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Energy consumption is today one of the most relevant issues in operating HPC systems for scienti�c applications. �e use of
unconventional computing systems is therefore of great interest for several scienti�c communities looking for a better tradeo	
between time-to-solution and energy-to-solution. In this context, the performance assessment of processors with a high ratio of
performance per watt is necessary to understand how to realize energy-e
cient computing systems for scienti�c applications, using
this class of processors. Computing On SOC Architecture (COSA) is a three-year project (2015–2017) funded by the Scienti�c
Commission V of the Italian Institute for Nuclear Physics (INFN), which aims to investigate the performance and the total
cost of ownership o	ered by computing systems based on commodity low-power Systems on Chip (SoCs) and high energy-
e
cient systems based on GP-GPUs. In this work, we present the results of the project analyzing the performance of several
scienti�c applications on several GPU- and SoC-based systems.We also describe the methodology we have used tomeasure energy
performance and the tools we have implemented to monitor the power drained by applications while running.

1. Introduction and Related Works

Energy consumption has increasingly become one of the
most relevant issues for scaling up the performances of
modern HPC systems and applications, a trend which is
expected to continue in the foreseeable future. �is implies
that costs related to the running of applications are more and
more dominated by the electricity bill, and for this reason
the adoption of energy-e
cient processors is necessary, rang-
ing from many-core processors architectures like Graphics
Processing Unit (GPU) to System on Chip (SoC) designed to
meet the demands of the mobile and embedded market. SoC
hardware platforms typically embed in the same die low-
powermulticore processors combinedwith a GPU and all the

circuitry needed for several I/O devices.�ese processors fea-
ture high performance-per-watt ratio aiming at high energy-
e
ciency but at the same time require careful programming
and optimization to be also compute-e
cient. Moreover, for
the case of o	-the-shelf SoCs, various limitations may arise:
32-bit architectures, small CPU caches, small RAMsizes, high
latency interconnections, unavailability of ECCmemory, and
so forth.

Investigating and assessing the performance of these sys-
tems for scienti�c workloads are the aim of theComputingOn
SOCArchitecture (COSA) project [1], a 3-year initiative that is
funded by the Italian Institute for Nuclear Physics (INFN) and
started in January 2015. Seven INFN departments have been
involved in the COSA project, namely, CNAF (Bologna),
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Pisa, Padova (Padua), ROMA1 (Rome), Ferrara, Parma, and
Legnaro National Laboratories (LNL).

Processors based on ARM architecture have recently
attracted a strong interest from several research communities
as energy-e
cient building blocks for HPC clusters [2],
microservers, and other computing systems. �ey are widely
adopted in several commercial low-power and battery-
powered devices, such as tablets and smartphones, and many
SoCs embedding ARM cores are designed to have, as main
strength points, low power consumption and high energy-
e
ciency. Several research projects have then investigated
towards this direction. Among them, the Mont-Blanc project
[3, 4], coordinated by the Barcelona Supercomputing Center
[5], has deployed several generations of HPC clusters based
on ARM processors, developing also the corresponding
ecosystem ofHPC tools targeted to this architecture. Another
project along this direction is the EU-FP7 EUROSERVER [6],
coordinated by CEA [7], which aims to design and prototype
technology, architecture, and systems so�ware for the next
generation of datacenter “microservers,” exploiting 64-bit
ARM cores.

Many SoCs based onARMcores embedGPUs in the same
die, and for this reason several projects aim also to exploit
these GPUs’ computing power [8, 9]. One of such projects,
particularly interesting for adopting o	-the-shelf boards, is
the ICARUS project [10], aiming to build and study the
performance of a mobile solar-powered cluster of NVIDIA
Jetson boards.

Other research groups are exploring Dynamic Voltage
and Frequency Scaling (DVFS) techniques as a way to mod-
ulate power consumption of processor and memory, scaling
the clock frequency of one or both subsystems according
to the execution of memory- or compute-bound application
kernels [11]. More recently, other projects are focusing also on
Near �reshold Voltage (NTV) computing [12], making the
processor work at even lower voltages; since this may lead to
computation errors, appropriate checks and recomputations
have to be added to algorithms in this case.

