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Abstract: We report an investigation on the photo-response from a GeSn-based photodetector using
a tunable laser with a range of incident light power. An exponential increase in photocurrent and
an exponential decay of responsivity with increase in incident optical power intensity were ob-
served at higher optical power range. Time-resolved measurement provided evidence that indicated
monomolecular and bimolecular recombination mechanisms for the photo-generated carriers for
different incident optical power intensities. This investigation establishes the appropriate range of
optical power intensity for GeSn-based photodetector operation.

Keywords: GeSn; photodetector; photo-response

1. Introduction

With the expansion of group-IV elements to include Sn, the prospect of achieving
efficient group-IV photonic devices, such as photodiodes (PDs) and light emitting diodes
(LEDs) that can be integrated on Si substrates in a CMOS compatible process, becomes
much brighter. While, recently, III-V heterogeneous integration has seen commercial
success, lasers and amplifiers are generally more critical than detectors, especially since
III-V processing in a CMOS foundry is undesirable [1]. In fact, recent breakthroughs
in GeSn-based p-i-n PDs and LEDs have demonstrated excellent optical properties for
important applications in the near- and mid-infrared regions [2–8]. With the continuous
performance improvement of both PDs [9–18] and LEDs [19–23], the responsivities of
GeSn-based PDs have been shown to be comparable with those of commercial extended
wavelength InGaAs PDs [24], and their absorption wavelength range has been extended
to well beyond 2 µm, which is desirable for applications in optical communications and
night vision [9,25]. The properties of GeSn PDs, such as photo-responsivity, have been
studied by many research groups with respect to temperature dependence [14,24], Sn-
composition dependence [11,24], as well as structural dependence [26]. One aspect of the
GeSn PDs that has not been studied is their performance under various incident power
conditions. There is, however, a need for high-power, high-gain and high-speed p-i-n PDs
functioning as efficient RF photonic links. InGaAs PDs have been used to fulfill this need
to some extent, but InGaAs is known to be a poor thermal conductor—a severe material
limitation. With almost 10 times better thermal conductivity, PDs made of GeSn are better
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suited for high-frequency RF applications. In this investigation, we perform a study of
the power-dependence of photo-responsivity in GeSn PDs over their active absorption
wavelength range. The experimental results, combined with the modeling of external
quantum efficiency, clearly show the effect of different carrier recombination mechanisms
at work under different incident power intensities.

2. Materials and Methods

The sample was grown using solid source molecular beam epitaxy (MBE) with a low
temperature growth technique. The diode structure was grown on an n-type Ge (001)
wafer with a resistivity of 1 Ω·cm, consisting of the following layers: (i) undoped layers of
Ge-spacer/Ge1−xSnx/Ge-spacer with thickness of 15/260/15 nm and (ii) a p-type doped
Ge layer of 100 nm. The thicknesses of these layers were measured with cross-sectional
transmission electron microscopy (XTEM), as shown in Figure 1a. The Sn content in the
GeSn layer was determined by high-resolution X-ray diffraction measurement and was
found to be 3%, as shown in Figure 1b. As well as the (004) X-ray measurement, (224)
reciprocal space mapping was also performed, as shown in Figure 1c. The measurement
was performed with a large probing spot size of 0.5 mm × 10 mm to estimate the strain
status in the epilayer. The plot shows that the diffraction peaks of the GeSn and Ge layers
were located at the same Qx, which indicates that the GeSn layer complied with the lattice
structure of the Ge wafer. That is, the GeSn layer was nearly fully strained and was
consistent with X-ray measurement.
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Figure 1. (a) XTEM image of the MBE-grown GeSn sample on n-type Ge wafer. (b) XRD rocking
curve scan on the (004) plane. The Sn composition of ~3% is measured. (c) (224) reciprocal space
mapping of the GeSn sample. (d) Cross sectional view of the schematic structure of the fabricated
GeSn-based PD.

