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Abstract—We consider a distributed MAC setting with block-
wise flat fading links and full receiver CSI (channel state
information). Each user has individual CSI (knowledge of its
own fading coefficient) and is unaware of the link quality of
other links. Outage is not allowed in any communication block. In
this distributed set up, throughput optimal power-rate allocation
strategies were proposed recently, under identical average powers
and channel statistics across users. The average sum-throughput
is also known as power controlled adaptive sum-capacity in
literature.

We extend this result in two directions, solving some open
problems in the process. 1) We find the power controlled
adaptive sum-capacity when the users have different average
power constraints and identical channel statistics, and propose
bounds when the channel statistics are different. 2) we analyze
the impact of finite-rate additional CSI on the fading coefficients
of the other links, and compute the optimal throughput in some
interesting cases.

I. INTRODUCTION

The multiple access channel (MAC) is a widely studied
model in information theory, where many users communicate
to a single entity using a shared medium. With its natural
applications in wireless communications, the so called fading
MAC with additive white Gaussian noise is one of the popular
MAC models. In here, the channel from each user to the
receiver is modeled by a multiplicative fading channel.

In order to find the rate-tuples at which reliable communi-
cation is possible over the fading MAC model, it is important
to make assumptions about the amount of channel knowledge
available at the transmitters and the receiver. It is natural to
assume that the receiver has access to the fading coefficients,
by means of pilot symbols. In other words, the receiver has
full CSI. On the other hand, the same is not true about the
transmitter. We consider a model where each transmitter is
fully aware of its own fading coefficient (individual CSI), but
that of no other. Towards the latter sections of this paper, we
relax this assumption and equip the transmitter with partial
CSI of other links.

While the literature on fading MAC is extensive, perhaps
the most relevant ones here are [1], [2], [3], [4], [5], [6]. In
[2], the sum-capacity under average power constraints was
computed when full CSI is available at the transmitters. This
was generalized in [3], in particular to weighted sum-rate
maximization among other extensions. [1] considered a very
general transmitter CSI set-up and showed that the optimal
nature of the communication strategies is to adaptively control
power, along with ergodic averaging to account for the lack
of full CSI.

We consider slow-fading models, effectively modeled as
a block fading MAC, where the channel fading coefficient
stays constant within a block, and varies in an iid fashion
across blocks. In this set-up, one may further demand that
each block be outage-free, while allowing for adaptively
controlling the power and transmission-rates based on the
available channel knowledge. This is considered in [5], [6],
where the notion of power controlled adaptive sum-capacity
is introduced (see Section 23.5.2 of [5]), which is the maximal
empirical average of the sum-rates achieved in each block. The
evaluation of adaptive sum-capacity for Rayleigh slow-fading
MAC channels is mentioned as an open problem in [6]. Our
previous work solved part of this problem when the users have
identical channel characteristics and average powers [4].

Throughout the paper, the usage identical users is synony-
mous with the following two constraints.
• the fading statistics are iid across users
• each user has the same average power constraint.

Whereas the first restriction is justified in many circumstances,
there are instances where the second one does not occur
naturally. Part of this work sheds the latter restriction, and
extends the results of [4] to arbitrary power constraints at
the transmitters. We term the optimal throughput maximizing
strategy as alpha midpoint strategy. This new strategy not
only extends the midpoint strategy of [4], but also seems to
perform well over non-identical fading statistics. To bench-
mark our performance, we propose an upper-bound for the
non-identical channel statistics case.

Once the throughput in both the individual CSI case and
the full CSI case are known, it is interesting to see the impact
of additional partial CSI on the other users’ channels. We turn
to this problem and consider limited-rate CSI from the other
links in addition to individual CSI. We compute the optimal
throughput for identical channel statistics.

