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Abstract—An important goal of indoor location estimation systems is to increase the estimation accuracy while reducing the power

consumption. In this paper, we present a novel algorithm known as CaDet for power-efficient location estimation by intelligently

selecting the number of Access Points (APs) used for location estimation. We show that by employing machine learning techniques,

CaDet is able to use a small subset of the APs in the environment to detect a client’s location with high accuracy. CaDet uses a

combination of information theory, clustering analysis, and a decision tree algorithm. By collecting data and testing our algorithms in a

realistic WLAN environment in the computer science department area of the Hong Kong University of Science and Technology, we

show that CaDet (Clustering and Decision Tree-based method) can be much higher in accuracy as compared to other methods. We

also show through experiments that, by intelligently selecting APs, we are able to save the power on the client device while achieving

the same level of accuracy.

Index Terms—Data mining in mobile wireless networks, power efficient computation.

�

1 INTRODUCTION

IN today’s pervasive computing applications, location-
estimation systems are becoming increasingly important

as well as practical. Such systems can be used to support
many location-based services, such as content delivery and
object and people tracking. For indoor location estimation, a
challenging problem is how to estimate a client’s locations
from the signals received using a wireless device with
limited computational and power resources. In this paper,
we show how to use data mining techniques to perform
indoor location estimation with a focus on saving the power
usage on a client device. The question we ask is: Is it
possible to apply data mining techniques to wireless data to
detect the locations of a client while using a minimal
amount of battery power?

Our answer is positive. In this paper, we conduct a
comprehensive study on realistic wireless data to compare
different methods in probabilistic location estimation. Our
analysis shows that for wireless data sets collected in indoor
wireless environments, in order to apply probabilistic
location estimation, information theory provides the best
feature selection methods for identifying the most impor-
tant access points and for minimizing the online samples
needed for decision making. We also show that to ensure
energy-efficient computation, which is a new constraint for
real-time data mining systems, a multiple-decision-tree-
based approach can be used. We develop an algorithm

based on this approach which we call CaDet, which stands
for (Clustering and Decision-tree-based method). We relate
the accuracy of location estimation with sampling time and
energy consumption.

Our work builds on the previous work on location
estimation, based on the use of inexpensive wireless local
area network (LAN) as the fundamental infrastructure. To
detect user locations, the signals from different access
points (AP) are collected and used as a basis for location
estimation [1], [2], [3], [4], [5]. Systems that utilize the
estimated location for further analysis of user goals and
objectives are also emerging [6], [7]. In the indoor environ-
ment where clients only sense the signal-strength values
from different APs, the location estimation problem is full
of uncertainty. It is therefore not surprising that a major
accepted practice is to apply probabilistic techniques. For
example, in the system developed by Ladd et al. [1], it was
reported that the location of a client can be estimated to be
within 1.5 meters with 83 percent of confidence. However,
while most previous probabilistic location estimation works
are based on data mining methods, such as clustering and
regression, one important question remains: how to ensure
the consumption of energy on a client device while
achieving a high-level of accuracy?

To the best of our knowledge, our work on CaDet is the
first that links energy consumption with the data mining
methods used in the wireless domain. Our major contribu-
tion is to introduce energy consumption as an objective in
the design of data mining algorithms for building predic-
tion models. In this area, we propose a client-based
architecture on which to build CaDet where the client
processes the signals sent by various APs in location
estimation. An energy efficient prediction model is installed
on the client. We show the advantage of this architecture in
Section 3.3. In addition, we present a multiple-decision-tree-
based approach, where a collection of decisions are built,
one for each cluster, in an offline phase. The decision trees
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allow a minimum of access points to be used, thus reducing
the computation and wake-up time on the client. We
demonstrate the impact on energy savings on the client
device. Our design makes a contribution to pervasive
computing as well since client-based location estimation is
shown to be effective for preserving the privacy of clients,
but takes more power in computation in general. Thus, an
important issue in pervasive computing is how to save
energy while producing effective predictions.

In the data mining area, CaDet is one of the first works
to apply feature selection to access point selection, and to
apply a multidecision-tree-based model for wireless data. A
special character of wireless data is the high level of
uncertainty associated with the data, such that even at the
same location, the signals change a lot. We show that with
this data, although the accuracy of the model is correlated to
the sampling time, an important issue that is how to achieve
the best balance between sampling time and accuracy.
Saving in sampling time can save energy. We show that
using information theory-based feature selection methods
in CaDet, it is possible to optimize the location-estimation
accuracy and reduce the number of samples needed for
high accuracy computation. We carry out comparisons with
a variety of other methods, including maximum likelihood
and clustering methods, on realistic wireless data that we
have collected.

The paper is organized as follows: Section 2 discusses
related work. Section 3 introduces the problem domain.
Section 4 presents the algorithms used in our analysis.
Section 5 presents the experiments. The paper concludes in
Section 6 with a discussion of future work.

2 RELATED WORK

Various techniques have been proposed in recent years to
determine a user’s location using radio frequency (RF)
signals. In surveying the related work, we consider two
different aspects, namely, the location estimation work and
the power-efficiency work.

