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Power Control By Geometric Programming
Mung Chiang, Chee Wei Tan, Daniel P. Palomar, Daniel O’Neill, and David Julian

Abstract— In wireless cellular or ad hoc networks where
Quality of Service (QoS) is interference-limited, a variety of
power control problems can be formulated as nonlinear op-
timization with a system-wide objective, e.g., maximizing the
total system throughput or the worst user throughput, subject to
QoS constraints from individual users, e.g., on data rate, delay,
and outage probability. We show that in the high Signal-to-
Interference Ratios (SIR) regime, these nonlinear and apparently
difficult, nonconvex optimization problems can be transformed
into convex optimization problems in the form of geometric
programming; hence they can be very efficiently solved for
global optimality even with a large number of users. In the
medium to low SIR regime, some of these constrained nonlinear
optimization of power control cannot be turned into tractable
convex formulations, but a heuristic can be used to compute
in most cases the optimal solution by solving a series of
geometric programs through the approach of successive convex
approximation. While efficient and robust algorithms have been
extensively studied for centralized solutions of geometric pro-
grams, distributed algorithms have not been explored before. We
present a systematic method of distributed algorithms for power
control that is geometric-programming-based. These techniques
for power control, together with their implications to admission
control and pricing in wireless networks, are illustrated through
several numerical examples.

Index Terms— Convex optimization, CDMA power control,
Distributed algorithms.

I. INTRODUCTION

DUE to the broadcast nature of radio transmission, data
rates and other Quality of Service (QoS) in a wireless

network are affected by interference. This is particularly
important in Code Division Multiple Access (CDMA) systems
where users transmit at the same time over the same frequency
bands and their spreading codes are not perfectly orthogonal.
Transmit power control is often used to tackle this problem of
signal interference. In this paper, we study how to optimize
over the transmit powers to create the optimal set of Signal-
to-Interference Ratios (SIR) on wireless links. Optimality
here can be with respect to a variety of objectives, such as
maximizing a system-wide efficiency metric (e.g., the total
system throughput), or maximizing a Quality of Service (QoS)
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metric for a user in the highest QoS class, or maximizing a
QoS metric for the user with the minimum QoS metric value
(i.e., a maxmin optimization).

While the objective represents a system-wide goal to be
optimized, individual users’ QoS requirements also need to be
satisfied. Any power allocation must therefore be constrained
by a feasible set formed by these minimum requirements
from the users. Such a constrained optimization captures the
tradeoff between user-centric constraints and some network-
centric objective. Because a higher power level from one
transmitter increases the interference levels at other receivers,
there may not be any feasible power allocation to satisfy
the requirements from all the users. Sometimes an existing
set of requirements can be satisfied, but when a new user is
admitted into the system, there exists no more feasible power
control solutions, or the maximized objective is reduced due
to the tightening of the constraint set, leading to the need for
admission control and admission pricing, respectively.

Because many QoS metrics are nonlinear functions of
SIR, which is in turn a nonlinear (and neither convex nor
concave) function of transmit powers, in general power control
optimization or feasibility problems are difficult nonlinear op-
timization problems that may appear to be NP-hard problems.
This paper shows that, when SIR is much larger than 0dB, a
class of nonlinear optimization called Geometric Programming
(GP) can be used to efficiently compute the globally optimal
power control in many of these problems, and efficiently
determine the feasibility of user requirements by returning
either a feasible (and indeed optimal) set of powers or a certifi-
cate of infeasibility. This also leads to an effective admission
control and admission pricing method. The key observation
is that despite the apparent nonconvexity, through logarithmic
change of variable the GP technique turns these constrained
optimization of power control into convex optimization, which
is intrinsically tractable despite its nonlinearity in objective
and constraints. When SIR is comparable to or below 0dB,
the power control problems are truly nonconvex with no
efficient and global solution methods. In this case, we present
a heuristic that is provably convergent and empirically often
computes the globally optimal power allocation by solving a
sequence of GPs through the approach of successive convex
approximations.

The GP approach reveals the hidden convexity structure,
which implies efficient solution methods, in power control
problems with nonlinear objective functions and specific SIR
constraints. It also clearly differentiates the tractable formula-
tions in high-SIR regime from the intractable ones in low-SIR
regime. In contrast to the classical Foschini-Miljanic power
control [8] and many of the related work, the power control
problems in this paper have nonlinear objective functions in
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terms of system performance and are nonconvex optimization.
In contrast to more recent work on optimal SIR assignment
(e.g., [16]), the formulations here have hard QoS constraints,
such as minimum SIR targets. Therefore, the range of power
control problems that can be efficiently solved is widened.

Power control by GP is applicable to formulations in
both cellular networks with single-hop transmission between
mobile users and base stations, and ad hoc networks with
mulithop transmission among the nodes, as illustrated through
several numerical examples in this paper. Traditionally, GP is
solved by centralized computation through the highly efficient
interior point methods. In this paper we present a new result
on how GP can be solved distributively with message passing,
which has independent value to general maximization of
coupled objective, and apply it to power control problems.

The rest of this paper is organized as follows. In section
II, we provide a concise introduction to GP. Section III
generalizes the results in [10] with several subsections, each
discussing GP based power control with different representa-
tive formulations in cellular and multihop networks that can
be transformed into convex problems. Then, generalizing the
new results in [21], we present two extensions overcoming the
two main limitations in [10]: solution method for nonconvex
power control in low-SIR regime in section IV and distributed
algorithm in section V.

II. GEOMETRIC PROGRAMMING

GP is a class of nonlinear, nonconvex optimization problems
with many useful theoretical and computational properties.
Since a GP can be turned into a convex optimization problem1,
a local optimum is also a global optimum, Lagrange duality
gap is zero under mild conditions, and a global optimum
can always be computed very efficiently. Numerical efficiency
holds both in theory and in practice: interior point methods
applied to GP have provably polynomial time complexity
[14], and are very fast in practice with high-quality software
downloadable from the Internet (e.g., the MOSEK package).
Convexity and duality properties of GP are well understood,
and large-scale, robust numerical solvers for GP are available.
Furthermore, special structures in GP and its Lagrange dual
problem lead to distributed algorithms, physical interpreta-
tions, and computational acceleration even beyond the generic
results for convex optimization. A detailed tutorial of GP and
comprehensive survey of its recent applications to communi-
cation systems can be found in [7]. This section contains a
brief introduction of GP terminology for applications to be
shown in the next three sections on power control problems.

There are two equivalent forms of GP: standard form and
convex form. The first is a constrained optimization of a type
of function called posynomial, and the second form is obtained
from the first through a logarithmic change of variable.