The organization is as follows. Section II will introduce
the required definitions and some notations. The optimal
strategy for the case of unequal average powers is presented in
Section III, and bounds for non-identical channels are detailed
in Section IV. Section V extends our results to the case where
additional partial finite-rate side information on the other links
is available at the transmitters. Section VI concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

Our system model and objective is similar to the adaptive
sum-capacity formulation for a MAC with distributed side-
information given in [5]. Consider a L−user real Gaussian



fading MAC given by,

Y =

L∑
i=1

HiXi + Z ,

where Z is a Gaussian noise process, independent of the
transmissions Xi and multiplicative fading Hi. The fading
space Hi of the i-th user is the set of values taken by Hi,
and the joint fading space H is the set of values taken by
the joint fading state H̄ = (H1, H2, · · · , HL). We assume
a block-fading model where fading remains constant within
block and varies across blocks in an i.i.d fashion. We further
assume that the fading gains are independent across links,
and their distributions are known to all the transmitters and
the receiver. The receiver knows all the fading coefficients. In
addition, we have individual CSIT, i.e. each transmitter knows
its own channel fading coefficient Hi but that of no other. In
the latter parts we will consider the case where the transmitters
have additional partial CSI of the other fading coefficients.
The transmitters have individual average power constraints
P avgi , 1 ≤ i ≤ L, and have the freedom to adapt their rate
(and power) according to their own channel conditions.

This leads naturally to the following notion of a power-rate
strategy.

Definition 1. A power-rate strategy is a collection of mappings
(Pi, Ri) : Hi 7−→ R+ × R+; i = 1, 2, · · · , L. Thus, in
the fading state Hi, the ith user expends power Pi(Hi) and
employs a codebook of rate Ri(Hi).

Let CMAC(h̄, P̄ (h̄)) denote the capacity region of a Gaus-
sian multiple-access channel with fixed channel gains of
h̄ = h1, · · · , hL and respective power allocations P̄ (h̄) =
(P1(h1), · · · , PL(hL)). We know that,

CMAC(h̄, P̄ (h̄)) =

{
R̄ ∈ {R+}L : ∀S ⊆ {1, 2, · · · , L}

∑
i∈S

Ri ≤
1

2
log

(
1 +

∑
i∈S
|hi|2Pi(hi)

)}
(1)

Definition 2. We call a power-rate strategy as feasible if it
satisfies the average power constraints for each user i.e.
∀i ∈ {1, 2, · · · , L}, EHi

Pi(Hi) ≤ P avgi .

Definition 3. A power-rate strategy is termed as outage-free
if it never results in outage i.e.

∀h̄ ∈ H, (R1(h1), · · · , RL(hL)) ∈ CMAC(h̄, P̄ (h̄))

Let ΘMAC be the collection of all feasible power-rate
strategies which are outage-free. Let us now specialize the
definitions to the case of identical channel statistics, i.e. the
cdf of each user is Ψ(h). For any strategy θ ∈ ΘMAC , the

throughput is

Tθ =

L∑
i=1

ERθi (Hi) =

L∑
i=1

∫
h

Rθi (h) dΨ(h)

=

∫
h

dΨ(h)

(
L∑
i=1

Rθi (h)

)
, (2)

where the superscript θ is used to identify the feasible power-
rate strategy employed. i.e. Rθi (h) is the rate allocated to
user i while observing fading coefficient h. The corresponding
transmit power is denoted as P θi (h).

Definition 4. The power controlled adaptive sum-capacity
is the maximum (average) throughput achievable, i.e.
Csum(Ψ) = maxθ∈ΘMAC

Tθ.

III. POWER CONTROLLED ADAPTIVE SUM CAPACITY

Let us recall the midpoint strategy of [4]. Suppose there
are L users with fixed transmit powers P1, P2, · · · , PL and
respective fading values hi, 1 ≤ i ≤ L for a given block
of communication. In a L−user midpoint strategy, each user
assumes that all others are identical to itself and constructs
a symmetrical L−user MAC region, and then chooses the
maximal equal-rates point for operation. Thus we have, for
1 ≤ i ≤ L

Rmidi (hi) =
1

2L
log
(
1 + L|hi|2Pi

)
. (3)

This communication strategy will never result in an outage,
see [4]. Furthermore, it is throughput optimal in a block fading
setup for identical users, see Definition 4. The best midpoint
strategy requires adaptive power control according to a water-
filling formula on the individual fading coefficients.

In the block fading model of [4], the underlying assumption
of identical channel statistics is very reasonable. However,
assuming all users to have the same average power, though
justified in many circumstances, can be relaxed. We will now
show that a simple rate-split adaptation of the identical-users
case is throughput optimal for unequal average powers.