The sample was processed into a circular mesa using the dry etching technique with
a reactive ion etcher (RIE). A p-i-n diode was fabricated by etching down to the n-type
Ge wafer. Diodes with diameters of 300 µm were fabricated. After processing, a thin SiO2
layer with a thickness of 200 nm was deposited using plasma-enhanced chemical vapor
deposition. During the SiO2 layer deposition, the wafer temperature was set at 300 ◦C,
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which is below the critical temperature for the epilayer to relax and the Sn to segregate.
This layer served as an insulating layer to prevent current flow from the P-type contact
to the n-type contact through the sidewall surface of the diode under the applied voltage.
After the processing, Ni was deposited as the electrical contact. The schematic plot of the
diode is shown in Figure 1d.

One advantage in the fabrication approach chosen here is that the Ge and GeSn layers
are grown in situ using MBE, resulting in a better interface between the layers. This growth
method helps avoid deleterious defects that can affect transport or absorption, as seen
in other growth methods where the Ge and the GeSn are grown in separate chambers.
An additional advantage of the proposed approach is that sandwiching of GeSn between
layers of Ge leads to some optical confinement in the GeSn layer, as well as enhancement
of absorption at certain wavelengths due to interference. By varying layer thicknesses and
composition, one can enhance the performance of the detector over a narrow band without
having to deposit more dielectric layers. This simplifies the fabrication process.

Photo-response measurements with front-side illumination were performed with a
<10 ns tunable laser at 1 kHz repetition rate. Neutral density filters were used to adjust
the power incident on the device and a beam splitter was used to send half the power to a
detector and half the power to the device. The beam was then focused down into a spot on
the detecting portion of the device. Measurements were taken over a wavelength range
of 1500 nm to 1800 nm. The average power incident on the device was measured to range
from approximately 40 µW to 3.5 mW at the laser’s peak wavelengths. Five separate power
level measurements were taken at each wavelength. The device was held at a bias voltage
of 5 V and was placed in series with a 1 kΩ resistor. Voltage measurements were taken
across the resistor using a lock-in detection technique. For time-resolved measurements the
lock-in voltage response was monitored with a GHz oscilloscope using laser powers in the
range of 5 µW to 100 µW. A schematic of the optical measurement setup is displayed in
Figure 2.
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Figure 2. Schematic of the optical measurement setup.

3. Results

The responsivity of the GeSn PD under different incident laser power intensities in
the wavelength range from 1500 nm to 1800 nm was measured and the results are shown
in Figure 3. The measured responsivity vs. the incident wavelength, ranging from 1500
to 1800 nm at two incident laser powers of 0.25 and 1.50 mW, exhibited a peak around
1625 nm, as shown in Figure 3a. This behavior can be understood in terms of the optical
absorption which is stronger at shorter wavelengths because the optical transition occurs
between deeper conduction and valence-band states with higher densities of states, but at
the same time, the number of photons that can be absorbed is less at shorter wavelengths for
fixed incident power. The measured responsivity vs. the incident power density is plotted
in Figure 3b. The measured responsivity was comparable with the published results of



Materials 2022, 15, 989 4 of 9

GeSn PDs of similar Sn composition of 2.8% [5] and 3.0% [6], but smaller than the theoretical
prediction of achievable performance [7]. There were, however, several different behaviors
at different wavelengths: (a) at the wavelengths of 1500 and 1550 nm, responsivity reduced
exponentially as the power intensity increased, (b) at wavelengths from 1600 to 1700 nm,
the responsivity decayed slowly in the lower power intensity range, and then the rate of
decay picked up in the higher power intensity range, and (c) at wavelengths over 1750 nm,
the responsivity remained nearly constant in the lower power density range, and then
reduced gradually as the power density increased. While the general trend of reduction in
responsivity with the increase in incident power can be understood as the result of increase
in carrier recombination rate for higher carrier density created by the higher incident power,
the different rates of responsivity reduction in different power intensity ranges, however,
have not been observed before in GeSn PDs and the mechanism that leads to this behavior
is not well understood. We conduct an analysis below to reveal the mechanism.
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4. Discussion