We first define a monomial as a function f : Rn
++ → R:

f(x) = d xa(1)

1 xa(2)

2 . . . xa(n)

n

1Minimizing a convex objective function subject to upper bound inequality
constraints on convex constraint functions and linear equality constraints is a
convex optimization problem.

where the multiplicative constant d ≥ 0 and the exponential
constants a(j) ∈ R, j = 1, 2, . . . , n. A sum of monomials,
indexed by k below, is called a posynomial:

f(x) =
K∑

k=1

dkx
a
(1)
k

1 x
a
(2)
k

2 . . . x
a
(n)
k

n .

where dk ≥ 0, k = 1, 2, . . . , K, and a
(j)
k ∈ R, j =

1, 2, . . . , n, k = 1, 2, . . . , K . For example, 2x−π
1 x0.5

2 +3x1x
100
3

is a posynomial in x, x1−x2 is not a posynomial, and x1/x2

is a monomial, thus also a posynomial.
Minimizing a posynomial subject to posynomial upper

bound inequality constraints and monomial equality con-
straints is called GP in standard form:

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, 2, . . . , m,

hl(x) = 1, l = 1, 2, . . . , M
(1)

where fi, i = 0, 1, . . . , m, are posynomials: fi(x) =∑Ki

k=1 dikx
a
(1)
ik

1 x
a
(2)
ik

2 . . . x
a
(n)
ik

n , and hl, l = 1, 2, . . . , M are

monomials: hl(x) = dlx
a
(1)
l

1 x
a
(2)
l

2 . . . x
a
(n)
l

n .
GP in standard form is not a convex optimization problem,

because posynomials are not convex functions. However,
with a logarithmic change of the variables and multiplicative
constants: yi = log xi, bik = log dik, bl = log dl, and a
logarithmic change of the functions’ values, we can turn it
into the following equivalent problem in y:

minimize p0(y) = log
∑K0

k=1 exp(aT
0ky + b0k)

subject to pi(y) = log
∑Ki

k=1 exp(aT
iky + bik) ≤ 0, ∀i,

ql(y) = aT
l y + bl = 0, l = 1, 2, . . . , M.

(2)
This is referred to as GP in convex form, which is a convex
optimization problem since it can be verified that the log-sum-
exp function is convex [5].

In summary, GP is a nonlinear, nonconvex optimization
problem that can be transformed into a nonlinear, convex prob-
lem. GP in standard form can be used to formulate network
resource allocation problems with nonlinear objectives under
nonlinear QoS constraints. The basic idea is that resources are
often allocated proportional to some parameters, and when
resource allocations are optimized over these parameters,
we are maximizing an inverted posynomial subject to lower
bounds on other inverted posynomials, which are equivalent
to GP in standard form.

III. POWER CONTROL BY

GEOMETRIC PROGRAMMING: CONVEX CASE

Various schemes for power control, centralized or distrib-
uted, have been extensively studied since 1990s based on
different transmission models and application needs, e.g., in
[2], [8], [13], [19], [20], [23]. This section summarizes the new
approach of formulating power control problems through GP.
The key advantage is that globally optimal power allocations
can be efficiently computed for a variety of nonlinear system-
wide objectives and user QoS constraints, even when these
nonlinear problems appear to be nonconvex optimization.
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A. Basic model

Consider a wireless (cellular or multihop) network with n
logical transmitter/receiver pairs. Transmit powers are denoted
as P1, . . . , Pn. In the cellular uplink case, all logical receivers
may reside in the same physical receiver, i.e., the base station.
In the multihop case, since the transmission environment can
be different on the links comprising an end-to-end path, power
control schemes must consider each link along a flow’s path.

Under Rayleigh fading, the power received from transmitter
j at receiver i is given by GijFijPj where Gij ≥ 0 represents
the path gain (it may also encompass antenna gain and coding
gain) that is often modeled as proportional to d−γ

ij , where
dij denotes distance, γ is the power fall-off factor, and Fij

models Rayleigh fading and are independent and exponentially
distributed with unit mean. The distribution of the received
power from transmitter j at receiver i is then exponential with
mean value E [GijFijPj ] = GijPj . The SIR for the receiver
on logical link i is

SIRi =
PiGiiFii∑N

j �=i PjGijFij + ni

(3)

where ni is the noise power for receiver i.
The constellation size M used by a link can be

closely approximated for M-ary Quadrature Amplitude Mod-
ulation (MQAM) modulations as follows: M = 1 +
(−φ1SIR)/(ln(φ2BER)), where BER is the bit error rate
and φ1, φ2 are constants that depend on the modulation
type [9]. Defining T as the symbol period and K =
(−φ1)/(ln(φ2BER)) leads to an expression of the data rate
Ri on the ith link as a function of the SIR: Ri = 1

T log2(1 +
KSIRi), which can be approximated as

Ri =
1
T

log2(KSIRi) (4)

when KSIR is much larger than 1. This approximation is
reasonable either when the signal level is much higher than the
interference level or, in CDMA systems, when the spreading
gain is large. For notational simplicity in the rest of this paper,
we redefine Gii as K times the original Gii, thus absorbing
constant K into the definition of SIR.

The aggregate data rate for the system can then be written
as

Rsystem =
∑

i

Ri =
1
T

log2

[∏
i

SIRi

]
.

So in the high SIR regime, aggregate data rate maximization
is equivalent to maximizing a product of SIR. The system
throughput is the aggregate data rate supportable by the system
given a set of users with specified QoS requirements.

Outage probability is another important QoS parameter
for reliable communication in wireless networks. A channel
outage is declared and packets lost when the received SIR
falls below a given threshold SIRth, often computed from the
BER requirement. Most systems are interference dominated
and the thermal noise is relatively small, thus the ith link
outage probability is

Po,i = Prob{SIRi ≤ SIRth}
= Prob{GiiFiiPi ≤ SIRth

∑
j �=i

GijFijPj}.

The outage probability can be expressed as Po,i = 1 −∏
j �=i 1/(1 + SIRthGijPj

GiiPi
) [11], which means that the upper

bound Po,i ≤ Po,i,max can be written as an upper bound on
a posynomial in P:∏

j �=i

(
1 +

SIRthGijPj

GiiPi

)
≤ 1

1 − Po,i,max
. (5)

B. Cellular wireless networks

We first present how GP-based power control applies to
cellular wireless networks with one-hop transmission from N
users to a base station, extending the scope of power control by
the classical solution in CDMA systems that equalizes SIRs,
and those by the iterative algorithms (e.g., in [2], [8], [13])
that minimize total power (a linear objective function) subject
to SIR constraints.

We start the discussion on the suite of power control prob-
lem formulations with a simple objective function and simple
constraints. The following constrained problem of maximizing
the SIR of a particular user i∗ is a GP:

maximize Ri∗(P)
subject to Ri(P) ≥ Ri,min, ∀i,

Pi1Gi1 = Pi2Gi2,
0 ≤ Pi ≤ Pi,max, ∀i.

The first constraint, equivalent to SIRi ≥ SIRi,min, sets
a floor on the SIR of other users and protects these users
from user i∗ increasing its transmit power excessively. The
second constraint reflects the classical power control criterion
in solving the near-far problem in CDMA systems: the ex-
pected received power from one transmitter i1 must equal that
from another i2. The third constraint is regulatory or system
limitations on transmit powers. All constraints can be verified
to be inequality upper bounds on posynomials in transmit
power vector P.