Theorem 5. Given independent and identical channels ac-
cording to the c.d.f Ψ(h),

Csum(Ψ) =
1

2

∫
dΨ(h) log(1 + |h|2P ∗(h)), (4)

where

P ∗(h) =

(
1

λ
− 1

|h|2

)+

and
∫
dΨ(h)P ∗(h) =

L∑
i=1

P avgi .

Proof: Notice that the RHS only depends on Psum =∑
i P

avg
i . For future use, let us denote the RHS of (4) under

the given constraints by Csum(Ψ, Psum). The proof of the
theorem proceeds through lemmas 6 – 8. We first propose an
upperbound and later show its achievability.



A. An Upperbound

For a link of cdf Ψ(h), let Θs(P̃ ) be the collection of all
single-user power allocation schemes such that∫

P (h)dΨ(h) = P̃ . (5)

Lemma 6. The throughput Tθ for θ ∈ ΘMAC obeys,

Tθ ≤ Csum(Ψ, Psum),∀θ ∈ ΘMAC .

Proof:

Tθ
(a)

≤ 1

2

∫
h

dΨ(h) log

(
1 + |h|2

L∑
i=1

P θi (h)

)
(6)

≤ max
Θs(

∑
Pavg

i )

1

2

∫
dΨ(h) log

(
1 + |h|2P (h)

)
. (7)

Here (a) follows from (2), by applying the sum-rate upper
bound on a MAC with received signal power

∑
i |h|2P θi (h).

The second inequality results from relaxing the individual
power constraints to a single average sum-power constraint.

It is clear that water-filling of the inverse fading gains is
the optimal strategy in a point to point fading channel under
an average power constraint. Thus the last expression above
is indeed Csum(Ψ, Psum).

B. Alpha-midpoint Strategy

Let us now construct an achievable strategy. Our achievable
strategy is motivated by the so called midpoint scheme de-
scribed in (3), we call it the alpha-midpoint strategy. Let ᾱ
be a vector of non-negative values with

∑
i αi = 1. In alpha-

midpoint strategy, the rate chosen by user i while encountering
a fading coefficient of hi is,

Rᾱi (hi) = αi
1

2
log

(
1 + |hi|2

Pi(hi)

αi

)
, (8)

where Pi(hi) is the transmitted power, chosen such that∫
Pi(h)dΨ(h) = P avgi .

Lemma 7. The alpha-midpoint strategy is outage-free.

Proof: For any S ⊆ {1, 2, · · · , L},∑
i∈S

Rᾱi (hi) =
∑
i∈S

αi
1

2
log

(
1 + |hi|2

Pi(hi)

αi

)
(9)

≤ 1

2
log

(
1 +

∑
i∈S
|hi|2Pi(hi)

)
, (10)

by concavity of the logarithm. Clearly the chosen rate-tuple
across users is within CMAC(h̄, P̄ (h̄)) for every block, ensur-
ing that there is no outage.

We now show the optimality of alpha-midpoint schemes.

Lemma 8.

max
θ∈ΘMAC

Tθ = Csum(Ψ, Psum)

Proof: We will specialize our alpha-midpoint strategy to
achieve Csum(Ψ, Psum). To this end, choose for 1 ≤ i ≤ L,

αi =
P avgi∑L
i=1 P

avg
i

and Pi(h) = αiP
∗(h),

where P ∗(h) is given in (4). Not only users adhere to their
respective power constraints, but also the throughput is indeed
Csum(Ψ, Psum), completing the proof.

This will suggest a very simple strategy of achieving
Csum(Ψ, Psum), which has the added advantage of being
achievable using single user decoding and successive cancel-
lation. In particular, we split user k in to Nk virtual users such
that each virtual user has an identical average power constraint
of Pv . Thus,

L∑
k=1

Nk∑
i=1

Pv =

L∑
k=1

P avgk .

Evaluating the maximal average rate for the L′ =
∑L
k=1Nk

virtual users under the midpoint strategy of (3) will also yield
Csum(Ψ, Psum). Since the midpoint rates are achievable by
single user decoding techniques [4], alpha midpoint rates can
also be achieved by low complexity schemes.