�e COSA project is on the same research line of the
above initiatives, aiming to explore the energy-e
ciency
of several systems, including ARM-based architecture, low-
power SoCs, and also multicore and many-core based pro-
cessors like Intel Xeon CPUs and NVIDIA Tesla GPUs. In
addition to strong hardware agnosticism, the COSA project
is characterized by being strongly application-driven, aiming
to study the energy consumption behavior of a wide set of
benchmarks and so�ware, widely used within the INFN.

For this reason, the COSA project shows a
nities also
with other initiatives, such as the SpiNNaker (Spiking Neu-
ral Network Architecture) project [13] proposed by the
Advanced Processor Technologies Research group at the
University of Manchester [14], the EU FET-HPC project
ExaNeSt [15], the INFNAPEnet+ project [16], and the INFN-
COKA (Computing on Knights Architecture, [17]) project, of
which COSA is a natural extension.

In this work, we explore the performance of energy-
e
cient systems based onmulticore GPUs, low-power CPUs,
and SoCs. We have ported several scienti�c workloads and
we have investigated the computing and energy performance

comparing them with traditional systems mainly based on
x86multicores.We have also evaluated the bene�ts ofmanual
clock frequency tuning exploiting DVFS (Dynamic Voltage
and Frequency Scaling) with respect to the default frequency
governors, looking for an optimal tradeo	 between energy-
to-solution and time-to-solution.

�is work is organized as follows. In Sections 2 and 3,
we describe the clusters built and maintained by the COSA
collaboration and the power measurement tools. In Sections
4 and 5, we report on the benchmarking activities and on the
real-life applications ported to SoCs and many-core systems.
�e paper concludes with concluding remarks and a prospect
on future work in Section 6.

2. The COSA Clusters

�e COSA project built and currently maintains three
computing clusters, located at the departments of CNAF
(Bologna), ROMA1 (Rome), and Padova (Padua). A fourth
cluster has been installed in Ferrara with the main con-
tribution of the University of Ferrara. �e cluster hosted
at CNAF is composed of development boards powered by
state-of-the-art low-power SoCs with both ARM and Intel
architectures. �e cluster located in Rome exploits the last-
generation FPGAs to prototype low-latency network connec-
tions between low-power CPUs. Finally, the third and fourth
clusters, located in the Padova and Ferrara departments,
are based on traditional, high-end CPUs, accelerators, and
network connections. �ese latter clusters are used as a
reference for the performance of the scienti�c applications
run on the other machines. Clearly, comparing high-end
servers (equipped with multiple sockets, redundant power
supplies, fans, disks, and huge RAM amounts) with stand-
alone boards powered by a single SoC is somehow “unfair,”
but, nevertheless, indications about the limitations and capa-
bilities in terms of energy-e
ciency of these low-power
systems can be drawn. In the following subsections, we
describe these clusters in more detail.

2.1. �e Low-Power Cluster Based on SoCs. �e CNAF
department hosts an unconventional cluster of ARMv7,
ARMv8, and x86 low-power SoCs nodes, interconnected
through 1Gbit/s and 10Gbit/s Ethernet switches. �ese plat-
forms are used as a testbed for synthetic benchmarks and real-
life scienti�c applications in both single-node fashion and
multinode fashion (see Sections 4 and 5).

Ubuntu is installed on all the platforms. A master server
is used as a monitoring station and an external network �le
system hosting all so�ware and datasets is mounted on every
cluster node. CPU frequency scaling is used by the Linux
operating system to change the CPU frequency for saving
power depending on the system load, and the recommended
“ondemand” governor is enabled by default. We set governor
to “performance” so to avoid dynamic CPU frequency scaling
and maximize CPU performance. �e GPU frequency has
been set to its maximum value (see Table 1).

�e ARM cluster is composed of eight NVIDIA Jetson
TK1 boards, four NVIDIA Jetson TX1 (64-bit) boards, two
ODROID-XU3 boards, a CubieBoard, a SABRE board, and
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Table 1: Hardware speci�cations of the boards in the COSA cluster at INFN-CNAF. Top: ARM; bottom: Intel.

