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Abstract

Stability is a fundamental property desirable for any controlled system.
We briefly review the root locus and describing function techniques, which
are tools for stability analysis, and show how they can be applied to power
control algorithms in cellular radio networks. The root locus method is
used to find stability limits on controller parameters, and describing func-
tions for predicting the presence of oscillations in the system. Thus these
methods can be used to support the design phase, when deciding upon
the appropriate controller parameters. These tools are demonstrated for
various control algorithms and when different smoothing filters are ap-
plied. The analysis reveals that the Distributed Power Control (DPC)
algorithm, which works fine under ideal circumstances, yields an unstable
system when subject to a small time delay. Furthermore, it is concluded
that the performance with respect to stability is better when the measure-
ments are averaged by exponential forgetting filter than by the moving
average filter.

Keywords: Cellular radio systems; Power Control Algorithms; Lo-
cal loop analysis; Time delays; Root locus; Describing functions
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1 Introduction

Due to the rapid expansion of the wireless mobile market, and the need for
wideband multimedia services, the available bandwidth has to be better utilized.
Several transmitter power control algorithms have been proposed to improve the
capacity. Most schemes strive to balance the carrier-to-interference ratios (C/I)
on each channel such that every mobile or base station achieve the same C/I
[17].

To avoid extensive control signaling in the network, it is desirable to use dis-
tributed algorithms, where the transmitter powers are locally controlled based
on local measurements (e.g. C/I). Such distributed algorithms have previously
been studied in [16, 9, 8, 1, 14, 11, 2, 13].

These algorithms perform well in rather ideal cases, but in real systems there
are a number of effects that hamper the performance. Firstly, the possible out-
put powers of the transmitters are limited due to physical constraints. Schemes
that consider constrained powers are studied in [2, 10, 15]. Additional com-
plexity arise when considering the fact that the transmitter powers are not only
limited but also quantized and thus only a discrete set of power levels are al-
lowed. These problems are addressed in [3]. All these constraints are in essence
non-linear components in the power control loop.

Secondly, measuring and control signaling take time, which result in time
delays in the network. It takes some time to measure and report the measure-
ments to the algorithm, resulting in a time delay of n,, samples. In addition we
have a time delay of n, samples due to the time before the computed power is
actually used in the transmitter and experienced by others. The total delay is
n = Np + Ny,. Time delays in the power controlled systems have been left out
or neglected in most previous work.

Thirdly, in order to reduce the effects of inaccurate measurements, various
filters are used to obtain smooth estimates. Moving average and exponential
forgetting filters are two common examples.

Finally, the choice of an adequate quality measure and the availability of
measurements are important issues. The common assumption is that the trans-
mission quality is depending only on the C/I, which is assumed to be measured
or estimated. The analysis in this paper is based on such a simplifying assump-
tion. However, in real systems the situation is more complex, and it is further
discussed in [5, 7].

Hence we can describe the surrounding environment, as seen by the decen-
tralized power controller, as in Figure 1.

The effects of time delays and constraints, with respect to stability, will be
studied in this work. Techniques from the field of automatic control will be
used to analyze the effects on stability and oscillatory behavior of algorithms,
but first we will review some basic definitions and state the problems formally.
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Figure 1: The surrounding Environment as seen by a decentralized controller,
when considering time delays and constraints. The Network block incorporates
the effects caused by the radio channel, such as power gain, noise and interfering
transmitters.

2 System Model

2.1 Mobile Communication Network

Signal gains and power levels can be expressed using different scales. Logarith-
mic (e.g. dB or dBm) or linear are often used. To avoid confusion we will
employ the convention of indicating linearly scaled values with a bar. Thus g;;
is a value in linear scale and g;; the corresponding value in logarithmic scale.

Focus on the mobile stations and base stations using a specific channel and
assign numbers such that mobile station ¢ is connected to base station ¢. The
signal gain from base station j to mobile station ¢ is denoted by g;;.

Assume that the m mobile stations are transmitting using the powers p;(t), 1 =
1,...,m. The corresponding connected base stations will experience a desired
carrier signal C;(t) = g;;(t)p;(t) and an interference plus noise I;(t), which is
the sum of the signals from all other mobiles and the thermal noise 7;(¢). Thus
we can define the carrier-to-interference ratio at base station ¢ as

_Git) _ gii(t)pi(t)
() X0 9 (0)p;(8) + Tilt)

We will assume that the Quality of Service (QoS) is depending only on the C/I,
and is acceptable iff C/I is above a certain threshold




2.2 Power Control Algorithms

One of the most discussed distributed algorithms is the Distributed Power Con-
trol (DPC) algorithm [9, 8]

_ _ ;)/Tef
pi(t+1) =pi(t) —=. 1
i+ 1) =) 2t (1)
If the signal gains g;; are constant or slowly varying, this algorithm converges

to Yres if this is achievable. Therefore we choose ¥,y > ¥*.