IV. NONIDENTICAL CHANNEL STATISTICS

Our second result is a generalization to non-identical chan-
nel statistics. In this case, we do not know the optimal
schemes, but we provide an upperbound, which seems to
be close for several channels of practical interest. W.l.o.g
consider non-negative valued fading coefficients (by taking
modulus), and let the respective cdf of the individual channels
be {F1(·), F2(· · · ), · · · , FL(·)}. We will assume each of them
to be right continuous and define the corresponding inverse
functions as

∀γ ∈ [0, 1], F−1
k (γ) = minh : Fk(h) ≥ γ. (11)

For convenience, we will denote F−1
k (·) by h2

k(·).

Lemma 9. For non-identical channels defined by the c.d.fs
Fk(·), 1 ≤k≤L, the maximal sum-rate Csum is bounded by

Csum ≤ max
θMAC

∫ 1

0

1

2
log

(
1 +

L∑
k=1

h2
k(x)Pk[hk(x)]

)
dx.

(12)

Proof: Imagine that the range of each cdf Fk, 1 ≤ k ≤ L
in [0, 1] is divided into n equal segments. Let the inverse
map of the jth segment of cdf Fk be h2

k(j/n). The lemma
states that for each segment j, the MAC formed by the
corresponding inverse maps of this segment should obey the
sum-rate constraint.

Notice that different channel values are coupled in the above
bound (through their cdf structure), and we can maximize
the power allocation on these coupled fading vectors, thus
obtaining a bound to the RHS of (12). By using Lagrange
optimization as in [2], we get the following lemma.



Lemma 10.

Csum ≤
L∑
k=1

∫ 1

0

1

2
log(1 + h2

k(x)Pk(x))αk(x)dx (13)

where

Pk(x) =

(
1

λk
− 1

h2
k(x)

)+

and
∫ 1

0

Pk(x)αk(x)dx = P avgk .

In here, αk(x) are non-negative functions such that∑L
k=1 αk(x) = 1,∀x ∈ (0, 1).

Proof: Maximizing (12) over all coupled channel vectors
will yield the bound in (13). The detailed proof is available in
appendix A.

While the existence of λk and the functions αk(x) is enough
for the proof, numerical algorithms are required to find these,
except for special cases. One such case where the algorithm is
straightforward is when the channel coefficients are generated
by the same law, but scaled by different average gains. In
this case, αk(x) = P avgk /

∑
P avgk for all x ∈ (0, 1) and the

waterfilling formula can be evaluated using single-user water-
filling. For example, consider a 2−user Rayleigh faded MAC,
with E|h2|2 = 2E|h1|2 = 2, and P avg1 = P avg2 . Figure 1
compares our upperbound against the rates obtained by an
adaptation of the alpha-midpoint strategy.

100 101 102 103 104
0

2

4

6

P avg
1 , P avg

2 (log scale)

S
u
m
-r
at
e

Upper
Lower

Fig. 1. Upper and Lower bounds to adaptive sum-capacity

This not only demonstrates the utility of our upper-bound, but
also that the alpha mid-point strategy is a good scheme.

V. FINITE-RATE CSI ON OTHER LINKS

Up to this, we have assumed that there is only individual
CSI. We wish to study the effect of incremental information
about the other links. To keep things simple, we consider iden-
tical users with the specified cdf Ψ(h) and an average power
of P avg. Extensions to unequal average power constraints are
possible, but not covered here. We consider 1 bit of additional
partial CSI, i.e., each transmitter gets one bit of information
from every other link, in addition to its own individual CSI.
This information is assumed to be obtained through transmitter
cooperation or cribbing. It is crucial that the receiver has no
say on the partial CSI. If the receiver decides the conveyed
bit, then the throughput is same as that of the full CSI [2].

The partial CSI contains link quality information, assume
it to be chosen from the set {G,B}, where we used G for
good and B for bad. A natural separation between G and B
is a link gain threshold. In particular, the partial CSI bit ĥk of
transmitter k is

ĥk =

{
G if |hk| ≥ hT
B otherwise,

(14)

for some fixed positive threshold hT . By slight abuse of
notation, we will say that link j is in state G (and call it
good user), and denote the probability of that event by µ(G).
Using the same token, 1 − µ(G) = µ(B). Let CPSI be the
maximum attainable throughput with 1 bit additional CSI on
each of the other links, along with individual CSI.

