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Power Delay Profile and
Noise Variance Estimation for OFDM
Tao Cui, Student Member, IEEE and Chintha Tellambura, Senior Member, IEEE

Abstract— In this letter, we present cyclic-prefix (CP) based
noise-variance and power-delay-profile estimators for Orthogonal
Frequency Division Multiplexing (OFDM) systems. Signal corre-
lation due to the use of the CP is exploited without requiring
additional pilot symbols. A heuristic estimator and a class of
approximate maximum likelihood (ML) estimators are proposed.
The proposed algorithms can be applied to both unitary and
non-unitary constellations. These algorithms can be readily used
for applications such as minimum mean-square error (MMSE)
channel estimation.

Index Terms— OFDM, channel estimation, SNR estimation.

I. INTRODUCTION

NOISE variance or (equivalently) signal to noise ratio
(SNR) is an important measure of channel quality. Their

estimation is hence required in many communication applica-
tions such as adaptive modulation, turbo coding and others.
Several SNR estimation algorithms have been proposed for
systems using unitary constellations (i.e., binary phase shift
keying (BPSK) and quaternary phase shift keying (QPSK))
over AWGN channels [1], [2]. They can be classified as data-
aided (DA), which requires pilot symbols, and non-data aided
(NDA) estimators, which do not. In [3], an NDA estimator
is extended to systems with non-unitary constellations over
Rayleigh fading channels.

In orthogonal frequency division multiplexing (OFDM)
systems, noise variance and power delay profile (PDP) are
needed for many algorithms such as minimum mean-square
error (MMSE) channel estimation and ML frequency offset
estimation. In [4], a noise-variance estimator is proposed that
directly uses the receiver statistics. A subspace approach is
presented in [5] that uses the sample covariance matrix of the
received signal. However, both algorithms are DA estimators,
which constitute a bandwidth loss. The estimation of the
number of multipath gains and associated time delays has
been proposed in [6], where pilot symbols are also needed,
and channel multipath power and noise variance are required.
In [7], a noise variance and SNR estimator that uses training
symbols is developed for multiple antenna OFDM systems.
Except for these contributions, to the best of our knowledge,
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no other NDA noise variance and PDP estimators for OFDM
systems have been published to date.

In this letter, we develop noise-variance and PDP estimators
for OFDM systems over multipath fading channels; the key is
to use the fact that the cyclic prefix contains the repeated sam-
ples which will introduce a special correlation structure on the
received samples. The noise variance, the number of multipath
taps, multipath time delays and powers are jointly estimated
without pilots. The maximum likelihood (ML) function for the
estimated parameters is derived, resulting in an ML estimator.

II. NOISE VARIANCE AND PDP ESTIMATOR

In OFDM, source data are grouped and mapped into
Xk ∈ Q, where Q is a complex signal constellation, and
E{|Xk|2} = 1. Complex data are modulated by inverse
discrete Fourier transform (IDFT) on N parallel subcarriers.
The symbol interval and block interval are denoted by Ts

and NTs. The resulting OFDM symbol during the mth block
interval that comprises N samples is given by

xn(m) =
1
N

N−1∑
k=0

Xk(m)ej(2πkn/N), n = 0, 1, 2, · · · , N − 1.

(1)

The guard interval, inserted to prevent inter-block interfer-
ence, includes a cyclic prefix that replicates the end of the
IFFT output samples. The number of samples in the guard
interval Ng is assumed to be larger than the delay spread of
the channel. The signal is transmitted over a multipath fading
channel given by

h(t) =
L−1∑
l=0

hlδ(t − τl) (2)

where L is the total number of multipaths, hl ∼ CN (0, σ2
l ),

and τl is the delay of the l-th path. The received signal after
sampling is given by

yn(m) =
L−1∑
l=0

hlxn−dl
(m) + wn(m) (3)

where wn ∼ CN (0, σ2) is an Additive White Gaussian
Noise (AWGN), and dl = �τl/Ts� is the delay normalized
by Ts. For simplicity, we round dl to an integer without
considering leakage. However, the correlation approach in
this paper may also be extended to fractional dl. We assume
perfect synchronization, and that the channel is invariant
within each OFDM block. If there exists a synchronization
error, a decision directed algorithm may be applied using our
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proposed parameter estimators and the joint ML time and
frequency offset estimator in [8].