Alternatively, we can use GP to maximize the minimum
rate among all users. The maxmin fairness objective:

maximize min
i

{Ri(P)}
can also be accommodated in GP-based power control because
it can be turned into equivalently maximizing an auxiliary
variable t such that SIRi(P) ≥ exp(t), ∀i, which has
posynomial objective and constraints in (P, t).

Example 1. A simple system comprised of five users is
used for a numerical example. The five users are spaced at
distances d of 1, 5, 10, 15, and 20 units from the base station.
The power fall-off factor γ = 4. Each user has a maximum
power constraint of Pmax = 0.5mW . The noise power is
0.5μW for all users. The SIR of all users, other than the
user we are optimizing for, must be greater than a common
threshold SIR level β. In different experiments, β is varied to
observe the effect on the optimized user’s SIR. This is done
independently for the near user at d = 1, a medium distance
user at d = 15, and the far user at d = 20. The results are
plotted in Figure 1.

Several interesting effects are illustrated. First, when the
required threshold SIR in the constraints is sufficiently high,
there are no feasible power control solutions. At moderate
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Fig. 1. Constrained optimization of power control in a cellular network
(Example 1).

threshold SIR, as β is decreased, the optimized SIR initially
increases rapidly. This is because it is allowed to increase
its own power by the sum of the power reductions in the
four other users, and the noise is relatively insignificant. At
low threshold SIR, the noise becomes more significant and
the power trade-off from the other users less significant, so
the curve starts to bend over. Eventually, the optimized user
reaches its upper bound on power and cannot utilize the excess
power allowed by the lower threshold SIR for other users. This
is exhibited by the transition from a sharp bend in the curve
to a much shallower sloped curve.

We now proceed to show that GP can also be applied to
the problem formulations with an overall system objective of
total system throughput, under both user data rate constraints
and outage probability constraints.

The following constrained problem of maximizing system
throughput is a GP:

maximize Rsystem(P)
subject to Ri(P) ≥ Ri,min, ∀i,

Po,i(P) ≤ Po,i,max, ∀i,
0 ≤ Pi ≤ Pi,max, ∀i

(6)

where the optimization variables are the transmit powers P.
The objective is equivalent to minimizing the posynomial∏

i ISRi, where ISR is 1/SIR. Each ISR is a posynomial in P
and the product of posynomials is again a posynomial. The
first constraint is from the data rate demand Ri,min by each
user. The second constraint represents the outage probability
upper bounds Po,i,max. These inequality constraints put upper
bounds on posynomials of P, as can be readily verified
through (4) and (5). Thus (6) is indeed a GP, and efficiently
solvable for global optimality.

There are several obvious variations of problem (6) that
can be solved by GP, e.g., we can lower bound Rsystem as
a constraint and maximize Ri∗ for a particular user i∗, or
have a total power

∑
i Pi constraint or objective function. The

objective function to be maximized can also be generalized to
a weighted sum of data rates:

∑
i wiRi where w � 0 is a

20m

20mA

C

B

D

1 2

3 4

Fig. 2. A small wireless multihop network (Example 2).

given weight vector. This is still a GP because maximizing∑
i wi log SIRi is equivalent to maximizing log

∏
i SIRwi

i ,
which is in turn equivalent to minimizing

∏
i ISRwi

i . Now use
auxiliary variables {ti}, and minimize

∏
i twi

i over the original
constraints in (6) plus the additional constraints ISRi. ≤ ti for
all i. This is readily verified to be a GP, and is equivalent to
the original problem.

Generalizing the above discussions and observing that high-
SIR assumption is needed for GP formulation only when there
are sums of log(1+SIR) in the optimization problem, we have
the following summary.

Proposition 1: In the high-SIR regime, any combination
of objectives (A)-(E) and constraints (a)-(e) in Table I is
a power control problem that can be solved by GP, i.e.,
can be transformed into a convex optimization with efficient
algorithms to compute the globally optimal power vector.
When objectives (C)-(D) and constraints (c)-(d) do not appear,
the power control optimization problem can be solved by GP
in any SIR regime.

In addition to efficient computation of the globally optimal
power allocation with nonlinear objectives and constraints,
GP can also be used for admission control based on feasi-
bility study described in [7], and for determining which QoS
constraint is a performance bottleneck, i.e., met tightly at the
optimal power allocation.2

C. Extensions: Multihop wireless networks

In wireless multihop networks, system throughput may be
measured either by end-to-end transport layer utilities or by
link layer aggregate throughput. GP application to the first
approach has appeared in [6], and we focus on the second
(and easier) approach in this section. Formulations in Table
I can be readily extended to multihop case by indexing each
logical link as i. An example is presented below for the total
throughput maximization formulation (6).

Example 2. Consider a simple four node multihop network
shown in Figure 2. There are two connections A → B → D

2This is because most GP solution algorithms solve both the primal GP and
its Lagrange dual problem: by complementary slackness condition, a resource
constraint is tight at optimal power allocation when the corresponding optimal
dual variable is non-zero.
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TABLE I

SUITE OF POWER CONTROL OPTIMIZATION SOLVABLE BY GP

Objective Function Constraints

(A) Maximize Ri∗ (specific user) (a) Ri ≥ Ri,min (rate constraint)

(B) Maximize mini Ri (worst-case user) (b) Pi1Gi1 = Pi2Gi2 (near-far constraint)

(C) Maximize
∑

i
Ri (total throughput) (c)

∑
i
Ri ≥ Rsystem,min (total throughput constraint)

(D) Maximize
∑

i
wiRi (weighted rate sum) (d) Po,i ≤ Po,i,max (outage prob. constraint)

(E) Minimize
∑

i
Pi (total power) (e) 0 ≤ Pi ≤ Pi,max (power constraint)

and A → C → D. Nodes A and D, as well as B and
C, are separated by a distance of 20m. Path gain between a
transmitter and a receiver has a common fall-off factor γ = 4.
Each link has a maximum transmit power of 1mW. All nodes
use MQAM modulation. The minimum data rate for each
connection is 100bps, and the target BER is 10−3. Assuming
Rayleigh fading, we require outage probability be smaller than
0.1 on all links for an SIR threshold of 10dB. Spreading gain is
200. Using GP formulation (6), we find the maximized system
throughput R∗ = 216.8kbps, R∗

i = 54.2kbps for each link,
P ∗

1 = P ∗
3 = 0.709mW and P ∗

2 = P ∗
4 = 1mW. The resulting

optimized SIR is 21.7dB on each link. For this topology, we
also consider an illustrative example of admission control and
pricing. Three new users U1, U2, and U3 are going to arrive
to the network in order. U1 and U2 require 30kbps sent along
the upper path A → B → D, while U3 requires 10kbps sent
from A → B. All three users require the outage probability
to be less than 0.1. When U1 arrives at the system, its price
is the baseline price. Next, U2 arrives, and its QoS demands
decrease the maximum system throughput from 216.82kbps to
116.63kbps, so its price is the baseline price plus an amount
proportional to the reduction in system throughput. Finally,
U3 arrives, and its QoS demands produce no feasible power
allocation solution, so she is not admitted to the system.