Theorem 11. For L identical users,

CPSI = Csum (Ψ′, LP avg) , (15)

where the cdf Ψ′(·) is such that,

dΨ′(h) = dΨ(h)
(
[µ(B)]L−1

1{h∈B} + (1 + ζ)1{h∈G}
)

and

ζ =

L−1∑
m=1

(
L− 1

m

)
[µ(B)]m[µ(G)]L−1−m m

L−m
. (16)

Proof: Recall the definition of Csum(·, ·) given in Sec-
tion III. We explain the proof for L = 2, which contains all
the essential features. The proof is relegated to appendix B.

It is instructive to compare the advantages of 1 bit of
extra CSI, which we demonstrate for a two user identical
Rayleigh fading links of unit second moment, see Figure 2.
The threshold value hT for 1−bit CSI was taken as one.
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Fig. 2. Sum-rate improvement by additional CSI

VI. CONCLUSION

We have presented throughput optimal outage-free com-
munication schemes for a block-fading MAC with identical
channel statistics, and individual side information as well as
additional partial finite-rate CSI.

While extending to multiple bits of symmetric partial CSI
on the other links is straightforward, we are currently investi-
gating the impact of asymmetric partial CSI.



APPENDIX A
Proof of Lemma 10: Notice that we assume arbitrary channel
statistics for the links. The following proposition on MAC
captures the essential idea behind the result.

Proposition 12. For a given fixed L−user MAC with link
gains h1, · · · , hL and respective average transmit powers
P1, · · · , PL, the maximal sum-rate can be achieved by time-
sharing.

Proof: The proof is reasonably easy. Let user i transmit
for a fraction of time βi with power Pi

βi
, at its single user

capacity. By choosing βi =
h2
iPi∑

k h
2
kPk

we get,

∑
Ri =

L∑
i=1

βi
2

log(1 +

L∑
k=1

h2
kPk), (17)

which is indeed the MAC sum-rate bound.
Let us now relax the maximization in (12). In particular,

we replace Pk[hk(x)] by Pk(h̄(x)), where h̄(x) is the global
fading vector corresponding to the same c.d.f. value x at each
transmitter. Thus our relaxed optimization problem is,∫ 1

0

log(1 +
∑
k

h2
k(x)Pk(h̄(x)))dx, (18)

such that ∫ 1

0

Pk(h̄(x))dx = P avgk , ∀k. (19)

By defining Lagrange multipliers, λi, 1 ≤ i ≤ L, one for each
constraint, we can equivalently maximize the cost J , where

J =

∫ 1

0

log(1 +
∑
k

h2
k(x)Pk(h̄(x)))dx

−
L∑
k=1

λk

∫ 1

0

Pk(h̄(x))dx. (20)

Taking derivative w.r.t to Pk(·) and equating to zero,

h2
k(x)

1 +
∑L
k=1 h

2
k(x)Pk(h̄(x))

− λk = 0, 1 ≤ k ≤ L (21)

Since this has to be true for the active user-set (ones which
are allocated non-zero power at a given value of x), we can
conclude that power is allocated to user j only if

h2
j (x)

λj
≥ h2

i (x)

λi
,∀i 6= j.

Let ζ(x) be the maximum value of
h2
j (x)

λj
over 1 ≤ j ≤ L.

Each user with Di(x) = 1 will achieve ζ(x). However,
Proposition 12 will suggest that the active users can time share
and achieve the sum-rate. The power chosen by an active user
is

Pi(hi(x)) = max{0, 1

λi
− 1

h2
i (x)
}.

The instantaneous received power from active user i while
in its transmitting time-fraction is h2

i (x)
λi
− 1. However, the

fraction of time given to each active user is dependent on the
channel-laws and average powers. Thus αi(x) in (13) is the
time-fraction for the active user i, for a given set of channels
determined by the cdf index x. This concludes the proof of
Lemma 10.