At the border between two OFDM blocks (−Ng ≤ n < 0),
the received signal samples can be written as

yn(m) =
L−1∑
l=0

hlxn−dl
(m)U(n − dl)

+
L−1∑
l=0

hlxN+n−dl
(m − 1)U(dl − n) + wn(m)

(4)

where U(·) is the step function. The correlation between
each received signal sample over the CP interval and its
corresponding sample at the end of the OFDM block can thus
be given by

E{y−k(m)y∗
N−k(m)}

=

⎧⎨
⎩

σ2
y + σ2 0 < k ≤ Ng − dL−1∑L−1

l=0 σ2
l U(Ng − k − dl) Ng − dL−1 < k ≤ Ng − d0

0 Ng − d0 < k ≤ Ng

(5)

where σ2
y =

∑L−1
l=0 σ2

l , and k = 1, . . . , Ng . The expectation
in (5) is taken with respect to both hl and xn(m).

When L is large, yn(m) can be modelled approximately
as complex Gaussian using the central limited theorem, and
the probability density function (pdf) is given by

f(yn(m)) =
exp

(
− |yn(m)|2

σ2
y+σ2

)
π(σ2

y + σ2)
. (6)

Samples y−k(m) and yN−k(m) are jointly Gaussian with pdf

f(y−k(m), yN−k(m))

=
exp

(
− |y−k(m)|2+|yN−k(m)|2−2ρk�{y−k(m)y∗

N−k(m)}
(σ2

y+σ2)(1−ρ2
k)

)
π2(σ2

y + σ2)(1 − ρ2
k)

(7)

where

ρk =

∣∣∣∣∣
E{y−k(m)y∗

N−k(m)}√
E{|y−k(m)|2}E{|yN−k(m)|2}

∣∣∣∣∣
=

∑L−1
l=0 σ2

l U(Ng − k − dl)∑L−1
l=0 σ2

l + σ2
.

(8)

Therefore, the proposed estimator is only approximate ML.
We use M OFDM blocks to estimate those parameters and

assume that they remain unchanged during the M blocks.
Define p = [σ2

0 , . . . , σ2
L−1], d = [d0, . . . , dL−1] and y =

[y−Ng
(1), y−Ng+1(1), . . . , yN−1(M)]. Using (6) and (7) and

assuming the M OFDM blocks are independent, the log-
likelihood function of y conditioned on σ2,p,d can be written
as

Λ(y|σ2,p,d)

=
M∑

m=1

log

⎛
⎝ Ng∏

k=1

f(y−k(m), yN−k(m))
N ′∏

k=0

f(yk(m))

⎞
⎠

= − M

⎛
⎝ Ng∑

k=1

ak − ρkbk

c(1 − ρ2
k)

+ log(c(1 − ρ2
k)) +

N ′∑
k=0

gk

c
+ log(c)

⎞
⎠

(9)

where N ′ = N − Ng − 1,

ak =
∑M

m=1 |y−k(m)|2 + |yN−k(m)|2
M

bk =
∑M

m=1 �{y−k(m)y∗
N−k(m)}

M

gk =
∑M

m=1 |yk(m)|2
M

, c = σ2
y + σ2.