2.1 Previous Work on Location Estimation

In general, the location estimation research can be classified
into two categories: deterministic techniques and probabil-
istic techniques. Deterministic techniques [8], [4], [5], [9] use
deterministic inference methods to estimate a user’s
location. The RADAR system developed by Microsoft
Research [8], [4] proposes nearest-neighbor heuristics and
triangulation methods to infer a user’s location. It maintains
a radio map which tabulates the signal strength received
from different access points at selected locations. Each
signal-strength measurement is then compared against the
radio map and the coordinates of the best matches are
averaged to give the location estimation. The accuracy of
RADAR is about three meters with 50 percent probability.
The LANDMARC system [5] exploits the idea of reference
points to alleviate the effects caused by the fluctuation of
RFID signal strength. The accuracy is roughly one to three
meters. However, the placement of reference tags should be
carefully designed since it has a significant effect on the
performance of the system. Moveover, the RFID readers are
so expensive that it is infeasible for localization in a large

area. In [9], an online procedure based on feedback from
users was employed to correct the location estimation of the
system.

Another branch of research is the probabilistic techni-
ques [10], [3], [11], [1], [6] which construct a conditional
probability distribution over locations in the environment of
interest. In [1], Ladd et al. use probabilistic inference
methods for localization. They first use Bayesian inference
to compute the conditional probability over locations, based
on received signal-strength measurements from nine access
points in the environment. Then, a postprocessing step,
which utilizes the spatial constraints of a user’s movement
trajectories, is used to refine the location estimation and
reject the results with significant change in the location
space. Depending on whether the postprocessing step is
used or not, the accuracy of this method is 83 or 77 percent
within 1.5 meters. In addition, Roos et al. [11] compare the
performance of the nonprobabilistic nearest-neighbor meth-
od with that of two probabilistic approaches. The results
show that the two probabilistic approaches produce better
results than the nearest-neighbor method and the average
location estimation error is below two meters. Furthermore,
the time-series analysis technique [3] was introduced to
study the correlation among consecutive samples received
from the same access point over time. The authors reported
that better accuracy can be achieved by taking such
correlation into account.

While probabilistic techniques provide more accurate
results than deterministic techniques, which has been
proven formally in [12], a trade-off between computational
overhead and accuracy has been introduced.

2.2 Previous Work on Ensuring Energy Efficiency

Because the client devices are usually small, self-maintained
devices that depend on battery power, the question of how
to save energy has attracted much attention from various
research teams. In the pervasive computing area, there are
two major research problems regarding energy consump-
tion: One concerns hardware and the other software. In
hardware design, a major problem is how to make mobile
devices lighter and more compact without adding more
power consumption. There has been much work on
hardware power management which focuses on different
components such as the network [13], [14], disk [15], [16],
and CPU [17], [18].

For the software side of the issue, the mobile software
continues to grow in complexity, hence increasing the
energy demand. There is a lot of work that addresses
energy savings from two different aspects: communication
components and computation components. In order to
reduce power consumption, researches are focused on
optimizing the communication cost by deactivating radio as
much as possible or by trading off computation for
communication. For example, in the wireless data broadcast
protocol, mobile devices turn on the radio only during the
arrival time of the requested data frames [19], [20].
Similarly, in sensor networks, a localized network archi-
tecture [21] is proposed to achieve power savings by
allowing most of the sensor nodes to stay in the sleep mode
and by reducing the amount of long-range transmissions. In
addition, a low-energy adaptive clustering hierarchy [22] is

878 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006



presented to reduce the amount of information that must be
transmitted. However, while computing components con-
sume less power than the communication components, they
are still important sources of energy dissipation, especially
after the communication cost is optimized. Thus, a
prediction-based energy-saving scheme [23] is proposed
to reduce the energy consumption in the computational
components of sensor networks for object tracking.

In the location estimation area, little work has tackled the
issue of how to reduce the computational overhead during
online location estimation. Youssef et al. uses a joint
clustering technique to group locations in order to reduce
the computational cost of the system [10]. Themethoddefines
a cluster as a set of locations sharing the same set of access
points. The locationdeterminationprocess is as follows:After
a signal-strength measurement is made, the strongest access
points are used to determine one cluster to search within for
themostprobable location, and then themaximumlikelihood
(ML) method is used to estimate the most probable location
within the cluster. However, their method suffers from two
disadvantages: First, the clustering step only selects the same
set of access points with the strongest signal strength to
represent a cluster; however, the discriminative ability of
different access points toward locations and different signal
values from the same set of access points have not been
considered. Second, the ML method requires the multi-
plications of a few conditional probability distributions. This
is still demanding in power-constrained client devices. Our
work, in the energy savings respect, contributes to intelli-
gently selecting access points for the purpose of clustering
and then applying an efficient estimation method to reduce
the computational cost.

3 WIRELESS ENVIRONMENT

In this section, we begin with a description of out
experimental setup. We then discuss the RF signal
propagation and the noisy wireless channel characteristics,
which make location estimation a challenging task.