Platform CPU GPU RAM

Freescale SABRE board (i.MX6Q SoC)
4xA9
1.2 GHz

Vivante GC2100
600MHz

2GB

Hardkernel ODROID-XU-E (Exynos5 5410)
4xA15 + 4xA7

1.6GHz
PowerVR SGX544

384MHz
2GB

Hardkernel ODROID-XU3 (Exynos5 5422)
4xA15 + 4xA7

2GHz
ARMMali-T628
533/695MHz

2GB

HiSilicon Kirin 6220
8xA53
1.2 GHz

ARMMali-450 MP4
700MHz

1GB

Hardkernel ODROID-XU3 (Exynos5 5422)
4xA15 + 4xA7

2GHz
ARMMali-T628
533/695MHz

2GB

Arndale Octa (Exynos 5420)
4xA15 + 4xA7

1.7GHz
ARMMali-T628
533/695MHz

1GB

NVIDIA Jetson TK1
4 cores +1
2.3 GHz
TDP 10W

NVIDIA Jetson TK1
192 Kepler cores

852MHz
2GB

NVIDIA Jetson TX1
4 cores
1.73GHz
TDP 10W

NVIDIA Jetson TX1
256 Maxwell cores

998MHz
4GB

Intel Avoton C2750
8 cores
2.4GHz
TDP 20W

— 16GB

Intel Xeon D-1540
8 cores
2.6GHz
TDP 45W

— 16GB

Intel Pentium N3700
4 cores
2.4GHz
TDP 6W

HD graphics 16GB

an Arndale Octa board, all interconnected with standard
1Gbit/s Ethernet. We notice that the Jetson TX1 cluster
is connected with 1 Gbit/s Ethernet even though a USB-
Ethernet bridge provides the physical connection with the
SoC, increasing the latency with respect to standard 1Gbit/s
Ethernet connections.

�e 64-bit x86 cluster is composed of four mini-ITX
boards powered by the Intel Avoton C2750, four mini-ITX
motherboards based on the Intel Xeon D-1540 CPU, and
four mini-ITX boards based on the Intel Pentium N3700
processor.�e “Avoton,” the “XeonD,” and the “TX1” clusters
are connected with both 1Gbit/s and 10Gbit/s Ethernet
connections, and the “N3700” processor only with 1 Gbit/s
Ethernet network. �e 1Gbit/s connections are provided by
on-board connectors, while the 10Gbit/s links are obtained
with a PCI Host Bus Adapter (HBA).

Table 1 summarizes and compares the relevant features of
systems available at CNAF.�e�ermalDesign Power (TDP)
of the SoCs in this cluster, when declared, ranges from 5W of
Intel PentiumN3700 to 45W of the 8-core Intel Xeon D-1540
Processor.

2.2. �e High-End Hardware Clusters. At CNAF department,
the traditional reference architecture is a x86 node from an
HPC cluster, equipped with two Intel Xeon E5-2620 v2 CPUs,
6 physical cores each, Hyper�read enabled (i.e., 24HT cores

in the single node), and with a NVIDIAK20 GPU accelerator
card with 2880 CUDA cores. �e HPC server is rated with a
TDPof 160W for the twoCPUs (about 80Weach) and 235W
for the GPU.

In Ferrara, another commodity HPC reference cluster
named COKA is available (Computing On Kepler Architec-
ture) [18]. �e cluster is made of 5 computing nodes, hosting
each 2x Intel Xeon E5-2630 v3 CPUs and 8x NVIDA K80
dual-GPU boards, interconnected with Mellanox MT27500
Family [ConnectX-3] In�niBand HCA (two per node). �e
TDP of each CPU is 85W, while for an NVIDIA K80 board it
is 300W, amounting for a total maximum power of 3.2 kW
for each computing node or 16 kW for the whole cluster.
On this cluster, the power drain can be measured from
node’s power supplies and read out at ≈1 s granularity thanks
to the IPMI (Intelligent Platform Management Interface)
protocol. Otherwise, power drain could be monitored also
via processor hardware registers, thanks to the PAPI Library
[19], for both the Intel CPUs and NVIDIA GPUs, as detailed
in Section 3.