D. Extensions: Queuing models

We now turn to delay and buffer overflow properties to
be included in constraints or objective function of power
control optimization. The average delay a packet experiences
traversing a network is an important design consideration
in some applications. Queuing delay is often the primary
source of delay, particularly for bursty data traffic in multihop
networks. A node i first buffers the received packets in a
queue and then transmits these packets at a rate R set by
the SIR on the egress link, which is in turn determined by the
transmit powers P. A FIFO queuing discipline is used here for
simplicity. Routing is assumed to be fixed, and is feed-forward
with all packets visiting a node at most once.

Packet traffic entering the multihop network at the trans-
mitter of link i is assumed to be Poisson with parameter λi

and to have an exponentially distributed length with parameter
Γ. Using the model of an M/M/1 queue as in [3], the
probability of transmitter i having a backlog of Ni = k
packets to transmit is well-known to be Prob{Ni = k} =
(1 − ρ)ρk where ρ = λi/ΓRi(P), and the expected delay is
1/(ΓRi(P)−λi). Under the feed-forward routing and Poisson

input assumptions, Burke’s theorem in [3] can be applied.
Thus the total packet arrival rate at node i is Λi =

∑
j∈I(i) λj

where I(i) is the set of connections traversing node i. The
expected delay D̄i can be written as

D̄i =
1

ΓRi(P) − Λi
. (7)

A bound D̄i,max on D̄i can thus be written as
1/(Γ log2(SIRi)/T − Λi) ≤ D̄i,max, or equivalently,
ISRi(P) ≤ 2−T (D̄−1

max+Λi)/Γ, an upper bound on a posynomial
ISR of P that is allowed in GP formulations.

The probability PBO of dropping a packet due to buffer
overflow at a node is also important in several applications.
It is again a function of P and can be written as PBO,i =
Prob{Ni > B} = ρB+1 where B is the buffer size
and ρ = Λi/(ΓRi(P)). Setting an upper bound PBO,i,max

on the buffer overflow probability also gives a posynomial
lower bound constraint in P: ISRi(P) ≤ 2−Ψ where Ψ =
(TΛi)/(Γ(PBO,i,max)

1
B+1 ), which is allowed in GP formula-

tions. In summary, we have the following.
Proposition 2: The following nonlinear problem of opti-

mizing powers to maximize system throughput in the high-SIR
regime, subject to constraints on outage probability, expected
delay, and the probability of buffer overflow, is a GP:

maximize Rsystem(P)
subject to D̄i(P) ≤ D̄i,max, ∀i,

PBO,i(P) ≤ PBO,i,max, ∀i,
Any combination of constraints (a)-(e)
in Table (I)

(8)

where the optimization variables are the transmit powers P.
Example 3. Consider a numerical example of the opti-

mal tradeoff between maximizing the system throughput and
bounding the expected delay for the network shown in Figure
3. There are six nodes, eight links, and five multihop connec-
tions. All sources are Poisson with intensity λi = 200 pack-
ets per second, and exponentially distributed packet lengths
with an expectation of of 100 bits. The nodes use CDMA
transmission scheme with a symbol rate of 10k symbols per
second and the spreading gain is 200. Transmit powers are
limited to 1mW and the target BER is 10−3. The path loss
matrix is calculated based on a power falloff of d−4 with the
distance d, and a separation of 10m between any adjacent
nodes along the perimeter of the network. Figure 4 shows
the maximized system throughput for different upper bound
numerical values in the expected delay constraints, obtained
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Fig. 3. Topology and flows in a multihop wireless network (Example 3).
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Fig. 4. Optimal tradeoff between maximized system throughput and average
delay constraint (Example 3).

by solving a sequence of GPs, one for each point on the curve.
There is no feasible power allocation to achieve delay smaller
than 0.036s. As the delay bound is relaxed, the maximized
system throughput increases sharply first, then more slowly
until the delay constraints are no longer active. GP efficiently
returns the globally Pareto-optimal tradeoff curve between
system throughput and queuing delay.

There are two main limitations in the GP-based power
control methods discussed so far: high-SIR assumption and
centralized computation. Both can be overcome as discussed
in the next two sections.

IV. POWER CONTROL BY

GEOMETRIC PROGRAMMING: NON-CONVEX CASE

If we maximize the total throughput Rsystem in the medium
to low SIR case, i.e., when SIR is not much larger than 0dB,
the approximation of log(1 + SIR) as log SIR does not hold.
Unlike SIR, which is an inverted posynomial, 1+SIR is not an
inverted posynomial. Instead, 1/(1 + SIR) is a ratio between
two posynomials:

f(P)
g(P)

=

∑
j �=i GijPj + ni∑
j GijPj + ni

. (9)

Minimizing or upper bounding a ratio between two posyn-
omials belongs to a truly nonconvex class of problems known
as Complementary GP [1], [7] that is an intractable NP-hard
problem. An equivalent generalization of GP is Signomial
Programming (SP) [1], [7]: minimizing a signomial subject
to upper bound inequality constraints on signomials, where a
signomial s(x) is a sum of monomials, possibly with negative
multiplicative coefficients: s(x) =

∑N
i=1 cigi(x) where c ∈

RN and gi(x) are monomials.3

A. Successive convex approximation method

Consider the following nonconvex problem:

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, 2, . . . , m,

(10)

where f0 is convex without loss of generality4, but the
fi(x)’s, ∀i are nonconvex. Since directly solving this problem
is difficult, we will solve it by a series of approximations
f̃i(x) ≈ fi(x), ∀x, each of which can be optimally solved in
an easy way. It turns out that if the approximations satisfy
the following three properties, then the solutions of this series
of approximations converge to a point satisfying the Karush-
Kuhn-Tucker (KKT) conditions of the original problem [12]:

(1) fi(x) ≤ f̃i(x) for all x,
(2) fi(x0) = f̃i(x0) where x0 is the optimal solution of the

approximated problem in the previous iteration,
(3) ∇fi(x0) = ∇f̃i(x0).
Condition (1) guarantees that the approximation f̃i(x) is

tightening the constraints in (10), and any solution of the
approximated problem will be a feasible point of the original
problem in (10). Condition (2) guarantees that the solution of
each approximated problem will decrease the cost function:
f0(x(k)) ≤ f0(x(k−1)), where x(k) is the solution to the k-th
approximated problem. Condition (3) guarantees that the KKT
conditions of the original problem in (10) will be satisfied after
the series of approximations converges.

The following algorithm describes the generic successive
approximation approach.

Algorithm Successive approximation to a nonconvex prob-
lem

Input Method to approximate fi(x) with f̃i(x) , ∀i, around
some point of interest x0.

Output A vector that satisfies the KKT conditions of the
original problem.

0) Choose an initial feasible point x(0) and set k = 1.
1) Form the k-th approximated problem of (10) based on

approximating fi(x) with f̃i(x) around the previous point
x(k−1).

2) Solve the k-th approximated problem to obtain x(k).
3) Increment k and go to step 2 until convergence to a

stationary point.