3.1 Overview of the Environment

Our experimental test-bed is set up in the faculty office area
of the Computer Science Department in the Academic
Building of the Hong Kong University of Science and
Technology. The building is equipped with an IEEE 802.11b

wireless Ethernet network in the 2.4 GHz frequency
bandwidth. The layout of the floor is shown in Fig. 1. This
area has a dimension of 64 meters by 50 meters. Experi-
ments were carried out in the four hallways (HW1 � HW4)
and two rooms as labeled in the figure. The four hallways
measure 19.5 for HW1, 37.5 for HW2, 46 for HW3, and 21
for HW4 in meters.

There are a total of 25 access points that are detectable in
the environment, of which three APs distributed within the
area are marked with concrete circles in the figure. Among
the other 22 APs, some are located on the same floor outside
of the area while the others are located on different floors.
Using the device driver and API we developed, the signals
from these APs were recorded by an IBM laptop with a
standard wireless Ethernet card. The laptop was carried by
the user for data collection and online location estimation
when operating within the office area.

3.2 Characteristics of Signal Propagation

The IEEE 802.11b standard works over the radio frequencies
in the 2.4 GHz band. It is widespread since the band is
license-free in most places around the world. It is attractive
because the RF-based techniques are popular and inexpen-
sive, providing much ubiquitous coverage and requiring
little overhead.

However, accurate location estimation using measure-
ments of signal strength is a longstanding difficult task due
to the noisy characteristics of signal propagation. Subject to
reflection, refraction, diffraction, and absorption by struc-
tures and even human bodies, signal propagation suffers
from severe multipath fading effects in an indoor environ-
ment [24]. As a result, a transmitted signal can reach the
receiver through different paths, each having its own
amplitude and phase. These different components combine
and reproduce a distorted version of the original signal.
Moreover, even changes in the environmental conditions,
such as temperature or humidity, also affect the signals to a
large extent. As a consequence, the signal strength received
from an access point at a fixed location varies with time and
its physical surroundings.

Fig. 2 gives a typical example of the normalized
histogram of the signal strength received from an access
point at a fixed location. Several hundred measurements
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Fig. 1. The layout of the office area of the Computer Science
Department of Hong Kong University of Science and Technology.

Fig. 2. An example of signal strength distribution.



were sampled to construct the histogram. It is obvious that
the signal strength received from the same AP varies with
time, even at a fixed location. Furthermore, the number of
APs covering a location also varies with time.

3.3 Rationale of Our Approach

A key novelty of our work is the ability to save energy for
location-estimation systems through the application of data
mining algorithms. We adopted three approaches. First, we
adopted an architecture in which we only receive signals
from various APs, rather than sending them. As we will see
later, this mode of sensing saves much battery power.
Second, we optimize the location estimation algorithm by
both reducing the number of APs that must be sensed, thus
reducing the amount of data we handle and saving the
computational time. The third and the most effective
method is to ensure the wake-up time of the client device
is minimal.

Our architecture is a client-server-based system. In this
system, the client device is held in the hand of the user,
which is battery powered. The hand-held client system
usually consumes much energy, which cuts down the
lifetime of the location-estimation system, especially when
we wish to make the whole operation as pervasive as
possible. Papers [25] and Ebert et al. [26] examined the
power consumption of various wireless local-area network
(LAN) cards in the 802.11 range. They, in particular,
measured the power consumption of the system in different
modes, including Sleep Mode, in which the system
hibernates, the Idle Mode, in which the system does nothing
active in transmission, and the two transmission modes. In
the transmission modes, the system can transmit packages
(TX) or receive packages (RX). In the Sleep mode, the
average power consumption is around 20MW. In the Idle
mode, the power is 110MW; in the RX mode, the power is
900MW while in the TX mode, the power consumption is
2,500 MW. Other factors affecting the power consumption
include the size of packets and the speed of transmission.
Generally, when the packets are large and the transmission
speed is fast, the system uses less energy; however, large
packets also increase the chance of errors, which in turn
increases the energy consumption.

Therefore, in a client-based system, it is possible to save
the transmission energy consumption by adopting a packet-
receiving mode. However, in a server-based system,
packets must be sent to the servers in order to locate the
client. Thus, in order for the client-based system to save
energy, one way is to reduce the amount of signals
transmitted between a client system and a server system.
On one hand, in the location estimation systems that we
surveyed, the RADAR system [8] and the commercially
available Ekahau system [27] need to transmit signals to a
server, which then makes the prediction on the client’s
location. These systems have the advantage that they
require less offline training, but they require a large amount
of battery power on the client devices. On the other hand,
the client-based system that we propose in this paper is one
that only receives packages sent by the APs (i.e., use the RX
mode), and uses the signal strengths and an offline-
obtained radio map to decide where it is currently located.
Such a client-based architecture requires less energy. An
additional advantage is that it is easier to protect the

identity of the client bearer since the main computation is
done on-site.