2.3. �e FPGA-Based Cluster. In the last few years, recon-
�gurable devices characterized by complex architecture
emerged as an e	ective and powerful alternative to low-
power SoC. Last-generation high-end FPGAs, in addition to
huge amount of user-programmable logic, include multiple
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embedded ARM 64-bit cores (ARM Cortex-A57) running at
1.5 GHz with high-speed interfaces to storage (USB, SATA)
and network (10–40Gb/s Ethernet) standard protocols and
tightly coupled to (up) 1 TFLOPS of con�gurable DSP blocks.
It is well known that, beyond the computing performance
of the elementary processor, the main issue limiting the
scalability of a massive parallel system is the e
ciency of the
interconnection architecture.

�e department of ROMA1 has launched in the past
the APEnet+ [16] project aiming to design a low-latency,
high-performance 3D Torus network architecture optimized
for scienti�c computing on GPU-accelerated HPC systems.
APEnet+ is embedded in FPGA and it implements powerful
host interface (PCIe Gen3 x8), a GPU-dedicated low-latency
DMA engine, and a number of custom, high-speed serial
channels on Torus side. One of the main limiting factors
of network performance in the current implementation of
APEnet+ architecture (named V5) is the lacking, in target
FPGA device (28 nm process FPGA generation), of a high-
performance embedded hard-core processor needed to exe-
cute highly demanding network supporting computing tasks
(e.g., the Virtual-to-Physical address translation as well as
DMAs initialization).

In the framework of COSA, themain goals of the ROMA1
department have been the evaluation of the FPGA embedded
ARM cores as (1) atomic computing core for a �ne-grained
parallel HPC system and (2) powerful microprocessor able
to sustain the computing tasks required by network support.
In this perspective and in full synergy with the activities
of EU FET-HPC project ExaNeSt [15], we procured and
assembled a small size (6 computing nodes) FPGA-based
computing cluster based on the Xilinx Zynq UltraScale+
[20] development kit produced by Trenz Electronic GmbH,
equipped with the XCZU9EG-1FFVC900 that integrates a
programmable quad-core ARM Cortex-A53 (64-bit) SoC
@1.5GHz. Targeting this platform, we completed the porting
of APEnet+ IP V5 and we have deployed the �rst running
release of such, as an FPGA Zynq-based cluster. �is cluster
sports a standard 1Gbit/s Ethernet service network and a
preliminary working prototype of a low-latency and high-
performances Torus network based on multiple 10Gbit/s
point-to-point links.�e current development plans foreseen
to design the additional features needed (a) to improve the
physical link throughput and the switching performance, (b)
to optimize network collective operations, (c) to enhance
the network IP resiliency capabilities at extreme-size system
scale (exaFLOPS), and (d) to support high-radix network
topologies (n-D Torus and Dragon�y). �e incremental
adoption of the new features and optimizations will allow
delivering the �nal optimized FPGA-based cluster at the end
of 2017.

3. Power Monitor Tools

We developed and implemented several �ne-grained power
monitoring systems that are able to provide power and energy
readings for a generic application.

�e �rst of these systems, herea�er papi, is a so�-
ware wrapper [21] that exploits the PAPI Library [19] to

Figure 1: �e custom power meter attached to a Jetson TK1.

read appropriate hardware registers containing power-related
information.�iswrapper allows applications to directly start
and stop measurements using architecture-speci�c inter-
faces, such as the Running Average Power Limit (RAPL) for
Intel CPUs and NVIDIA Management Library (NVML) for
NVIDIAGPUs.�e papi system is particularly useful in high-
end systems, where processors commonly implement these
registers and their usage is well documented.