3An SP can always be converted into a Complementary GP, because an
inequality in SP, which can be written as fi1(x)−fi2(x) ≤ 1, where fi1, fi2

are posynomials, is equivalent to an inequality fi1(x)/(1 + fi2(x)) ≤ 1 in
Complementary GP. Similarly, an upper bound on a ratio of posynomials in
Complementary GP can be rewritten as an SP inequality constraint.

4If f0 is nonconvex, we can move the objective function to
the constraints by introducing auxiliary scalar variable t and writing
minimize t subject to the additional constraint f0(x) − t ≤ 0.
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B. Examples of successive convex approximation

1) Logarithmic approximation for GP: In [17], [18], a
nonconvex problem involving the function log(1 + SIR) is
approximated by a + b log(SIR) for some a and b that satisfy
the above three conditions.

2) Single condensation method for GP: Complementary
GPs involve upper bounds on the ratio of posynomials as in
(9); they can be turned into GPs by approximating the denomi-
nator of the ratio of posynomials, g(x), with a monomial g̃(x),
but leaving the numerator f(x) as a posynomial.

Lemma 1: Let g(x) =
∑

i ui(x) be a posynomial. Then

g(x) ≥ g̃(x) =
∏

i

(
ui(x)
αi

)αi

. (11)

If, in addition, αi = ui(x0)/g(x0), ∀i, for any fixed positive
x0, then g̃(x0) = g(x0), and g̃(x0) is the best local monomial
approximation to g(x0) near x0 in the sense of first order
Taylor approximation.

Proof: The arithmetic-geometric mean inequality states
that

∑
i αivi ≥ ∏

i vαi

i , where v 
 0 and α � 0, 1T α =
1. Letting ui = αivi, we can write this basic inequality as∑

i ui ≥
∏

i (ui/αi)
αi . The inequality becomes an equality if

we let αi = ui/
∑

i ui, ∀i, which satisfies the condition that
α � 0 and 1T α = 1. The best local monomial approximation
g̃(x0) of g(x0) near x0 can be easily verified [4].

Proposition 3: The approximation of a ratio of posynomials
f(x)/g(x) with f(x)/g̃(x), where g̃(x) is the monomial
approximation of g(x) using the arithmetic-geometric mean
approximation of Lemma 1, satisfies the three conditions for
the convergence of the successive approximation method.

Proof: Conditions (1) and (2) are clearly satisfied since
g(x) ≥ g̃(x) and g̃(x0) = g(x0) (Lemma 1). Condition (3) is
easily verified by taking derivatives of g(x) and g̃(x).

Suppose we want to minimize f0(x) subject to an equality
constraint on a ratio of posynomials f(x)/g(x) = 1. Then,
we can rewrite this as minimizing f0(x) + φt subject to
f(x)/g(x) ≤ 1 and f(x)/g(x) ≥ 1 − t where φ is a suf-
ficiently large number to guarantee that the optimum solution
will have t ≈ 0.5 The second constraint can be rewritten as
g(x)/(f(x) + tg(x)) ≤ 1 where we can apply the single
condensation method to the denominators of both constraints.

3) Double condensation method for GP[1]: Another choice
of approximation is to make a double monomial approxi-
mation for both the denominator and numerator in (9). We
can still use the arithmetic-geometric mean approximation of
Lemma 1 as a monomial approximation for the denominator.
But, Lemma 1 cannot be used as a monomial approximation
for the numerator. To satisfy the three conditions for the
convergence of the successive approximation method, a mono-
mial approximation for the numerator f(x) should satisfy
f(x) ≤ f̃(x).

C. Applications to power control

Figure 5 shows a block diagram of the approach of GP-
based power control for general SIR regime. In the high SIR
regime, we need to solve only one GP. In the medium to low

5In our numerical analysis, we use φ = 1 + k at the k-th iteration.

(High SIR) Original
Problem

Solve
1 GP

(Medium
to

Low SIR)

Original
Problem

SP
Complementary
GP (Condensed)

Solve
1 GP

�

� � �

�

Fig. 5. GP-based power control for general SIR regime.

SIR regimes, we solve truly nonconvex power control prob-
lems that cannot be turned into convex formulation through a
series of GPs.

GP-based power control problems in the medium to low SIR
regimes become SP (or, equivalently, Complementary GP),
which can be solved by the single or double condensation
method. We focus on the single condensation method here.
Consider a representative problem formulation of maximizing
total system throughput in a cellular wireless network subject
to user rate and outage probability constraints in problem (6),
which can be explicitly written out as

minimize
∏N

i=1
1

1+SIRi

subject to (2TRi,min − 1) 1
SIRi

≤ 1, ∀i,

(SIRth)N−1(1 − Po,i,max)
∏N

j �=i
GijPj

GiiPi
≤ 1, ∀i,

Pi(Pi,max)−1 ≤ 1, ∀i.
(12)

All the constraints are posynomials. However, the objective
is not a posynomial, but a ratio between two posynomials
as in (9). This power control problem can be solved by the
condensation method by solving a series of GPs. Specifically,
we have the following single-condensation algorithm:

Algorithm Single condensation GP power control
Input An initial feasible power vector P.
Output A power allocation that satisfies the KKT condi-

tions.
1) Evaluate the denominator posynomial of the objective

function in (12) with the given P.
2) Compute for each term i in this posynomial,

αi =
value of ith term in posynomial

value of posynomial
.

3) Condense the denominator posynomial of the (12) ob-
jective function into a monomial using (11) with weights αi.

4) Solve the resulting GP using an interior point method.
5) Go to step 1 using P of step 4.
6) Terminate the kth loop if ‖ P(k) − P(k−1) ‖≤ ε where

ε is the error tolerance for exit condition.
As condensing the objective in the above problem gives

us an underestimate of the objective value, each GP in the
condensation iteration loop tries to improve the accuracy of the
approximation to a particular minimum in the original feasible
region. All three conditions for convergence in subsection IV.A
are satisfied, and the algorithm is provably convergent. Em-
pirically through extensive numerical experiments, we observe
that it often compute the globally optimal power allocation.

Example 4. We consider a wireless cellular network with 3
users. Let T = 10−6s, Gii = 1.5, and generate Gij , i �= j, as
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Fig. 6. Maximized total system throughput achieved by (single) condensation
method for 500 different initial feasible vectors (Example 4). Each point
represents a different experiment with a different initial power vector.

independent random variables uniformly distributed between
0 and 0.3. Threshold SIR is SIRth = −10dB, and minimal
data rate requirements are 100 kbps, 600 kbps and 1000 kbps
for logical links 1, 2 and 3 respectively. Maximal outage
probabilities are 0.01 for all links, and maximal transmit
powers are 3mW, 4mW and 5mW for link 1, 2 and 3,
respectively. For each instance of SP power control (12),
we pick a random initial feasible power vector P uniformly
between 0 and Pmax. Figure 6 compares the maximized
total network throughput achieved over five hundred sets of
experiments with different initial vectors. With the (single)
condensation method, SP converges to different optima over
the entire set of experiments, achieving (or coming very close
to) the global optimum at 5290 bps 96% of the time and
a local optimum at 5060 bps 4% of the time, thus is very
likely to converge to or very close to the global optimum. The
average number of GP iterations required by the condensation
method over the same set of experiments is 15 if an extremely
tight exit condition is picked for SP condensation iteration:
ε = 1 × 10−10. This average can be substantially reduced by
using a larger ε, e.g., increasing ε to 1 × 10−2 requires on
average only 4 GPs.

