ) give

∆γ = Cserver −
∑

i∈K

∑

n∈N

ηiρ
∗
i,nB̄log2

(
1 + p∗i,ngi,n

)
, (41)

∆βi = C∗
i − Creq,i, (42)

γ(t+ 1) = [γ(t)− τ1(t)∆γ(t)]
+
, (43)

βi(t+ 1) = [βi(t)− τ2(t)∆βi(t)]
+
, (44)

where t is the iteration index, τ1(t), τ2(t) are step sizes

(positive and sufficiently small).

Proof. See Appendix D.

By updating γ and βββ with above equations, we summarize

the whole resource allocation procedure as Algorithm 3.

Algorithm 3 Iterative Resource Allocation Algorithm

1: Initialize:

Set t = 0 and maximum iteration times tmax.

Set γ(t), βββ(t) and allowable error δ.
2: repeat

3: Calculate computing power p∗i,0(t), transmitting power

p∗i,n(t) and subcarrier indicator ρ∗i,n(t) utilizing Algo-

rithm 2, ∀i ∈ K , n ∈ N .

4: Update γ(t+ 1) and βββ(t+ 1) from (43) and (44).

5: if ∥γ(t+ 1)− γ(t)∥2 < δ and

∥βββ(t+ 1)− βββ(t)∥2 < δ then

6: Close.

7: end if

8: if ∆γ < 0 and pi,0 = min(Pi, f
2
max,iζ) then

9: Reach the system upper bound.

10: Close.

11: end if

12: t = t+ 1.

13: until t > tmax.

The main loop in Algorithm 3 consists of the power and

subcarrier allocation algorithms, which are described in Algo-

rithm 1 and 2 respectively. Note that the Lagrange multiplier

βi can be ignored in Algorithm 1. Since the RPCs of users

are independent and the power is allocated for each user

respectively, (1 + β̃i) in (29) and (30) can be regarded as

a part of the Lagrange multiplier υ̃i and thus can be ignored

in the water-filling process. Note that the step size function is

supposed to make (U ′
i(Ci) + βi − γ) maintain non-negative

during the iteration process.

Remark 5 (Upper Bound of the Sum APC). In the proposed

MEC system, the sum APC can’t grow unboundedly as the

available power grows. The upper bound relies on the amount

of all available computation resource in the system including

all the mobile devices and the MEC server, which is given as

Cub=
∑

i∈K

min(fmax,i,
√

(Piζ−1) + Cserver. (45)

To maximize the APC of the system, we have assumed

that the users take full advantage of its available power by

allocating the power to the local computation or RF modules

in Algorithm 1. However, if the system doesn’t have enough

computation resource, the upper bound will be reached before

all the power is consumed. In this case, the local CPU works

with its available maximum frequency (min(fmax,i,
√

Piζ−1))
and the remaining power is all allocated to the RF module for

the user with extra power. The Lagrange multiplier γ can’t

converge to a constant since ∆γ keeps negative due to the

over-offloaded computation to the server. To solve that, we can

decrease the transmitting power with Equation (30) to satisfy

the system capacity constraint C1.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed

resource allocation policy utilizing Monte Carlo simulation

of 2000 channel realizations. A single-user MEC system and

a multiuser MEC system are considered. The parameters

are referred in [38] and [24]. The channel gain of each

subcarrier is written as gi,n = Di||ai,n||2, where Di is the

large-scale fading path loss parameter and ||ai,n||2 satisfies

the standard Rayleigh distribution, with average bandwidth

B̄ = 1MHz. The effective capacitance coefficient ζ is fixed

to [1, 10] × 10−17, calculated from Table 1 in [38], and the

CPU frequency of the users varies in (0, 500]MHz. The CIR

belongs to [500, 1500] followed in [24]. In the simulation,

the default settings are η = 1000, ζ = 10−17, Di = 1 and

fmax = 500MHz.

For the single-user MEC system with a single subcarrier, we

assume that the available power of the equipment is set as P =
1W and the server capacity Cserver is set to 2GHz. While the

wireless channel varies, the power allocation solution changes

as shown in Fig. 5. When the channel gain g is small (Case 3 in

the figure), all the power is allocated to the local CPU module

(f2
maxζ >1W) and the RF module stays quiet. Then, Case 1

becomes true where part of the computation is offloaded to the

MEC server. In this case, the power for CPU decreases and the

power for RF module increases as the channel gain g increases.