The CDPC-II algorithm, proposed in [11], is more general and given by
1 3
pi(t+1)=Ppi(t) | —= | - 2
e+ 1) = 600 (=15 ©)
Similar ideas are found in [14].

Analogous to the DPC algorithm in (1) is the following Constant Received
Power (CRP) algorithm in [2]. In the case of unconstrained transmission powers,
it is given by
C_’tgt
— , 3
0 (3)

pi(t +1) = pi(t)

where C_'tgt is the target carrier power which the carrier power C; = p;gs; strives
towards. The idea of tracking a target carrier is commonly applied in narrow-
band CDMA systems.

As shown in [5], these algorithms are special cases of the following algorithm,
in which logarithmic values are used:

pi(t +1) = pi(t) + B (yres (t) — 7i(t)) (4)

This is recognized as an integrating (I) controller. Modifications for the case of
constrained powers are provided in [2, 10, 5].

When the network is operating close to its capacity limit, the performance is
degraded due to the high powers used by terminals with very bad connections.
An attempt to employ graceful degradation is proposed in [1]. The distributed
algorithm, which will be referred to as the AAW algorithm, is given by

pi(t +1) = Bpi(t) + B(yres —7ilt))- ()
This algorithm is further discussed in [15, 5].

In this paper, will concentrate on the I-controller in (4) and the AAW-
algorithm in (5).

2.3 The System Model from a Control Theory Perspective

Define the delay operator in the time domain as

q 'p(t) =p(t—1).



A time delay of n samples is represented by
Vit —n) =q ")
Applying the delay operator to (4) yields
qpi(t) = pi(t) + B (yrer —%(t))

PO = L ey =)

The measured (or estimated) C/I:s, denoted by 4;, may be inaccurate or
corrupted by noise. Therefore various filters are used to obtain smooth esti-
mates. Two common choices are discussed here. An obvious choice is to use
the average value over the L last values. Using the delay operator, this Moving
Average (MA) filter is given by

Yilt) = = (3(t) + ...+ 4t —L+1) = (6)
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(T+...+ ¢ ") 5(t) = Fral@)5i(b).

In the filter above, the last L values are weighted equal. As an alternative, an
Ezponential Forgetting (EF) filter, which exponentially forgets old values, may
be used. It is defined by the recursion

’yi(t + 1) = )\’)@(f) + (1 — )\)’Ayl(t-i- 1) , 0< A<,
or using the delay operator

E=205,) = Fer(ari(o) g

i(t) =
As a rule of thumb, the number of terms that are contributing to the output
can be approximated by

1
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In this paper we will provide stability analysis when using one of the smooth-

ing filters above. However, most expressions will be derived considering the case

of the I-controller and the moving average filter. Expressions for the other com-
binations can be derived analogously.

The distributed power control algorithm and its surroundings as in Figure 1
will be referred to as the local loop. In case of the general controller R(q) and
the smoothing filter F'(¢), the local loop can be depicted as in Figure 2. The
block f(-) describes all the constraints on the output power. If no constraints
are present, this block is equal to unity and can be removed, but in the general
case we have p;(t) = f(p;(t)). Furthermore, the C/I expression in dB is given
by

Fi(t) = pi(t) + gii(t) — Li(t).
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Figure 2: The local loop when using the general power control algorithm R(q)
and the smoothing filter F(q).

The overall system contains several local loops interacting and affecting each
other, since the interferences I;(t) are interconnected. This is referred to as
the global system. When a number of stable local loops are interconnected,
they affect each other in a way that is not described by an analysis of the
local loop. As a matter of fact, additional dynamics might be found in the
global system due to these interconnections. Therefore, it is intuitive that local
stability does not guarantee global stability. However, if any of these local loops
are unstable, the global system is most likely unstable as well. This is not a
general conclusion, but in the case of power controlled cellular networks, the
disturbance (i.e. interference) at one receiver is a strictly increasing function
of the powers used by others, Therefore a “competition” between the users can
be observed, and we can argue that local instabilities imply an unstable global
system.