�e second system, herea�er custom, requires dedicated
hardware [22] and represents a viable solution whenever
appropriate hardware registers are unavailable or show dif-
�culties in their readout. For example, this custom power
meter can be used to monitor the power drained by SoC
development boards, as shown in Figure 1. �e custom setup
uses an analog current-to-voltage converter (LTS 25-NP
current transducer) and an Arduino UNO board; the latter
uses its embedded 10-bit ADC to digitize current readings
and store them in memory. �e Arduino UNO board is
synchronized with the development board hosting the SoC
through a simple serial protocol built over a USB connection.
�e monitor acquires current samples with 1ms granularity.
�is setup is able to correlate current measurements with
speci�c application events with an accuracy of a fewmillisec-
onds, minimally disrupting the execution of the application
to pro�le. �e application, while running, can start and stop
the out-of-band measurement, letting the Arduino UNO
board store readings in its memory. When needed (e.g., a�er
the end of a function to energy pro�le), data can be o�oaded
from the Arduino UNO board to the application itself.

Another power measurement equipment, herea�er
referred to as multimeter, consists of a DC power supply, a
high-precision Tektronix DMM4050 digital multimeter for
DC current measurements connected to National Instru-
ments data logging so�ware, and a high-precision AC power
meter. When this monitoring system is used, the AC power
of the high-end server node is measured by a Voltech PM300
Power Analyzer upstream of the main server power supply
(measuring on the AC cable). Instead, for the SoCs, the DC
current was absorbed downstream of the power supply. We
believe that such di	erence does not a	ect signi�cantly the
results, given the close to one cos phi factor of the server
power supply.
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Figure 2: Running two kinds of benchmarks on the various CPUs of the COSA CNAF cluster. (a) and (b) show the results of the HPCG
benchmark: HPCG score (weighted GFLOP/s) on (a) and ratio between HPCG score and absorbed power on (b), for increasing number of
CPU cores. (c) and (d) show GFLOP/s and power ratio for the home-made MATMUL benchmark.

4. Synthetic Benchmarks

In order to characterize the single-node performance of the
various CPUs available in the COSA CNAF clusters, we
performed several types of benchmarks: both synthetic tests
developed in house and well-documented test suites publicly
available in literature.

Here, results are shown only for the most recent and
powerful CPUs of the COSA CNAF clusters, and we stress
that any measurement of the total power of the cluster is out
of the scope of this work. Also, the synthetic benchmarks
showed in this section test only CPUs, not GPUs, andwe refer
the reader to the following section for real-life workloads
executed on the GPUs of the COSA cluster.

From the broad spectrum of tests which are handy in the
literature, here we show the results obtained for a test based
on the High-Performance Conjugate Gradients (HPCG)
Benchmark [23], arenownednewmetric forrankingHPCsys-
tems, designed to exercise computational, communication,

and memory access patterns which are frequently observed
in real-life applications, for example, with low compute-to-
data-access ratios.

In Figures 2(a) and 2(b), results of the HPCGmetrics are
shown in terms of weighted GFLOP/s (“HPCG score,” (a))
and power absorbed during the execution (b), which has been
measured using themultimeter system described in Section 3.

As is naturally expected, the absolute performances of
a high-end server are much higher. However, the situation
reverses itself when considering the power ratio.

�is holds true also for MATMUL, a home-made test,
written in C and parallelized with OpenMP, which performs
single-precision matrix multiplication using SGEMM func-
tion from the OpenBLAS library [24]. Figures 2(c) and 2(d)
show instead theGFLOP/s and absorbed power byMATMUL
for a size of the matrices equal to 4096.

We are currently investigating the weird behavior of the
Jetson TX1 board when MATMUL is executed in two cores
(see Figure 2(d)).
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We note that the Jetson TK1 board performs slightly
better than the newer JetsonTX1, although 32-bit architecture
is a signi�cant limitation and the somewhat higher clock
frequency explains its better performances.

In general, Jetson TX1 and N3700 boards, which are
already 64-bit platforms, seem to be very promising low-
power architectures. Interestingly, we notice that the perfor-
mances of the Xeon D-1540 platform resemble, and even
overtake, in the case ofMATMUL, those of a traditional high-
end server. �e nice performances of the Xeon D-1540 are
ascribable to the capacity of the SGEMM function to exploit
the FMA instruction, which is missing in the other boards.
However, power consumption is higher than the TDP (80W
versus 45W of TDP), both with and without turbo boost
enabled.