APPENDIX B
Proof of Theorem 11:
We will show the proof for a 2 user system for simplicity. Let
ĥi denote the CSI communicated from user i to all others.
User 1 employs a power of P1(h1, ĥ2) and user 2 spends
P2(ĥ1, h2). Let R1(h1, ĥ2) and R2(ĥ1, h2) be the respective
rates chosen. We can bound the average sum-rate as,

R1+R2 =

∫
G×G

(
R1(h1, ĥ2) +R2(ĥ1, h2)

)
dΨ(h1, h2)

+

∫
B×B

(
R1(h1, ĥ2) +R2(ĥ1, h2)

)
dΨ(h1, h2)

+

∫
B×G

(
R1(h1, ĥ2) +R2(ĥ1, h2)

)
dΨ(h1, h2)

+

∫
G×B

(
R1(h1, ĥ2) +R2(ĥ1, h2)

)
dΨ(h1, h2). (22)

Consider the first term in the summation of the right side. By
suitably integrating, it can be written as a single integral,

µ(G)

∫
G

(R1(h,G)+R2(G, h))dΨ(h) ≤

µ(G)

2

∫
G

log
(
1 + h2(P1(h,G) + P2(G, h))

)
dΨ(h), (23)

which is the sum-rate bound of the corresponding MAC.
Similarly, for the second term,

µ(B)

∫
B

(R1(h,B)+R2(B, h))dΨ(h) ≤

µ(B)

2

∫
B

log
(
1 + h2(P1(h,B) + P2(B, h))

)
dΨ(h). (24)

As for the third and fourth terms, the information on who has
the better channel is readily available to both parties here. Let
us now consider only those channel states (h1, h2) ∈ {(G ×
B)
⋃

(B × G)}. Let the average power expenditure on these
channel states be PGB . Suppose we relax our assumption, and
give full CSI to each transmitter whenever one of the links is in
state G and the other in B. Furthermore, let us enforce only a
average sum-power constraint of PGB in these states. In such
a system, only the better user transmits with an appropriate
power [2]. This fact can be utilized along with (23) and (24)
to obtain an upperbound to Csum. We call this J∗, defined as

J∗=max
µ(B)

2

∫
B

log
(
1 + h2(P1(h,B) + P2(B, h))

)
dΨ(h)

+
µ(G)

2

∫
G

log
(
1 + h2(P1(h,G) + P2(G, h))

)
dΨ(h)

+
µ(B)

2

∫
G

(log(1+h2P1(h,B))+log(1+h2P2(B, h)))dΨ(h),



where we also relax the original individual power constraint
by an average sum-power constraint of the form,

µ(B)

∫
B

(P1(h,B) + P2(B, h))dΨ(h)+

µ(G)

∫
G

(P1(h,G) + P2(G, h))dΨ(h)+

µ(B)

∫
G

(P1(h,B) + P2(B, h))dΨ(h) ≤ 2P avg.

We can further relax the above optimization to get,

J∗∗=maxµ(B)

∫
B

1

2
log
(
1 + h2(P (h)

)
dΨ(h)

+ (µ(G) + 2µ(B))

∫
G

1

2
log
(
1 + h2P (h))

)
dΨ(h) (25)

subjected to

µ(B)

∫
B

P (h) + (µ(G) + 2µ(B))

∫
G

P (h) ≤ 2P avg.

Clearly J∗∗ ≥ J∗, as any allocation in the latter can be
emulated by the former optimization. Notice that J∗∗ can be
maximized by single user waterfilling. On the other hand, it
also turns out to be achievable, which we state as a lemma.

Lemma 13. For 2 identical-users with individual cdf Ψ(·), the
maximal throughput with partial CSI is C(Ψ′, 2P avg), where

dΨ′(h) =

{
dΨ(h)µ(B) if h ∈ B
dΨ(h)(1 + µ(B)) if h ∈ G

(26)

Proof: From (25) it is evident that J∗∗ = C(Ψ′, 2P avg).
To show the achievability of J∗∗, assign P1(h,G) =
P2(G, h) = 0, ∀h ∈ B and

R1(h,B) = R2(B, h) =
1

2
log(1 + h2P1(h,B)),∀h ∈ G.

For all other cases, employ the mid-point rates using the
waterfilling power allocation of J∗∗. It is straightforward to
show that the throughput is indeed J∗∗.

For L > 2 users, if there are K ≥ 1 links in G, only those
links with hk ∈ G will transmit at their respective K− user
mid-point rates. On the other hand, if no links are in G, all L
users transmit at their respective L−user mid-point rates. The
power allocation can be effectively determined by single user
waterfilling of the cdf Ψ′(h) given in Theorem 11.
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