We have thus far discussed a power control problem (12)
where the objective function needs to be condensed. The
method is also applicable if some constraint functions are
signomials and need to be condensed. For example, consider
the case of differentiated services where a user expects to
obtain a predicted QoS relatively better than the other users.
We may have a proportional delay differentiation model where
a user who pays more tariff obtains a delay proportionally
lower as compared to users who pay less. Then for a particular
ratio between any user i and j, σij , we have

Di

Dj

= σij , (13)

which, by (7), is equivalent to

1 + SIRj

(1 + SIRi)σij
= 2(λj−σijλi)T/Γ. (14)

TABLE II

EXAMPLES 4 AND 5. ROW 2 SHOWS EXAMPLE 4 USING THE SINGLE

CONDENSATION ON SYSTEM THROUGHPUT MAXIMIZATION ONLY, AND

ROW 1 SHOWS THE OPTIMAL SOLUTIONS FOUND BY EXHAUSTIVE

SEARCH. ROW 4 SHOWS EXAMPLE 5 WITH AN ADDITIONAL DIFFSERV

CONSTRAINT D1/D3 = 1, WHICH ALSO RECOVERS THE NEW OPTIMAL

SOLUTION OF 6624 KBPS AS VERIFIED BY EXHAUSTIVE SEARCH, AND

ROW 3 SHOWS THE OPTIMAL SOLUTIONS FOUND BY EXHAUSTIVE

SEARCH.

Method System throughput P ∗
1 P ∗

2 P ∗
3

Exhaustive 6626 kbps 0.65 0.77 0.79
search

Single 6626 kbps by 0.65 0.77 0.78
condensation solving 17 GPs

Exhaustive 6624 kbps 0.68 0.75 0.68
search

With DiffServ 6624 kbps by 0.68 0.75 0.68
constraint solving 17 GPs
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Fig. 7. Convergence of power variables (Example 5).

The denominator on the left hand side is a ratio between
posynomials raised to a positive power. Therefore, the single
condensation method can be readily used to solve the pro-
portional delay differentiation problem because the function
on the left hand side can be condensed using successive
approximation on an equality constraint of a posynomial in
Section IV-B.

Example 5. We consider the wireless cellular network in
Example 4 with an additional constraint D1/D3 = 1. The
arrival rates of each user at base station is measured and
input as network parameters into (14). Figures 7 and 8 show
the convergence towards satisfying all the QoS constraints
including the DiffServ constraint. As shown on the figures,
the convergence is fast, with the power allocations very close
to the optimal power allocation by the 8th GP iteration. Also,
Table II summarizes the optimizers for Examples 4 and 5 using
ε = 1 × 10−10.
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V. DISTRIBUTED IMPLEMENTATION

A limitation for GP based power control in ad hoc networks
without base stations is the need for centralized computation
(e.g., by interior point methods). The GP formulations of
power control problems can also be solved by a new method of
distributed algorithm for GP. The basic idea is that each user
solves its own local optimization problem and the coupling
among users is taken care of by message passing among the
users. Interestingly, the special structure of coupling for the
problem at hand (essentially, all coupling among the logical
links can be lumped together using interference terms) allows
one to further reduce the amount of message passing among
the users. Specifically, we use a dual decomposition method to
decompose a GP into smaller subproblems whose solutions are
jointly and iteratively coordinated by the use of dual variables.
The key step is to introduce auxiliary variables and to add
extra equality constraints, thus transferring the coupling in the
objective to coupling in the constraints, which can be solved
by introducing ‘consistency pricing’. We illustrate this idea
through an unconstrained GP followed by an application of
the technique to power control.

A. Distributed algorithm for GP

Suppose we have the following unconstrained standard form
GP in x 
 0:

minimize
∑

i fi(xi, {xj}j∈I(i)) (15)

where I(i) is the set of users coupled with the ith user, and xi

denotes the local variable of the ith user, {xj}j∈I(i) denote the
coupled variables from other users, and fi is either a monomial
or posynomial. Making a change of variable yi = log xi, ∀i,
in the original problem, we obtain

minimize
∑

i fi(eyi , {eyj}j∈I(i)).

We now rewrite the problem by introducing auxiliary vari-
ables yij for the coupled arguments and additional equality

constraints to enforce consistency:

minimize
∑

i fi(eyi , {eyij}j∈I(i))
subject to yij = yj , ∀j ∈ I(i), ∀i.

(16)

Each ith user controls the local variables (yi, {yij}j∈I(i)).
Next, the Lagrangian of (16) is formed as

L({yi}, {yij}; {γij})
=

∑
i

fi(eyi , {eyij}j∈I(i)) +
∑

i

∑
j∈I(i)

γij(yj − yij)

=
∑

i

Li(yi, {yij}; {γij})

where

Li(yi, {yij}; {γij}) (17)

= fi(eyi , {eyij}j∈I(i)) +

( ∑
j:i∈I(j)

γji

)
yi −

∑
j∈I(i)

γijyij .

The minimization of the Lagrangian with respect to the
primal variables ({yi}, {yij}) can be done simultaneously and
distributively by each user in parallel. In the more general case
where the original problem (15) is constrained, the additional
constraints can be included in the minimization at each Li.

In addition, the following master Lagrange dual problem has
to be solved to obtain the optimal dual variables or consistency
prices {γij}:

max
{γij}

g({γij}) (18)

where

g({γij}) =
∑

i

min
yi,{yij}

Li(yi, {yij}; {γij}).

Note that the transformed primal problem (16) is convex,
and the duality gap is zero under mild conditions; hence
the Lagrange dual problem (18) indeed solves the original
standard GP problem (15). A simple way to solve the maxi-
mization in (18) is with the following subgradient update for
the consistency prices:

γij(t + 1) = γij(t) + δ(t)(yj(t) − yij(t)). (19)

Appropriate choice of the stepsize δ(t) > 0, e.g., δ(t) = δ0/t
for some constant δ0 > 0, leads to convergence of the dual
algorithm [7].

Summarizing, the ith user has to: i) minimize the La-
grangian Li in (18) involving only local variables upon
receiving the updated dual variables {γji, j : i ∈ I(j)} (note
that {γij , j ∈ I(i)} are local dual variables), and ii) update
the local consistency prices {γij , j ∈ I(i)} with (19), and
broadcast the updated prices to the coupled users.