To interpret the observations, there are two kinds of mechanisms to be considered: ex-
trinsic (monomolecular) and intrinsic (bimolecular) recombination. Extrinsic recombination
requires only one type of carrier to be captured by one type of impurity center. This type of
recombination can be described by the SRH model where the average lifetimes for electrons
and holes are defined as τn = 1/BnNt and τp = 1/BpNt, in which Bn and Bp are the
trapping coefficients, respectively, and Nt is the density of trap states. The monomolecular
recombination effect is therefore limited by the impurity density in the material. When the
carrier concentration is much higher than the impurity concentration, the effect of intrin-
sic recombination, that involves both a free electron and a free hole (including radiative
recombination), must be taken into account and this effect is largely responsible for the
reduction of responsivity and, therefore, photocurrent. Generally, in Ge-based material
systems, extrinsic recombination processes dominate over intrinsic recombination [27]. The
intrinsic bimolecular recombination is generally characterized by the minority lifetimes for
electrons and holes as τn = 1/Br p0 and τn = 1/Brn0 where n0 and p0 are the electron and
hole concentrations, respectively, and Br is the direct recombination coefficient.

The conventional treatment of optical absorption has always assumed that the pho-
tocurrent is proportional to the incident optical power so that the responsivity is not
changed with different incident optical power. However, this is clearly not the case here. In
our study under high incident laser power, at 1500 nm, as shown in Figure 4a, the respon-
sivity decreased with the incident power intensity P as P−0.5. This behavior demonstrates
the dominance of bimolecular recombination which happens at higher power intensities
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because of the higher photo-generated carrier density. Since the absorption coefficient α for
GeSn is higher for shorter wavelengths, carrier density generated with shorter wavelength
incident light could be higher at lower optical power intensity than that generated with
light of longer wavelength at higher power intensity. Figure 4a suggests that, for 1500-nm
incident light with α ≈ 7000 cm−1, the bimolecular recombination effect dominates over
the whole range of power density from 100 to 5000 W/m2. With 1650-nm incident light
with α ≈ 4000 cm−1, significantly lower than 7000 cm−1, an exponential decay following
P−0.5 dependence was still observed at a power intensity higher than 1 × 103 W/m2, as
shown in Figure 4b. Below 1 × 103 W/m2, however, the responsivity decreased more
slowly with incident optical power. Figure 4c shows the power-dependent responsivity of
1800-nm light with α ≈ 150 cm−1, exhibiting a clear departure from the P−0.5 dependence.

The highest responsivity exhibited by the device occurred at a wavelength of 1625
nm. The active GeSn layer has a higher index of refraction than the Ge layers, which
leads to reflections at the boundaries, thereby causing interference effects. We modeled
the index of refraction of GeSn using the method presented by Tran et al. [28] and used
the transfer matrix method to calculate the absorption in the GeSn layer. The calculated
absorption spectrum showed a peak at 1625 nm; thus, the device response was highest at
that wavelength due to the increased optical absorption.

To further investigate the transition from monomolecular recombination to bimolecular
recombination, we conducted power-dependent time-resolved responsivity measurement
with a 1550 nm incident laser pulse of 10 ns. The temporal responsivity is shown on
a log-scale in Figure 5. At low incident power intensities of 16.85 and 47.39 W/m2, the
responsivity exhibited exponential decay, which is a characteristic of monomolecular recom-
bination. At higher incident power intensities beyond 98.04 W/m2, the initial hyperbolic
decay is due to bimolecular recombination, and the following exponential decay is from
monomolecular recombination. This result is consistent with Figure 4a that the bimolecular
recombination effect comes with lower power density than 98.04 W/m2, the first data point
in Figure 4a. In order to obtain optimal photo-responsivity performance in GeSn PDs, the
appropriate operation incident power intensity should therefore not exceed ~100 W/m2 at
1.55 µm wavelength.

The detected pulses have a time scale in the milliseconds, which would limit operation
to the kHz frequency range. However, this device has not been optimized to achieve high
frequency operation. The limitation in speed is due to the recombination processes, some of
which can be controlled. SRH recombination is related to the number of traps due to defects
in the material, which could be introduced during the growth of the active GeSn layer.
Increasing the defect density should lead to an increase in the SRH recombination rate,
thereby reducing the effective recombination lifetime in the active layer. This could also
reduce the effect of bimolecular recombination, possibly leading to improved performance
at higher power.