A second method to reduce the consumption of energy is
to reduce the amount of computation that is done on the

client system. In our approach, we first reduce the number of

APs that are required to obtain signals from, because we use

a decision-tree-basedmodel after applying clustering. As we

will later show, reducing the number of APs corresponds to

dimensionality reduction in data mining, which reduces the

number of multiplications that must be done on the system.
In our experimental system, we will demonstrate the

computational effort reduced by this method.
A third method is to ensure that the amount of time the

system is in idle or sleep mode is maximized. Our approach

ensures that this is the case by minimizing the number of

samples that must be received in real time before the system

can make a credible decision. The 802.11b interface operates

at a maximum bit rate of 11 Mbps with a maximum range of
100 meters. Delaney [28] used a PCMCIA 802.11b interface

card and measured the average current going into the

interface to get the power dissipation. He used an on/off-

scheduling algorithm to reduce the total energy consump-

tion of the 802.11b device. While operating in the 802.11b

power management mode, a WLAN card goes into an idle

state. For every 100 ms, it wakes up and receives a traffic
indication map, which is used to indicate when the base

station will be transmitting data to this particular mobile

host. When there is heavy broadcast traffic, which happens

when the client device is conducting signal transmission,

the WLAN interface will rarely be in the idle state and it

will consume as much power as if it were in the always-on
mode. This is because the time required to analyze the

broadcast packets is larger than the sleep mode. This

increase in power consumption will happen even if there

are no applications running on the mobile host.
In the experimental section, we will show that our

system outperforms others in terms of accuracy for a

fraction of the samples that they use for location estimation;

this shows that our system can have longer sleep time
during the operation.

Table 1 (data quoted from [28]) shows the power
measurements of an HP Smartbadge IV embedded system

using 802.11b to transmit signals From the table, we can see

that the wireless communication takes up almost half the

energy, and the CPU activities take about 20 percent. This

means that if we can apply a more intelligent algorithm that

increases the sleep and idle time of the device and reduces

the amount of computation, we can achieve our goal of
saving energy.
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4 CADET ALGORITHM DESCRIPTION

Our CaDet algorithm for location estimation is divided into
two phases:

. The first phase is done offline, where the main
purpose is to perform intelligent AP selection. We
divide this phase into the following steps:

1. First, a feature selection algorithm is applied to
find a subset S of APs that can give the best
performance. This subset will then be used as
the basis for subsequent computation.

2. A subsequent clustering analysis is then applied
to the set S and data collected in the offline
phase, in order to partition the grid space into
clusters. Each cluster will then provide a
subsequent location model.

3. Finally, a decision tree model is constructed for
each cluster, based on the APs given in S. For
each cluster only a subset of APs from S is
selected, which further reduces the number of
APs needed for location estimation within each
cluster.

. The second phase is done online, in which a new
trace of signal-strength values is taken as input and
the current location is estimated. This phase is done
in two steps:

1. First, the signal strength values from the
selected APs from the set S is used to determine
that the cluster of the current client is most likely
located within.

2. Then, the decision tree from the identified
cluster is used to determine, at a finer level,
which grid the client belongs to. This step will
use a subset of the APs given in S, which further
reduces the number of APs used in a computa-
tion. In addition, the APs that are used only
involve arithmetic comparison, which is one of
the cheapest computations as computational
energy is concerned.

4.1 Offline AP Selection in CaDet

4.1.1 AP Selection Using Information Theory

Normally, in an environment, signals from many APs are
detectable here or there within the area of concern. For
example, nine APs were detectable in the region of Duncan
Hall at Rice University which was used as the test-bed for
experiments [1]. Among them, five were located within the
region while the others were located outside, including
those on other floors. In many other environments, such as
ours, many more APs can be detected. As shown in
Section 3.1, there are a total of 25 APs detectable. Signals
from each AP provide some information for location
estimation, and it is a natural way to use as many APs as
possible to improve the accuracy in a location estimation
system. However, the increase of accuracy is at the cost of
adding more computational burden to the system. As a
consequence, such a location system not only has poor
scalability but also is power-insufficient when energy is
constrained on the computational unit. Therefore, it is

important to only use the number of APs that a target
system can afford while maintaining as high a level of
accuracy as possible.

To find a trade-off point between the number of APs
used and the accuracy they can achieve, we propose an
Information Gain-based AP selection method (InfoGain for
short) [29]. The idea of AP selection using InfoGain is as
follows: Suppose in a grid-based location system, n is the
number of grids and m is the total number of APs
detectable. Each AP (APi; 1 � i � m) is viewed as a feature
and each grid (Gj; 1 � j � n) is described by these
m features. To a particular grid G�, signal samples from
the APs are collected offline and the average signal strength
from APi is taken as the value of the ith feature of G�. It is
also possible that some APs may not be detected in G�

because of their physical locations and also the character-
istics of signal propagation. In this case, the features of the
corresponding missing APs take a default value, which is
set to -95, the minimum strength of the signal received in
the environment. The InfoGain criterion for AP selection is
to evaluate the worth of each feature (i.e., AP) in terms of its
discriminative power and select the highest ones. The
discriminative power of feature APi is measured by the
information gain when its value is known. Specifically, it is
calculated as the reduction in entropy as follows:

InfoGainðAPiÞ ¼ HðGÞ �HðGjAPiÞ; ð1Þ

where HðGÞ ¼ �
Pn

j¼1 PrðGjÞ logPrðGjÞ is the entropy of
the grids when APi’s value is not known. Here, PrðGjÞ is
the prior probability of grid Gj, which can be uniformly
distributed if a user can be equally likely in any grid.
HðGjAPiÞ ¼ �

P
v

Pn
j¼1 PrðGj; APi ¼ vÞ logPrðGjjAPi ¼ vÞ

computes the conditional entropy of grids given APi’s
value. v is one possible value of signal strength from APi

and the summation is taken over all possible values of APi.
For each APi, we compute the information gain using (1).