When the server capacity is exhausted, Case 4 becomes true

where the power for RF module decreases and the remaining

power is allocated to CPU to obtain extra income as g further

increases.

Fig. 6 depicts the sum processing capacity of the multiuser

MEC system versus the number of subcarriers with different

server capacities. The available power for each user is fixed

to 0.1W. The resource allocation policy with Ui(Ci) = Ci is

carried out under K = 5 and Cserver = 1.0, 1.2, 1.4, 2.0GHz,

respectively. As we can see, when the number of subcarriers

increases, the sum APC increases rapidly and reaches the serv-

er capacity limit very soon. Furthermore, the figure indicates
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that the MEC system with a higher server capacity can obtain

a better performance.

As shown in Fig. 7, the available power, the CIR η and

effective capacitance coefficient ζ also have significant affects

on the sum processing capacity. We set Pi = 0.1W, N = 10,

K = 5 and Cserver = 1.5 and 2.0GHz here. It can be observed

that the sum APCs with different server capacity and ζ have

similar curves when the power is low and η = 1000. However,

the system with higher server capacity has a higher upper

bound and with a lower ζ can obtain more processing capacity

from local CPU. Meanwhile, the CIR η determines the rate of

the processing capacity rise when the power is low.

Fig. 8 evaluates the performances of different utility func-

tions. In this case, the distances between users and the AP

are assumed to be random and the large-scale fading path loss

parameter Di is distributed evenly over (0, 5]. The available

power for each user is set to Pi = 0.15W to give better

observations. It’s evident that the algorithm with the APC

maximization utility achieves the highest processing capacity

for the MEC system, while the performance of the proportional

fairness utility is closed to the former. The algorithm with
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Fig. 7. The sum processing capacity versus the available power of each user
for the multiuser MEC system.
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the max-min fairness utility doesn’t perform well on the sum

APC, but it pays more attention to the users with bad power

and communication conditions.

VII. CONCLUSION

This paper has investigated a resource allocation policy

based on the processing capacity for MEC IoT networks.

For fully divisible tasks, we demonstrated that the optimal

task partitioning is determined by the resource allocation

policy, thus a user’s APC can be represented as a concave

function of power and subcarriers. Then, the factors that affect

the APC improvement in the MEC system was revealed by

analyzing the optimization problem of a single-user MEC

system. After that, we proposed the power and subcarrier

allocation algorithms for the multiuser MEC system, which

satisfy users’ RPC demands and meanwhile address concerns

on the APC utility functions. Note that this paper aims to find

the best-effort point where the APC is maximized for the MEC

system, while the energy-efficient point, where the power

consumption is minimized, can also be found easily. The APC

avoids the complicated analysis on the arrival and termination



of tasks. Therefore, the policy based on it is appropriate for

IoT networks with unpredictable tasks and constrained power,

which has been verified by Monte Carlo simulation.

For most of this paper, we have only discussed the resource

allocation for a centralized MEC network with OFDMA. APC-

based scheduling policies can be further investigated for other

networks with other access modes in the future. For example,

it is necessary to reallocate unbalanced processing capacities

of the devices in wireless ad-hoc networks, in which each

device may be used as an MEC server.

APPENDIX A

According to [39], we can always minimize a function

by first minimizing over some of the variables and then

minimizing over the remaining ones. Thus, Equation (6) can

be rewritten as

tcost,i = min
PPP i

f(PPP i), (46)

where

f(PPP i) = min
li

max




(αi − li) ηi
√

pi,0ζi
−1

,
li

RTx,i



 . (47)

li

t

0

Infimum Point

αi

RTx;i

αi

αiηi
p

pi;0ζi
−1

Fig. 9. The solution for the linear programming problem.

Since the task is infinitely divisible, the offloaded data li is

a continuous variable over range [0, αi]. Equation (47) can be

transformed to

min
li

t

s.t.
(αi−li)ηi√
pi,0ζi−1

≤ t, li
RTx,i

≤ t,
(48)

which is an equivalent linear programming problem of li. As

shown in Fig. 9, the optimal point is always obtained at the

cross of the two constraint lines, where li is the proposed

value. By taking li into Equation (6), tcost,i is rewritten as

tcost,i = min
PPP i,ρρρi

ωi
√

pi,0ζi
−1 + ηiRTx,i

. (49)

Equation (49) implies that we can always obtain the minimum

execution latency by allocating the power of the user to the

CPU module and the RF module properly for assigned wireless

channels. Expanding it to an arbitrary power and subcarrier

allocation, we have the lemma.