We are fully aware that comparing small low-power
boards andHPCnodes, usually equippedwith high-endGPU
boards, several disks, and large RAM, cannot be fully fair;
we also know that application spectrum running on HPC
nodes is not directly comparable with that running on small
development boards. However, we think that this compari-
son helps to highlight useful information about limits and
potentialities of low-power SoCs and processors and gives
interesting hints for further investigations in using this class
of computing systems for HPC workloads.

�e next section illustrates the results obtainedwithmore
realistic tests, that is, running on the COSA clusters several
applications taken from di	erent realms of science.

5. Applications

5.1. Lattice Boltzmann. Several �elds of computational �uid
dynamics are increasingly using Lattice Boltzmann Methods
(LBM) to study behavior of �ows and to solve numerically
the equation of motion of �ows in two and three dimensions.
�ese methods can be e
ciently implemented on computing
systems and are also able to handle complex and irregular
geometries as well as multiphase �ows.

LBM are discrete in position and momentum spaces and
are based on the synthetic dynamics of populations associated
with the edges of a discrete 2D or 3D lattice. At each time
step, populations of each site are propagated (i.e., copied from
the neighboring sites), and then incoming populations collide
among each other, mixing their values (i.e., new populations
values are computed from old ones and the neighbors ones).
See [25] for a deeper introduction.

LBM are labeled as����, where � represents the dimen-
sion, 2D or 3D, and � represents the number of populations
associated with each lattice site. Here, we consider the state-
of-the-art �2�37 model for simulation of two-dimensional
�uids with 37 populations per site. �is model correctly
reproduces the thermohydrodynamic equations of motion of
a �uid in two dimensions and also enforces the equation of
state for an ideal gas � = �	 [26, 27].

From a computational point of view, LBM are easy
to implement and a large degree of parallelism can be
exploited, making them suitable to run on state-of-the-
art multicore and many-core processors. �e most relevant
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Figure 3: �e 37-element stencil used for the computation of
propagate function in the D2Q37 LB code.

steps performed by a Lattice Boltzmann simulation are the
computation of the propagate and collide functions:

(1) propagate moves populations across lattice sites
according to the stencil pattern shown in Figure 3; it
collects at each site all populations that will interact
at the next phase: collide. Implementation-wise,
propagate moves blocks of memory locations allo-
cated at sparse memory addresses, corresponding to
populations of neighbor cells.

(2) collide performs all the mathematical steps associ-
ated with the computation of the collisional operator
and computes the population values at each lattice site
at the new time step. Input data for this phase are
the populations gathered by the previous propagate
phase.

�e D2Q37 LBM is more complex than simpler LB
models such as D2Q9 or D2Q17 because the propagate

function uses a fourth-order scheme ofmovements, exchang-
ing populations with neighbors up to distance 3 for each site.
�is translates into severe requirements in terms of mem-
ory bandwidth and �oating-point throughput. propagate
implies accessing 37 neighbor cells to gather all popula-
tions making this step mainly memory-bound. collide
requires approximately 7600 double-precision �oating point
operations per lattice site. collide exhibits a signi�cant
arithmetic intensity and is the dominating part of the overall
computation, taking roughly 90% of the total run-time.

�eD2Q37model has been implemented and extensively
optimized on a wide range of parallel machines like BG/Q
[28] as well as on a cluster of nodes based on traditional
commodity x86CPUs [29], GPUs [30–32], and Xeon-Phi [33,
34]. It has been extensively used for large-scale production
simulations of convective turbulence [35, 36].
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Table 2: Best EDP values, with corresponding energy-to-solution
and time-to-solution, running the collide kernel in single preci-
sion. Lattice: 128 × 1024.

Processor 
� [J] per iter. 	� [ms] per iter. EDP [J s]

GK20A 0.30 42 0.013

Cortex-A15 0.67 58 0.039

Cortex-A53 0.52 77 0.040

Performance and energy requirements of the propagate
and collide functions were estimated on several architec-
tures, measuring, respectively, the time-to-solution (	�) and
the energy-to-solution (
�).