The top k APs with the highest value are selected.
Compared with the traditional selection method which
selects the APs having the most strongest signals in the
environment, our InfoGain method has the following
advantages. InfoGain bases the selection of APs directly
on their abilities to discriminate the grids by their signal
values. As a consequence, the top k APs are the best at
distinguishing one grid from another. On the other hand,
the traditional method only considers the strength of the
signals from APs and selects the strongest APs. Although in
general, the APs having strong signals covering the region
are preferable, they may not be the best to be selected, as we
will see in Section 5.2.

4.1.2 Offline Location Clustering in CaDet

After k most discriminative APs are selected, the next step
is to cluster the locations which are modeled as grids in the
environment. Clustering is the unsupervised classification
of patterns into groups [30]. The idea of location clustering
is that locations where the received signals have similar
characteristics form a cluster. Location clustering is im-
portant because the complexity of the location estimation
algorithms can be greatly reduced by first identifying a
cluster to which an unknown sample belongs and then
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determining the exact location of a user within the cluster.
A similar claim was made in [10] where a joint clustering
technique was proposed.

We define a location cluster as a set of grids that receive
similar signals from k selected APs. Each grid can be
represented by a vector of k signal strength, where the ith

element is the average signal strength received at this grid.
Intuitively, the signals received in grids within a cluster are
more similar to each other than they are to the signals of a
grid belonging to a different cluster. The similarity of two
grids can be measured in terms of the Euclidean distance
between their signal strength vectors. Compared with the
notion of joint cluster in [10], where a cluster is defined as a
set of locations sharing a common set of APs, our definition
not only considers the aspects of different coverage of APs
over the grids as in [10], but also reflects the difference in
the values of signal strength.

In this paper, we adopt the K-means clustering algorithm
[30]. K-means is a widely used clustering algorithm that
iteratively forms clusters. By specifying k, the number of
clusters desired, the algorithm begins by arbitrarily select-
ing k grids as k cluster centroids. In each iteration, each grid
is assigned to the nearest cluster centroid by measuring the
distance between its signal strength and that of the
centroids. After all the grids are assigned, the centroid of
each cluster is recalculated by taking the average of the
signal strength of the grids belonging to it. This iteration
process continues until convergence is achieved, where the
k centroids no longer shift. A grid is finally associated with
one of the k cluster whose centroid is the closest to that grid.
Therefore, after all grids are assigned, they are grouped into
clusters whose number is significantly less than that of the
grids. As we will see in the experiment (Section 5.3), the use
of K-means algorithm is justified by the clustering results
that grids geometrically close to each other are clustered
together. However, the number of clusters k remains an
open issue. If we specify k to be too large, there are too
many clusters. As a result, there is much redundant
computation and the number of APs is not reduced.
However, if we specify too few APs, then we cannot take
advantage of localized patterns from locations. In the
following, we will empirically vary the number clusters k

in order to find the best balance.

4.1.3 Intracluster Estimation with Decision Trees

After a cluster is identified, CaDet determines a user’s
location at a coarse level (low resolution). In the next stage,
grids in the same cluster need to be distinguished so as to
make location estimation at a finer level, leading to a high
resolution while at the same time, reducing the number of
APs used.

CaDet uses a simple but effective approach based on
decision trees [31]. Decision trees have been used in a wide
range of pattern classification applications. The idea behind
a decision tree is natural and intuitive: classify a test sample
through a sequence of questions. As an example, a decision
tree built over grids (G1 � G8) of a location cluster is shown
in Fig. 3. In the figure, each internal node corresponds to a
test question on the value of signal strength of a particular
AP. Several subtrees are branched out from a internal node,
each corresponding to a different range of values. Starting
from the root node, the test sample will be asked a sequence
of questions until it reaches a leaf node. A leaf node at the
lowest level represents the decision on which grid the
sample belongs to. More detail will be given through an
example in Section 4.2.

The advantages of using decision trees to determine the
location within a cluster are as follows: First, decision trees
are efficient and the decisions made at each step when
walking through them are intuitive and easily understood.
The significance of decision trees also lies in that they are of
low computational complexity and therefore power-effi-
cient since only comparison of signal strength is needed.

To build a decision tree over the grids in each cluster, we
again use the AP selection method introduced in
Section 4.1.1. Since different APs have different coverage
and also have different discrimination power in each
cluster, the selection process will further reduce the
computational burden. After a set of APs are selected for
each cluster, decision trees can be built using C4.5 [31].
Decision trees similar to the one shown in Fig. 3 are
obtained.

4.2 Online Application of the Models in CaDet

Once the models are built, we can then apply them to online
location estimation. For a given received signal sample, the
signal-strength values from the selected APs are used to
determine the cluster that the current client is most likely
located in. Subsequently, the decision tree associated with
the identified cluster is used to determine, at a finer level,
which grid the client belongs to. Ties are broken arbitrarily.
We now illustrate this process using an example.