B. Applications to power control

As an illustrative example, we maximize the total system
throughput in the high SIR regime with constraints local to
each user. If we directly applied the distributed approach
described in the last subsection, the resulting algorithm would
not be very practical since it would require knowledge by
each user of the interfering channels and interfering transmit
powers, which would translate into a large amount of message
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passing. To obtain a practical distributed solution, we can
leverage the structures of power control problems at hand,
and instead keep a local copy of each of the effective received
powers PR

ij = GijPj . Again using problem (6) as an example
formulation and assuming high SIR, we can write the problem
as following (after the logarithmic change of variable x̃ =
log x):

minimize
∑

i log
(
G−1

ii exp(−P̃i)
(∑

j �=i exp(P̃R
ij ) + σ2

))
subject to P̃R

ij = G̃ij + P̃j ,

Constraints local to each user, i.e., (a),(d) and (e)
in Table (I).

(20)
The partial Lagrangian is

L =
∑

i

log

⎛
⎝G−1

ii exp(−P̃i)

⎛
⎝∑

j �=i

exp(P̃R
ij ) + σ2

⎞
⎠
⎞
⎠+

∑
i

∑
j �=i

γij

(
P̃R

ij −
(
G̃ij + P̃j

))
, (21)

and the separable property of the Lagrangian in (21) can
be exploited to determine the optimal power allocation P∗

distributively.6 The distributed power control algorithm is
summarized as follows.

Algorithm Distributed power allocation update to maximize
Rsystem.

Input Each ith user sets γij (0) = 0, ∀j and agrees among
all users on a constant δ0 > 0 for the stepsize.

Output Optimal power allocation P∗ for all users.
At each iteration t:
1) Each ith user receives the term

(∑
j �=i γji(t)

)
involving

the dual variables from the interfering users by message
passing and minimizes the following local Lagrangian with
respect to P̃i(t),

{
P̃R

ij (t)
}

j
subject to the local constraints:

Li

(
P̃i(t),

{
P̃R

ij (t)
}

j
; {γij(t)}j

)

= log

⎛
⎝G−1

ii exp(−P̃i(t))

⎛
⎝∑

j �=i

exp(P̃R
ij (t)) + σ2

⎞
⎠
⎞
⎠

+
∑
j �=i

γij P̃
R
ij (t) −

⎛
⎝∑

j �=i

γji(t)

⎞
⎠ P̃i(t). (22)

2) Each ith user estimates the effective received power from
each of the interfering users PR

ij (t) = GijPj(t) for j �= i,
updates the dual variable as

γij (t + 1) = γij (t) + (δ0/t)
(
P̃R

ij (t) − log GijPj(t)
)

,

(23)
and then broadcast them by message passing to all interfering
users in the system.

The amount of message passing can be further reduced in
practice by ignoring the messages from links that are phys-
ically far apart, leading to suboptimal distributed heuristics.
If the system can be divided into clusters so that interference

6A small quadratic term in P̃i for each i is added to the partial Lagrangian
in (21) to enforce strict convexity of (21) in P̃.
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Fig. 9. Convergence of the dual objective function through distributed
algorithm (Example 6).
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algorithm (Example 6).

happens primarily within the clusters but not across clusters,
the signaling can be significantly reduced by tailoring the
distributed approach on a cluster-basis [22].

Example 6. We apply the distributed algorithm to solve
the above power control problem for three logical links with
Gij = 0.2, i �= j, Gii = 1, ∀i, maximal transmit powers of
6mW, 7mW and 7mW for link 1, 2 and 3 respectively. Figure 9
shows the convergence of the dual objective function towards
the globally optimal total throughput of the network. Figure
10 shows the convergence of the two auxiliary variables in
link 1 and 3 towards the optimal solutions.

VI. CONCLUSIONS

Power control problems with nonlinear objective and con-
straints may seem to be difficult, NP-hard problems to solve
for global optimality. However, when SIR is much larger than



2650 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 7, JULY 2007

0dB, GP can be used to turn these problems, with a variety
of possible combinations of objective and constraint func-
tions involving data rate, delay, and outage probability, into
tractable, convex formulations. Then interior point algorithms
can efficiently compute the globally optimal power allocation
even for a large network. Feasibility analysis of GP naturally
lead to admission control and pricing schemes. When the
high SIR approximation cannot be made, these power control
problems become SP and may be solved by the heuristic of
condensation method through a series of GPs. Distributed
optimal algorithms for GP-based power control in multihop
networks can also be carried out through message passing of
‘consistency prices’.

Several interesting research issues remain to be further
explored: reduction of SP solution complexity by using high-
SIR approximation to obtain the initial power vector and by
solving the series of GPs only approximately (except the last
GP), combination of SP solution and distributed algorithm for
distributed power control in low SIR regime, inclusion of fad-
ing and mobility to the framework, and application to optimal
spectrum management in DSL broadband access systems with
interference-limited performance across the tones and among
competing users sharing a cable binder.

ACKNOWLEDGEMENT

We would like to acknowledge collaborations on GP-based
resource allocation with Stephen Boyd at Stanford University
and Arak Sutivong at Qualcomm, and discussions with Wei Yu
at the University of Toronto. We would also like to thank John
Papandriopoulos for discussions on the successive approxima-
tion with convex problems during his visit to Princeton.

This work has been supported by NSF Grants CNS-
0417607, CNS-0427677, CCF-0440443, and CCF-0448012.

REFERENCES

[1] M. Avriel, Ed., Advances in Geometric Programming. New York: Plenum
Press, 1980.

[2] N. Bambos, “Toward power-sensitive network architectures in wireless
communications: Concepts, issues, and design aspects.” IEEE Personal
Commun. Mag., vol. 5, no. 3, pp. 50-59, 1998.

[3] D. P. Bertsekas and R. G. Gallager, Data Networks. Prentice Hall, 1987.
[4] S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on

geometric programming”, to appear in Optimization and Engineering,
2005.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press, 2004.

[6] M. Chiang, “Balancing transport and physical layers in wireless multihop
networks: jointly optimal congestion control and power control,” IEEE J.
Sel. Area Commun., vol. 23, no. 1, pp. 104-116, Jan. 2005.

[7] M. Chiang, “Geometric programming for communication systems,” Foun-
dations and Trends of Communications and Information Theory, vol. 2,
no. 1-2, pp. 1-156, Aug. 2005.

[8] G. Foschini and Z. Miljanic, “A simple distributed autonomous power
control algorithm and its convergence”, IEEE Trans. Veh. Tech., vol. 42,
no. 4, 1993.

[9] A. Goldsmith, Wireless Communications. Cambridge University Press,
2004.

[10] D. Julian, M. Chiang, D. O’Neill, and S. Boyd, “QoS and fairness con-
strained convex optimization of resource allocation for wireless cellular
and ad hoc networks,” in Proc. IEEE Infocom, New York, NY, June 2002.

[11] S. Kandukuri and S. Boyd, “Optimal power control in interference
limited fading wireless channels with outage probability specifications,”
IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 46-55, Jan. 2002.

[12] B. R. Marks and G. P. Wright, “A general inner approximation algorithm
for nonconvex mathematical programs,” Operations Research, vol. 26, no.
4, pp. 681-683, 1978.