(10)

Since (9) involves many variables, to simplify the joint param-
eters’ estimation, we take a suboptimal way. We first estimate
c by maximizing only the last sum in (9):

ĉ =
∑N ′

k=0 gk

N − Ng
=

∑N ′

k=0

∑M
m=1 |yk(m)|2

(N − Ng)M
. (11)

From (11), we find ĉ is the time average estimation of σ2
y +σ2,

and hence an estimate of c is given by ĉ. Substituting ĉ back
into the first summation of (9) and maximizing ρk individually,
we get the estimate for ρk as the real root of the equation

2ĉρ3 − bρ2 − 2(ĉ − ak)ρ − b = 0. (12)

We then compute the value sk as

sk =
{

ρNg
ĉ k = 1

(ρNg−k+1 − ρNg−k+2)ĉ k = 2, . . . , Ng
. (13)

A threshold value is set as αĉ, where α is a constant less than
1. If sk > αĉ, it is identified as a path; sk is the estimate of
path power, and k is the estimate of delay time. The number
of paths is estimated as the number of sk that sk > αĉ. We
denote the maximum delay time as dmax. The noise variance
can thus be estimated as

σ̂2 = ĉ

(
1 −

∑Ng−dmax+1
k=1 ρ̂k

Ng − dmax + 1

)
. (14)

If we look directly at the structure of OFDM block, in the
absence of noise, y−k(m) = yN−k(m) for k = 1, . . . , Ng −
dmax + 1. The noise variance can be obtained alternatively as

σ̂2 =
∑M

m=1

∑Ng−dmax+1
k=1 |yN−k(m) − y−k(m)|2

2M(Ng − dmax + 1)
. (15)

Using the results of (11) and (14) or (15), SNR can be
estimated by

SNR =
ĉ

σ̂2
. (16)

Note that (15) can only be used to estimate σ2.
Note that the SNR considered in this paper is the average

SNR ( averaged over the channel, data and noise realizations).
Our proposed algorithm cannot estimate the instantaneous
SNR, where a fixed channel is considered.

III. SIMULATION RESULTS

We now investigate the performance of our proposed es-
timators. We assume an OFDM system using QPSK with
N = 64 subcarriers, and CP length Ng = 16. A L =
6 channel model is used. The power profile is given by
p = [0.189, 0.379, 0.239, 0.095, 0.061, 0.037], and the delay
profile after sampling is d = [0, 1, 2, 4, 6, 8]. Each path is an
independent, zero-mean complex Gaussian random process.
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Fig. 1. The probability of correct detection of the number of paths.

Fig. 1 shows the probability of correct detection of the
number of paths using our proposed algorithm with different
M . The threshold parameter is set to α = 0.01. In low SNR,
the paths with smaller power are dominated by the noise, and
there may be many paths larger than the threshold. Therefore,
the number of paths may be overestimated. The probability of
correct detection increases in high SNR. With increasing M ,
the probability of detection error decreases.

Fig. 2 presents the normalized mean square error (NMSE)
of the channel power estimation for the 3rd path (arbitrarily
chosen), where the NMSE is defined as NMSE = E{(σ̂2

3 −
σ2

3)2}/σ4
3 . The channel power is overwhelmed by the noise

in low SNR. In high SNR, the NMSE becomes constant since
the number of paths cannot be 100% correctly detected. The
NMSE is improved by increasing M .

Fig. 3 shows the NMSE of the noise variance estimation
using different estimators, where the NMSE is defined as
NMSE = E{(σ̂2 − σ2)2}/σ4. The estimator using (14) is
denoted as ML, and that using (15) is denoted as direct
estimator or (DI). At low SNR, the DI method performs better
than the approximate ML method since the probability of dmax

detection is higher for the DI method. In high SNR, both
DI and ML perform identically. With the increase of M , the
performance of both estimators improve.

IV. CONCLUSION

In this paper, we have presented noise-variance and power-
delay-profile estimators using the CP in each OFDM block.
The correlation structure due to the use of the CP has been
exploited to derive our estimators, and hence pilot symbols
are not needed. A direct heuristic noise variance estimator
has also been proposed. Simulation results show that our
proposed estimators provide an effective way to estimate the
channel parameters. The results in this paper may be used
to improve the performance and reduce the complexity of
channel estimators for OFDM systems.
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Fig. 2. The NMSE of the channel power estimation for the 3rd path.
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Fig. 3. The NMSE of the noise variance estimation using different estimators.
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