Materials 2022, 15, 989 6 of 9Materials 2022, 14, x FOR PEER REVIEW 6 of 9 
 

 

 

Figure 4. Power-dependent responsivities with incident laser wavelength of (a) 1500 nm, (b) 1650 

nm, and (c) 1800 nm. 

The detected pulses have a time scale in the milliseconds, which would limit opera-

tion to the kHz frequency range. However, this device has not been optimized to achieve 

high frequency operation. The limitation in speed is due to the recombination processes, 

some of which can be controlled. SRH recombination is related to the number of traps due 

to defects in the material, which could be introduced during the growth of the active GeSn 

layer. Increasing the defect density should lead to an increase in the SRH recombination 

rate, thereby reducing the effective recombination lifetime in the active layer. This could 

also reduce the effect of bimolecular recombination, possibly leading to improved perfor-

mance at higher power. 

Figure 4. Power-dependent responsivities with incident laser wavelength of (a) 1500 nm, (b) 1650 nm,
and (c) 1800 nm.



Materials 2022, 15, 989 7 of 9
Materials 2022, 14, x FOR PEER REVIEW 7 of 9 
 

 

 

Figure 5. Time-resolved 1550 nm responsivity measurement with different laser power densities. 

5. Conclusions 

In summary, the power-dependence of the GeSn-based PD was studied for the first 

time. We used a tunable laser with a range of incident light power to study the power 

dependence of the responsivity of the GeSn-based PD illuminated at different wave-

lengths. An exponential increase in photocurrent, and an exponential decay of responsiv-

ity with increase in optical power density, were observed in the higher incident power 

density range. The power-dependent behavior in a GeSn-based PD can be explained by 

different recombination mechanisms that dominate within different power density ranges. 

Time-resolved measurements revealed monomolecular and bimolecular recombination of 

excited carriers at play in the lower and higher incident power density ranges, respec-

tively. This study establishes the incident power density range for the GeSn PD to achieve 

its optimal responsivity. 

Author Contributions: Conceptualization, C.C. and H.-H.C.; methodology R.A.S. and G.S.; formal 

analysis, G.A.S., J.R.H., Z.L., I.A. and J.M.; investigation C.C. and G.A.S.; writing—original draft 

preparation, C.C. and H.-H.C.; writing—review and editing, J.R.H. and G.S.; supervision H.-H.C., 

J.R.H., I.A., J.M. and G.S.; funding acquisition H.-H.C., J.R.H., R.A.S. and G.S. All authors have read 

and agreed to the published version of the manuscript. 

Funding: R.A.S and G.S. acknowledge support from the Air Force Office of Scientific Research un-

der award numbers FA9550-19-1-0341 and FA9550-21-1-0347. J.R.H. acknowledges support from 

the Air Force Office of Scientific Research (Program Manager Dr. Gernot Pomrenke) under award 

number FA9550-20RYCOR059. J.M. acknowledges support from the Air Force Office of Scientific 

Research under award number FA9550-17-1-0146. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 5. Time-resolved 1550 nm responsivity measurement with different laser power densities.

5. Conclusions

In summary, the power-dependence of the GeSn-based PD was studied for the first
time. We used a tunable laser with a range of incident light power to study the power
dependence of the responsivity of the GeSn-based PD illuminated at different wavelengths.
An exponential increase in photocurrent, and an exponential decay of responsivity with
increase in optical power density, were observed in the higher incident power density
range. The power-dependent behavior in a GeSn-based PD can be explained by dif-
ferent recombination mechanisms that dominate within different power density ranges.
Time-resolved measurements revealed monomolecular and bimolecular recombination of
excited carriers at play in the lower and higher incident power density ranges, respectively.
This study establishes the incident power density range for the GeSn PD to achieve its
optimal responsivity.
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