5.1.1. Low-Power SoCs. Using the custom powermeter system
described in Section 3, 	� and 
� of the propagate and
collide functions have been measured while running on
the CPU and on the GPU of a Jetson TK1 [22]. Two di	erent
implementations have been used, a plainC one, usingARMv7
intrinsics (with ARM Cortex-A15 processor), and a CUDA
one (GK20A, the GPU component of the Jetson TK1 SoC),
respectively, for the CPU and GPU. Since on this board the
clock frequencies of both processors (andmemory too) could
be changed thanks to DVFS (Dynamic Voltage and Frequency
Scaling), both 	� and 
� vary according to these frequen-
cies. Several runs have been performed for every possible
clock combination showing the frequency optimization space
available on this SoC for both processors [22].

�e plain C code has been also ported to the ARMv8
architecture and run also on the Cortex-A53 hosted on a
HiSilicon Kirin 6220.

Several tradeo	 points between 
� and 	� can be identi-
�ed for each tested processor. Choosing a single metric, for
example, the EDP (Energy Delay Product), we can select an
optimal tradeo	 point and perform a comparison according
to it, as shown, for example, in Table 2 for the collide

function.

5.1.2. High-End System. Modern high-end architectures also
allow tuning processor clocks through DVFS. We have then
changed the clock frequency on computing elements, both
CPUs and GPUs, of the COKA cluster and read power values
related to processors with papi as described in Section 3. We
used di	erent code versions, optimized, respectively, for Intel
Xeon E5-2630 v3 CPU and for K80GPUs. For the latter, we
ran only on one GPU, out of the two hosted in a NVIDIA
Tesla K80 board. In this case, in order to run for a signi�cant
amount of time we had to use a larger lattice of 1024 ×
8192 points. Selecting best EDP values, we compare the two
architectures as shown in Table 3.

We also evaluated the energy-saving potential of DVFS
tuning for the full high-end HPC node, running a full Lattice
Boltzmann simulation code on 16GPUs. In this case, we
measured the power drain at the wall socket, performing the
readout from the power supplies through IPMI (Intelligent
Platform Management Interface). Results are reported in
Figure 4. As we see, changing the frequency from default to
732MHz has little to no impact on execution time but allows

Table 3: Best EDP values, with corresponding energy-to-solution
and time-to-solution, running the collide kernel in double preci-
sion. Lattice: 1024 × 8192.

Processor 
� [J] per iter. 	� [ms] per iter. EDP [J s]

Tesla K80 12.4 86.1 1.07

E5-2630 v3 54.6 603.9 32.97
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Figure 4: Energy consumption of a single node of the COKA cluster
for 10 k iterations of a D2Q37 Lattice-Boltzmann simulation, over
16384 × 8192 lattice points, using the 16 available GPUs. Energy
consumption is reported in Joule per iteration for the di	erent
possible GPU clock frequencies.

saving ≈7% of the total energy of the computing node. �e
reason for this is associated with the computational needs of
kernel functions executed by the application [37]. In fact, as a
general rule, the throughput of the processor should balance
that of the memory, and increasing the processor frequency
does not bring any bene�t if the application performance is
limited by memory accesses. More in general, it is possible
to decrease the processor frequency without impacting per-
formances (up to a threshold below of which the application
becomes compute-bound) for any code spending signi�cant
portions of its execution time in memory-bound operations
or waiting for communications and synchronizations.

5.2. LHCb So	ware. LHCb [38] is one of the four main
experiments collecting data at the LHC (Large Hadron
Collider), the world’s largest particle accelerator located at
CERN laboratory in Geneva. Its purpose is to investigate
b-hadron decays with high statistics and precision, aiming
mainly at the study of observables and rare decays violating
CP (C, charge conjugation, and P, parity symmetries). �e
combination of C- and P-symmetries is found to be violated
in several decay processes and among the others in the b-
quark hadron decays. Studying such decays will give precise
measurements of CP violating processes observables, which
furthermore may depend on new physics e	ects.