3 Root Locus Techniques

When neglecting the constraints, the remaining local loop is linear. Then the
closed-loop system, which relates the output p;(¢t) = f(pi(t)) = pi(t) to the
inputs is given by (9).

R(q)

Pilf) = g + R(q)F(q)

(Yres — F(a)(gus(t) — Li(t))) - (®)

To analyze stability, it is interesting to see how the closed-loop poles, i.e.
the roots to the denominator polynomial, are varying with the controller pa-
rameters.



In the case of the I-controller and the moving average filter, we have

Rlg) =)
1+ R(QF() 1+ £5q"Fualg)
/BqL-&-n—l

= 9)

gltn — gl+n—1 4 % (g1 +...+1)

We are interested in the (:s yielding exponential stability, that is when all
the denominator poles of (9) are inside the unit circle [5, 12]. The locations of
the poles as functions of the parameter § are plotted in root locus plots, see
Figure 3.
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Figure 3: Root locus plots for some different window lengths L and time delays
n when using a moving average smoothing filter and an I-controller. The 'x’:s
mark the roots corresponding to 5 = 0, while ’0’ corresponds to the roots when
8 — oo.

To see the effects of time delays, the stability constraints on 8 for different
combinations of power control algorithms and smoothing filters are listed in
Table 1. The results yield instability limits for 8 and thus larger (-values will
result in an unstable system. The results indicate that the exponential forgetting
filter is the better choice, yielding better performance with respect to stability.
Note that in the case of a simple time delay (L = 1 and n = 1) the DPC, given
by the I-controller (4) and 3 = 1, have poles located on the unit circle and gets
an oscillatory behavior. Additional time delays will result in an unstable system.



| || I-controller || AAW-algorithm |

n=0 >1 >1
n=1 1.000 1.000
n=2 0.618 0.708
(a) No filter applied.
I-controller A AW-algorithm
MA | EF MA | EF
n=0 || 0.489 >1 0.842 >1
n=1 || 0.353 | 1.000 {| 0.759 1.000
n=2 || 0.278 | 0.512 || 0.700 0.917

(b) Moving average filter (L = 10) and expo-
nential forgetting filter (A = 0.90) applied.

Table 1: Local loop stability region given by upper bounds on § using root locus
techniques.

This is illuminated by the simple simulation of the local loop in Figure 4, where
the effects of a step change in the interference are studied.

a) Local loop, n=1 b) Local loop, n=2
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Figure 4: Simulation of an isolated local loop, when using the I-controller and
no smoothing filter. The solid lines correspond to the DPC algorithm (6 = 1),
while the dashed to 8 = 0.3. a) Time delay: one sample, n = 1. b) Time Delay:
two samples, n = 2.

4 Describing Functions in Discrete Time

Using describing functions in discrete time one can analyze problems character-
ized by the block diagram in Figure 5. The system consists of a linear part with
transfer function G(g), and a static non-linearity given by the function f(-).

We proceed by making the N-periodic ansatz e(t) = C'sin(Qt), where =
%”. Since f(-) is a static non-linearity, w(t) is N-periodic as well. Using time
discrete Fourier series expansion, the signal w(t) is decomposed into its Fourier



Figure 5: Block diagram of a non-linear system, separated in one linear and one
non-linear part.

components

w(t) = f(Csin(Qt)) = A(C, Q) sin(Qt + ¢(C, Q) +
+ A(C, Q) sin(2Q1 + ¢2(C,Q)) + ...

where we have assumed f(-) to be odd for simplicity. The method, however,
applies to general static functions. Furthermore assume that the linear system
G(q) attenuates the harmonics much more than the fundamental frequency.
This is the only approximation made in the analysis. Since e(t) = —y(t) ac-
cording to Figure 5, we conclude that the condition for oscillations is that the
loop gain is equal to -1. The loop gain consists of an amplitude gain and a
phase shift, which in turn are functions of the period N and the amplitude C.
Graphically, we can plot the loop gain in the complex plane for different N and
C and then try to find the solution C = Cy, N = Ny that yields an intersection
with -1. The solution can also be found analytically in some cases. This method
is referred to as describing function analysis [4].

5 Analysis of Systems with Non-linearities

Generally speaking, non-linearities can be a part of our system for two reasons:
Either it is a part of the power control algorithm, or it describes some constraints
in the hardware, for example an upper limit on the power the transmitter can
deliver. The first case is analyzed in [5, 6], while the second will be in focus in
the following. These analyzes are based on the assumption that g;;(t) and I;(t)
are varying slowly.