As an example, suppose that a vector of four APs
(AP1 � AP4) is selected using the InfoGain algorithm. The
signal strength of a test sample T is listed in Table 2. Let Cj

denote the centroid of the jth clusters among the total M
clusters given by the offline-clustering algorithm. To
determine which cluster the test sample belongs to, the
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Fig. 3. A decision tree for location determination in CaDet.

TABLE 2
A Test Sample T



distance from the test sample T to each cluster centroid is
calculated. The distance DðT;CjÞ from T to Cj is given by:

DðT;CjÞ ¼
X4

i¼1

ðSSiðT Þ � SSiðCjÞÞ
2
;

where SSið�Þ is the value of signal strength from the APi.
The cluster C� whose centroid is the closest to the test
sample (C� ¼ argmaxj DðT;CjÞ) is identified and associated
to the test sample. Suppose the cluster centroid C2 is the
nearest and the decision tree for cluster 2 is as shown in
Fig. 3. Applying this decision tree, the classification of the
sample begins at the root node, which asks for the value of
signal strength from AP2. The different branches from the
root node correspond to a different range of values. Since
AP2’s value of the sample is 84, classification follows the
middle branch. The next step is to check the value for AP4 at
the subsequent node, which turns out to be 78. The same
process continues until a leaf node is reached. The leaf
nodes bear labels of each grid to which samples are
assigned grids to. In the example, the leaf node G3 is
reached and the sample T is determined to be from grid G3.

4.3 Analysis on Energy Savings in CaDet

As stated in the related work section, one of the few location
estimation works that considered the power saving issue is
that of [10], which adopted a probabilistic framework of
maximal likelihood. In this approach, a set of probabilistic
distributions are modeled in every grid, with one distribu-
tion corresponding to one AP. In all, jGj � jAP j distribu-
tions need to be built, where jGj is the number of grids and
jAP j is the number of APs. The grid with the maximum
likelihood of observing the signal strength of the test sample
is determined as where a user is. Although high accuracy
can be achieved (83 percent within 1.5 meters [1] and over
90 percent within 2 meters [10]), the probabilistic ap-
proaches suffer from high computational cost, which leads
to high power consumption. To calculate the likelihood of
the user in one grid, OðjAP jÞ times float-point multi-
plications are taken and in sum OðjGj � jAP jÞ, multi-
plications are needed. It is computationally costly.

In contrast, in CaDet, we only require a small fraction of
all the available APs in location estimation computation.
Furthermore, the decision trees within each cluster require
an even smaller number of APs as compared to the whole
set. Thus, by reducing the number of APs that are involved
in the computation, we reduce the power consumption as
well. In our case, the number of APs used will never be
higher than that of the Joint Clustering approach, and is
often much lower. The exact number of APs that are
selected and used through decision tree construction is an
empirical question, which we will answer in the next
section.

5 EXPERIMENTAL RESULTS

In this section, we discuss the experimental test-bed and
evaluate the performance of CaDet, and compare it with
others. First, the effectiveness of offline AP selection and
clustering is shown (Sections 5.2 and 5.3). Then, in the
online phase of location estimation, a comparison is made

with previous work in terms of accuracy and computational

cost (Sections 5.4 and 5.5).

5.1 Experimental Test-Bed

We performed our experiment in the office area of the

Computer Science Department in the Academic Building of

the Hong Kong University of Science and Technology

(HKUST) as shown in Fig. 1. The environment is modeled

as a space of 99 locations, each representing a 1.5-meter grid

cell. There are a totsl of 25 access points that can be

detected, three of which are distributed within this area and

the others are from adjacent areas on the same floor or

different floors. We label these access points from 1 to 25 in

our experiment. On average, each location is covered by

five access points.
Using the device driver and the API we developed, we

collected 100 samples at each location, one per second, and

we used them to test the performance of our proposed
method. For the validity of experimental results, we ran the

experiments based on 10-fold cross validation. It partitions

the whole data set into 10 independent folds, each time it

uses nine folds for training and the other one fold for

testing, and finally reports the average result.

5.2 Offline AP Selection

In this section, we study the effect of different AP selection
criteria on the accuracy of location estimation. Fig. 4

compares the accuracy within 1.5 meters using the

ML method over all the locations with respect to four AP

selection criteria: InfoGain, MaxMean, RndMean, and Rever-

seInfoGain. The InfoGain criterion ranks APs in descending

order of their InfoGain values using our algorithm

described in Section 4.1.1. The MaxMean criterion ranks

APs in descending order of their average signal-strength

values, which has been used to select APs in [10]. For the

purpose of analysis, we also apply the other two criteria.

The RndMean criterion randomly selects a few APs

regardless of their signal-strength values. The ReverseInfo-

Gain criterion selects APs in reverse order of the way the

InfoGain criterion does.
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Fig. 4. Testing the effect of AP selection criteria on accuracy in CaDet.