APPENDIX B

According to Section II, we can figure that Clocal(p0) =√

p0ζ−1 and Cremote(p1) = ηB̄ log2(1 + p1g) are concave.

Thus, the objective function C = Clocal(p0) + Cremote(p1)
is concave and the required APC constraint Creq − C is

convex. In addition, Clocal(p0) ≤ Cfmax
and Cremote(p1) ≤

Cserver can be equivalently recast as p0 − ζC2
fmax

≤ 0 and

p1 − g−1(2Cserverη
−1B̄−1 − 1) ≤ 0. Hence, the rest constraints

are all linear. Therefore, P0 is a convex optimization problem.

Its partial Lagrangian function can be written as

L(p0, p1, υ)=
√

p0ζ−1+ηB̄ log2(1+p1g)+υ(P−p0−p1), (50)

where υ ≥ 0 is the Lagrange multiplier for the maximum

power constraint. Applying KKT conditions leads to the

following results

∂L

∂p∗0
=

1√
4p0ζ

− υ,
∂L

∂p∗1
=

ηB̄/ ln 2

1 + p1g
− υ. (51)

Make the partial derivatives equal 0, then carry them into the

maximum power constraint. We can obtain

P +
1

g
=

1

4ζυ2
+

ηB̄/ ln 2

υ
. (52)

Solving the quadratic equation, we have 1
υ =

2ζ(
√

(ηB̄/ln 2)2 + 1
ζ (P + 1

g )− ηB̄/ln 2). Thus, we have the

proposition.

APPENDIX C

The perspective operation preserves convexity [39], that is,

if f(x) is a convex function, then so its perspective function

tf(x/t) where t > 0. Therefore, ρi,nB̄log2

(

1 +
p̃i,n

ρi,n
gi,n

)

is concave since it is the perspective function of B̄ log2(1 +

p̃i,ngi,n). Meanwhile,

√

p̃i,0ζi
−1 is concave on R

+. Since the

sum of concave functions also preserves convexity, user i’s
APC (23) is concave. Note that h(g(x)) is concave, if h(x)
is concave, its extended-value extension function h̃(x), which

assigns the value −∞ to points not in the domain of h(x), is

nondecreasing, and g(x) is concave according to Section 3.2.4

in [39]. Hence, user i’s utility function Ui(Ci) is concave.

Because U =
∑

i∈K
Ui, U is concave.

APPENDIX D

Since D(γ,βββ,υυυ,λλλ) = max
P̃̃P̃P ,ρρρ

L(P̃̃P̃P ,ρρρ,βββ, γ,υυυ,λλλ), we have

D(γ,βββ′,υυυ,λλλ′) ≥
∑

i∈K

Ui (C
∗
i ) +

∑

i∈K

βi [C
∗
i − Creq,i]

+ γ

[

Cserver−
∑

i∈K

N∑

n=1

ηiρ
∗
i,nB̄log2

(

1 +
p̃∗i,n
ρ∗i,n

gi,n

)]

+
∑

i∈K

υi

[

Pi −
N∑

n=0

p̃∗i,n

]

+

N∑

n=1

λn

[

1−
∑

i∈K

ρ∗i,n

]

,

(53)



where ρ∗i,n and p̃∗i,n are the optimal solutions corresponding

to γ,βββ,υυυ,λλλ. (53) can be rearranged as

D(γ,βββ′, υυυ,λλλ′) ≥ D(γ,βββ,υυυ,λλλ)+
∑

i∈K

(βi
′ − βi) [C

∗
i − Creq,i]

+(γ′−γ)

[

Cserver−
∑

i∈K

N∑

n=1

ηiρ
∗
i,nB̄log2

(

1+
p̃∗i,n
ρ∗i,n

gi,n

)]

.

(54)

Note that δ is defined as a subgradient of a convex function

f(·) if f(x′) ≥ f(x) + δ(x′ − x) holds for all x′ and x in the

domain. Hence, the proposition holds.
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