5.1 The Effects of Quantization and Saturation

In most mobile systems the available power levels form a discrete set. It is clear
that this should affect the performance. Usually the power levels are regularly
distributed in the dB scale. The quantization and saturation can be described
by replacing f in Figure 2 by the blocks in Figure 6.

Next, we would like to analyze the stability properties of the system de-
scribed above. In order to do this we perturb the system, and look at its ability
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Figure 6: The studied constraints: Quantization followed by saturation.

to damp the error. Figure 7a,c show how the oscillation is damped for a system
with a moving average filter (L = 10) and n = 1 for the values 8 = 0.3 and
(B = 0.4. These values correspond to stable local loops in the unconstrained
case. We see that there is a fundamental difference between the asymptotic
behaviors of the systems: The system with the smaller 8 converges to a fixed
value, while the other does not, even though both systems are well below the
stability limits for the system with the non-linearities removed, see Table 1.
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Figure 7: The effect of quantization and saturation on the error signal.

We plot the loop gain as a function of N and C, see Figure 7b,d. Each
line represent a fixed value of C'. The method can be used to search for the
smallest 8 which will give an oscillation, due to the criterion that there will be
an oscillation if the point —1 is covered. This search has been done for the same
systems as analyzed before, and the results summarized in Table 2 should be
compared to Table 1. Again, the exponential forgetting smoothing filter is the
most appealing choice of filters when considering stability aspects. It is possible
to use higher (-values in the controller, which corresponds to faster reactions.



| || I-controller || AAW-algorithm |

n=0 >1 >1
n=1 0.503 0.877
n=2 0.431 0.618
(a) No filter applied.
I-controller AAW-algorithm
MA | EF MA | EF
n=0 (| 0.337 | >1 0.489 >1
n=1 (| 0.247 | 0.697 || 0.353 0.964
n=2 || 0.198 | 0.373 || 0.278 0.512

(b) Moving average filter (L = 10) and expo-
nential forgetting filter (A = 0.90) applied.

Table 2: Limits of 8 that give oscillations, obtained from describing functions
analysis.

6 Global Simulations

As argued in Section 3 our analysis is not global, and thus the assumptions of
constant interference is not valid. Consider a setting of four mobile stations with
fixed locations interfering with each other. Furthermore, there is a time delay
of one sample in the loop, no smoothing filter is applied, and the I-controller
with different (-values is used. This case is analogous to the situation in the
local loop simulation in Figure 3a.

a) Global system, n=1, b=1 b) Global system, n=1, b=0.3
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Figure 8: The effects of a time delay of a single sample. The DPC-algorithm (a)
gets unstable, while the I-controller with 8 = 0.3 (b) converges to the desired
C/I =10 dB.

To study the effects of the constraints, we perform global simulations of the
situation in Figure 7. Using 8 = 0.3 in the controller we obtain the error signals
as in Figure 9a. This controller was stable in the local loop, but here we see

10



that the global system shows an oscillatory behavior. However these are rather
limited in amplitude. A controller with 8 = 0.4 resulted in oscillations in the
local loop and as seen in Figure 9b, the global system gets unstable.

10 T
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0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure 9: The error signals e;(t) = Yres —7:(t) (in dB) in the case when L = 10,
n = 1 and four transmitters are interfering with each other.

7 Conclusions

We have studied the effects of time delays and constrained on a power controlled
cellular radio networks. As the general examples we have used the I-controller, of
which the DPC algorithm [8] is a special case, and the AAW-algorithm, proposed
in [1]. These algorithms are relying on measurements or estimates, which may
be corrupted by noise. Therefore various filters are applied to obtain smooth
estimates. We have discussed the effects of using moving average or exponential
forgetting filters.

Stability has been analyzed in the local power control loops, and we have
argued for the extendibility of these results when considering global stability
issues. Formally we say that local instability will result in global instability, but
local stability does not guarantee global stability.

Time delays strongly affect the stability of the systems. Among other things
it is concluded that the DPC algorithm yields an unstable global system when
subject to a time delay of one sample. Constraints further hamper the stability
of the systems.

11



When applying filters, the analysis yields that the exponential forgetting
filter results in better performance with respect to stability, than the moving
average filter.

The results stress the importance of identifying the non-linearities and time
delays present in the system. They are strongly affecting stability and perfor-
mance of the overall system, and when known, they can be considered in the
design phase using the techniques presented in this paper.
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