We can see from Fig. 4 that, as the number of APs
increases, the accuracy of using the InfoGain criterion
increases faster than the other three criteria. In other words,
in order to achieve the best accuracy using the same ML-
based method, the InfoGain criterion uses the smallest
subset of APs while the RndMean and ReverseInfoGain
criteria need to use all 25 APs. This is because the subset
of APs with the same size selected by the InfoGain criterion
does have the best discriminative abilities towards different
locations. On the contrary, the ReverseInfoGain criterion
performs worst since it reverses the discriminative abilities
of APs. This shows that the InfoGain criterion has the
advantage of using the fewest APs to achieve the same
accuracy, which in turn reduces the computational cost
required by each location estimation.

Let us further compare the performance of the InfoGain
criterion with that of the MaxMean criterion. The first four
APs selected by both of the criteria are consistent except for
their relative order, so as the number of APs increases from
one to four, the accuracy of the two criteria remains
approximately the same. The main difference of the two
criteria lies in the selection of the other 21 APs. The InfoGain
criterion selects the APs in descending order of their
discriminative abilities toward different locations. How-
ever, the MaxMean criterion just considers the average
signal-strength values received in different locations, in-
stead of their inherent discriminative abilities. Therefore, if
an access point can distinguish some parts of locations
accurately, the InfoGain criterion will rank it near the front
of all the APs while the MaxMean criterion may possibly
rank it near the end. This is because if the signal-strength
values of this AP are small in the other locations, its average
value may be smaller than another AP which has large
signal-strength values over all the locations. Moreover, in
the extreme case, if the signal-strength values of an AP are
uniformly large but differ a little over all the locations, the
MaxMean will rank this AP near the front by priority
although it does not contribute to distinguishing the
locations. On the contrary, the InfoGain criterion does rank
this AP near the end since its discriminative ability toward
different location is inherently low. We can see from the
figure that the accuracy of the ML method using InfoGain

increases faster than that of usingMaxMean especially when
the number of APs ranges from 4 to 12. This is because the
InfoGain criterion can select a subset of APs with higher
discriminative abilities than the MaxMean criterion. As a
consequence, this nice property guarantees that the InfoGain
criterion can achieve the same accuracy as the MaxMean but
use fewer APs.

5.3 Offline Clustering Result

In this section, we study the performance of our location
clustering method in CaDet as discussed in Section 4.1.2. In
particular, we discuss the effect of the number of clusters
and the number of APs used in clustering on its
performance.

Fig. 5 shows the effect of the number of clusters on
performance. This experiment is taken over all the 25 APs to
see the change of clustering accuracy with respect to the
number of clusters. In order to reduce the computational
cost of online location estimation, we expect to obtain
several clusters while ensuring the high accuracy of locating
samples to clusters. For this purpose, we define the
clustering accuracy as the number of signal-strength
samples which are located to the correct cluster divided
by the total number of samples. It can be seen from the
figure that the best accuracy can be achieved when the
number of clusters is equal to six.

Fig. 6 shows the effect of the number of APs used in
clustering on performance. In order to reduce the computa-
tional cost used for clustering, we expect to choose as few
APs as possible to achieve the best accuracy. It can be seen
from the figure that when the number of APs is equal to 12,
the best accuracy of 90 percent can be achieved.

For the rest of the paper, we choose the number of
clusters to be 6 and the number of APs used in clustering to
be 12 since this setting leads to the best performance of our
location clustering method in our experiment. As shown in
Fig. 7, six clusters are labeled with different colors,
respectively. Moreover, the center of each cluster is
represented as a black square. It can be seen from the
figure that the locations contained within each cluster is
physically adjacent. This is because physically adjacent
locations may receive more similar signal values from the
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Fig. 5. Clustering accuracy versus the number of clusters in CaDet. Fig. 6. Clustering accuracy versus the number of APs in CaDet.



same set of APs. In our experiment, when a signal-strength
measurement is made, the clustering method can move it to
the correct cluster with the accuracy of 90 percent. This
shows that the most difficulty lies in distinguishing the
locations within the same cluster.

5.4 Online Comparison of Accuracy

In this section, we compare the performance of the decision
tree method in CaDet with that of the ML method [10]
implemented in the same test-bed.

Fig. 8 compares the accuracy within 1.5 meters using
three approaches, the decision tree method and two
ML methods, in six clusters, respectively. Here, ML1 is
the ML method using a different number of APs while ML2
is the ML method using all of the APs in each cluster. In this
experiment, we rank APs in descending order of their
InfoGain values. Note that we only consider the relation-
ship between accuracy and different number of APs with
nonzero InfoGain values because any access point with zero
InfoGain values does not contribute to the increase of
accuracy. For example, in Fig. 8b, we only consider the first
nine APs in hallway2. In each cluster, we consider a
different number of APs depending on their computed
InfoGain values.

We can see from the figure that the decision tree method
outperforms the two ML methods in every cluster. On the
average, the decision tree method can achieve the best
accuracy of 83.4 percent within 1.5 meters, while the best
accuracy of ML is 74.9 percent. For a location estimation, as
more APs are used, the accuracy of ML1 becomes closer to
that of ML2 that uses all the APs. Compared with ML2, the
decision tree method can achieve the same accuracy but use
fewer APs. As more APs are used later, decision tree
outperforms ML2. This shows that by selecting APs based
on the InfoGain criterion, the decision tree can maintain the
same accuracy as the ML method without access-points
selection while reducing the number of APs. In addition,
the accuracy of decision tree is even higher than that of ML1
using the same number of APs.