[13] D. Mitra, “An asynchronous distributed algorithm for power control in
cellular radio systems,” in Proc. WINLAB Workshop Rutgers University,
NJ, 1993.

[14] Y. Nesterov and A. Nemirovsky, Interior Point Polynomial Methods in
Convex Programming. SIAM Press, 1994.

[15] D. P. Palomar and M. Chiang, “Alternative decompositions for distrib-
uted maximization of network utility: framework and applications,” IEEE
Trans. Automatic Control, to appear.

[16] P. Hande, S. Rangan, and M. Chiang, “Distributed algorithms for optimal
QoS assignment in wireless cellular data networks,” in Proc. IEEE
Infocom, Barcelona, Spain, April 2006.

[17] J. Papandriopoulos, S. Dey, and J. Evans, “Distributed cross-layer
optimization of MANETs in composite fading,” in Proc. IEEE ICC,
Istanbul, Turkey, June 2006.

[18] J. Papandriopoulos and J. Evans, “Low-complexity distributed algo-
rithms for spectrum balancing in multi-user DSL networks,” in Proc.
IEEE ICC, Istanbul, Turkey, June 2006.

[19] C. Saraydar, N. Mandayam, and D. Goodman, “Pricing and power con-
trol in a multicell wireless data network,” IEEE J. Sel. Areas Commun.,
vol. 19, no. 10, pp. 1883-1892, 2001.

[20] C. Sung and W. Wong, “Power control and rate management for wireless
multimedia CDMA systems,” IEEE Trans. Commun. vol. 49, no. 7, pp.
1215-1226, 2001.

[21] C. W. Tan, D. P. Palomar, and M. Chiang, “Solving non-convex power
control problems in wireless networks: low SIR regime and distributed
algorithms,” in Proc. IEEE Globecom, St. Louis, MO, Nov. 2005.

[22] C. W. Tan, D. P. Palomar, and M. Chiang, “Distributed optimization of
coupled systems with applications to network utility maximization,” in
Proc. IEEE ICASSP 2006, Toulouse, France, May 2006.

[23] R. Yates, “A framework for uplink power control in cellular radio
systems,” IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341-1347,
1995.

Mung Chiang (S’00 – M’03) is an Assistant Pro-
fessor of Electrical Engineering, and an affiliated
faculty of Applied and Computational Mathematics
and of Computer Science at Princeton University.
He received the B.S. (Hon.) degree in electrical
engineering and in mathematics, and the M.S. and
Ph.D. degrees in electrical engineering from Stan-
ford University, Stanford, CA, in 1999, 2000, and
2003, respectively.

He conducts research in the areas of optimization
of communication systems, theoretical foundations

of network architectures, algorithms for broadband access networks, and
stochastic theory of communications and networking. He has been awarded a
Hertz Foundation Fellowship, and received the Stanford University School of
Engineering Terman Award for Academic Excellence, the SBC Communica-
tions New Technology Introduction contribution award, the National Science
Foundation CAREER Award, the ONR Young Investigator Award, and the
Princeton University Howard B. Wentz Junior Faculty Award. He co-authored
the IEEE Globecom Best Student Paper Award 2006 and one of his papers
became the Fast Breaking Paper in Computer Science by ISI citation data in
2006.

He is a co-editor of Springer book series on Optimization and Control of
Communication Systems, an Editor of IEEE Transaction on Wireless Com-
munications, the Lead Guest Editor of the IEEE Journal of Selected Areas in
Communications special issue on Nonlinear Optimization of Communication
Systems, a Guest Editor of the IEEE Transactions on Information Theory and
IEEE/ACM Transactions on Networking joint special issue on Networking
and Information Theory, and the Program Co-Chair of the 38th Conference
on Information Sciences and Systems.

Chee Wei Tan received the M.A. degree in Electri-
cal Engineering from Princeton University, Prince-
ton, NJ in 2006. He is currently working toward
the Ph.D. degree in the Department of Electrical
Engineering at Princeton University.

He was a research associate with the Advanced
Networking and System Research Group at the
Chinese University of Hong Kong in 2004. He spent
the summer of 2005 with Fraser Research Lab,
Princeton, NJ. His current research interests include
queueing theory, nonlinear optimization, communi-

cation networks, wireless and broadband communications.



CHIANG et al.: POWER CONTROL BY GEOMETRIC PROGRAMMING 2651

Daniel P. Palomar (S’99-M’03) received the Elec-
trical Engineering and Ph.D. degrees (both with
honors) from the Technical University of Catalonia
(UPC), Barcelona, Spain, in 1998 and 2003, respec-
tively.

He is an Assistant Professor in the Department of
Electronic and Computer Engineering at the Hong
Kong University of Science and Technology, Hong
Kong. He has held several research appointments,
namely, at King’s College London (KCL), London,
UK, during 1998; Technical University of Catalonia

(UPC), Barcelona, from January 1999 to December 2003; Stanford University,
Stanford, CA, from April to November 2001; Telecommunications Techno-
logical Center of Catalonia (CTTC), Barcelona, from January to December
2002; Royal Institute of Technology (KTH), Stockholm, Sweden, from August
to November 2003; University of Rome “La Sapienza, Rome, Italy, from
November 2003 to February 2004; Princeton University, Princeton, NJ, from
March 2004 to July 2006. His primary research interests include information-
theoretic and signal processing aspects of MIMO channels, with special
emphasis on convex optimization theory applied to communication systems.
He is the lead guest editor of the IEEE Journal on Selected Areas in
Communications 2007 special issue on Optimization of MIMO Transceivers
for Realistic Communication Networks.

Dr. Palomar received a 2004/06 Fulbright Research Fellowship; the 2004
Young Author Best Paper Award by the IEEE Signal Processing Society;
(co-recipient of) the 2006 Best Student Paper Award at ICASSP06; the
2002/03 best Ph.D. prize in Information Technologies and Communications
by the Technical University of Catalonia (UPC); the 2002/03 Rosina Ribalta
first prize for the Best Doctoral Thesis in Information Technologies and

Communications by the Epson Foundation; and the 2004 prize for the best
Doctoral Thesis in Advanced Mobile Communications by the Vodafone
Foundation and COIT.

Daniel O’Neill (M’85) received his Ph.D. from
Stanford University in Electrical Engineering and
BS and MBA degrees from the University of Cal-
ifornia. Prior to attending Stanford he was a Di-
rector at National Semiconductor responsible for
integrated processor development and President of
Clearwater Networks, a web switching startup. His
current research interests are in the areas of wireless
crosslayer network control and management and
cognitive radio, especially as it pertains to video or
adverse environment applications. He is currently a

Director at Sun Microsystems and a Visiting Scholar at Stanford University.

David Julian received a B.S. degree (with honors)
in Electrical Engineering from New Mexico State
University in 1996, and his MS and PhD degrees
in Electrical Engineering from Stanford in 1998
and 2004 respectively. He is a Staff Engineer at
Qualcomm working in Corporate Research and De-
velopment as a Systems Engineer on next generation
wireless systems.