Let us study the performance of decision tree in detail. It
can be seen from the figure that as the number of APs
increases in each cluster, the accuracy of decision tree
increases approximately monotonically because we have
more information due to the addition of APs. For the same
reason, the computational cost required by each location
estimation increases. However, as more APs are involved,

the accuracy of decision tree increases more slowly and
converges to a certain value. This is because the decision
tree algorithm inherently exploits the InfoGain criterion to
select the APs in descending order of their discriminative
abilities toward locations. Therefore, if an access point can
distinguish different locations within a cluster more
accurately, it will be chosen first by a decision tree to
reduce the search space of locations. On the contrary, if the
discriminative ability of an AP is weak, it will be chosen
later, or never be chosen in the case that it does not provide
any information to distinguish locations. Now, we select
Fig. 8a for illustration. As the first five APs are involved one
by one, the accuracy of decision tree increases. However,
the accuracy remains almost the same even if the other
seven APs are added later. It shows that, after the clustering
step, only a subset of APs further contribute to distinguish-
ing different locations within each cluster. Therefore, by
further reducing the number of APs, the computational cost
can be reduced while the accuracy is maintained at the
same level.

Table 3 shows the selected APs within each cluster. It can
be seen from the table that the optimal number of APs in
each cluster is four or five on average. Based on these
selected APs, the decision tree can achieve the accuracy of
about 83 percent within 1.5 meters.

5.5 Comparison of Online Computational Cost

In this section, we compare the computational cost required
by three techniques: our proposed approach, the Joint
Clustering (JC) technique, and RADAR. The computational
cost is measured by the average number of operations
(multiplications) performed for a single location estimation.

Fig. 9 shows the expected computational cost over all of
the locations using three techniques with respect to
different numbers of APs. After clustering and AP selection,
the resulting clusters are of different sizes (consisting of a
different number of grids) and each cluster has its own set
of APs selected. As a result, the number of operations for
estimating a sample is not the same, depending on which
cluster is associated in the first step. Therefore, the
computational cost is calculated by taking the expectation
over all possible grids in the environment. That is, the
number of operations for locating each grid is first
accumulated and then divided by the total number of
grids, which gives the expected computational cost.

We can see from the figure that the computational cost
required by three techniques increases as the number of
APs increases. The figures also show that, compared with
RADAR, our approach and the Joint Clustering method
reduce the computational cost by using clustering. How-
ever, for each location estimation, our approach requires a
lower computational cost than Joint Clustering. This is
because after locating a signal-strength measurement to a
location cluster, our approach uses the decision tree
algorithm to determine the most likely location within the
cluster, which just requires the comparison operations
when walking along the tree. However, Joint Clustering
uses the maximum likelihood method to determine the
location within a cluster, which requires the multiplication
of conditional probabilities in proportion to the number of
APs and the locations within each cluster.
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Fig. 7. The clustering result in CaDet.



5.6 Reducing the Online Sampling Time in CaDet

In Section 3.3, we considered a third method to ensure that

energy is saved by increasing the Idle or sleep time of the

system. If we can obtain the same accuracy in a short

amount of time, then we can allow the system to wake up

once every several seconds for location estimation, thus

saving a great amount of energy. In this section, we

demonstrate that our system can indeed give the same
amount of accuracy while using a smaller amount of wake-
up time.

The experimental comparisons are shown in Fig. 10 and
Fig. 11. In this experiment, we use only three APs in each
hallway to do location estimation, which is more realistic,
because in a typical environment, we can only expect a
small number of APs to be available to cover each area. We
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Fig. 8. The Online comparison on the accuracy of the decision tree method and two ML methods in six clusters in CaDet. (a) Hallway1. (b) Hallway2.

(c) Hallway3. (d) Hallway4. (e) Hallway5. (f) Room1.



compare three methods, joint cluster (JC), RADAR, and our

method. The first phase of CaDet is cluster selection, which

is the same as joint clustering, we only show the compar-

ison result of the second phase in these figures. As we can

see from the figures, using our system, we can indeed save

from 3 to 4 seconds for each estimated location while

maintaining the same level of location-estimation accuracy.

That means that we can leave the client system off for 3 to

4 seconds for each location, thus saving battery power when

operating online.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new approach to

increase the location-estimation accuracy in an indoor

wireless environment while reducing the power consump-

tion. Our method intelligently selects the number of APs

used for location estimation by employing machine learning

techniques. Through information theory, clustering, and

decision tree algorithms, we are able to use a small subset of

the APs in the environment to detect a client’s location with

high accuracy. An important consequence is the ability to

use only a small fraction of the computational power as

compared with previous techniques. In the future, we plan

to experiment with different clustering and feature selection

techniques for access point selection. In addition, we wish

to use similar techniques to schedule optimal layout maps

for AP distribution in an indoor environment.
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