�e computing model of LHCb requires the reconstruc-
tion and analysis of simulated and real data. �e so�ware
stack consists of a group of packages for the generation of
simulated events and their reconstruction and analysis. Test-
ing the full so�ware stack on SoC architecture can provide
valuable hints for the evolution of the computing model
towards the third period of LHC data taking, due to start
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Figure 5: CPU time per event for the x86 architectures tested. (a) shows the results for the Gauss application, while (b) shows the Brunel
application.

in 2021. Simulating data is usually a CPU-bound task, given
the need to generate the events produced by the colliding
beams, the interaction with the detector of all the particles,
and the response of the readout electronics. In general, this
task is not IO-bound, whereas the data reconstruction, either
of real or simulated data, requires the access of data which are
geographically distributed in several storage areas.

In order to determine the performances of the various
available processors, we decided to set up a simulation task
using the LHCb application Gauss [39] and a reconstruction
task using the so�ware package Brunel [40], which takes the
raw detector data and builds physics objects starting from
kinematic quantities like tracks, vertexes, and particle iden-
ti�cation quantities. �e CPU and IO requirements of the
two applications are in general di	erent. With the evaluation
of the CPU performances and power consumption being the
purpose of these tests, we decided for the reconstruction task
to download the input �le in advance. Furthermore, since the
LHCb so�ware stack is compiled for x86 architectures, we
chose to run the tests on the following CPUs: Intel Pentium
N3700, Intel Avoton C2750, Intel Xeon D-1540, and Dual
Intel Xeon E5-2683 v3.

In Figure 5, the average timing per event of the four CPUs
is reported. �e histograms in (a) refer to the Gauss tests,
while the ones in (b) refer to the Brunel tests. Simulation
tasks usually take a small input �le and produce a much
bigger one (∼1 GB), whereas reconstruction tasks elaborate
the information of an input �le with an event-based data
structure. So the latter application reads the �le at each
iteration, hence requiring frequent access to the memory. As
is clear from Figure 5, the execution times for the simulation
task are strikingly di	erent, re�ecting the low pro�le of the
Intel Pentium N3700 with respect to the other architectures.
In particular, the CNAF HPC node is around 20 times faster
than N3700 for the Gauss simulation task (8 s versus 168 s)
and around 8 times faster (4 s versus 31 s) than N3700 for the
reconstruction task (Brunel). �e discrepancy in execution
time for the reconstruction task is mitigated by the memory
access.�us, for the application that requires memory access,
a low TDP solution could be pro�tably considered.

�en, Figure 6 shows the e	ects of taking into account
power consumption in order to compare architectures. �e
metric shown in the latter �gure includes both the execution

time and the absorbed power (since energy is the product
of the two), which has been measured using the multimeter
system described in Section 3.

Taking the energy per event as a reference metric, the
N3700 SoC is around 4.5 times more e
cient than the
CNAF HPC node for the simulation (Gauss) task (2.1 J
versus 9.4 J) and around 13.5 times more e
cient than the
CNAFHPC node for the reconstruction (Brunel) application
(0.002 J versus 0.027 J), con�rming and actually reinforcing
our statement above; that is, low-power CPUs such as the
N3700 are the best performing in case of not-negligible IO
applications.

Of course, it should be noted that many of these CPUs
would be required in order to provide the throughput needed
by LHCb, and we are planning to design a compact system
consisting of low-power CPUs and providing a throughput
comparable to a usual high-end server.

5.3. Neural Networks. Spiking neural networks play a dual
role, depending on the scale of the simulated models:
they contribute to a scienti�c grand-challenge, that is, the
understanding of brain activity and of its computational
mechanisms, and, by inclusion in embedded systems, they
enhance the ability of applications like autonomous naviga-
tion, surveillance, and robotics. �erefore, fast and power-
e
cient execution of spiking neural networkmodels assumes
a driving role, at the cross-road between embedded and high-
performance computing, shaping the evolution of the archi-
tecture of specialized and general-purpose multicore/many-
core systems. See, for example, the TrueNorth [41] low-power
specialized hardware architecture for embedded applications
and [42] about the power consumption of the SpiNNaker
specialized hardware architecture, based on the combination
of embedded multicores and a dedicated networking infras-
tructure. About the strategy based on more standard HPC
platforms and general-purpose simulators, see, for example,
[43, 44].

Indeed, the quantitative codesign of the EURETILE
many-tile execution platform and its many-process pro-
gramming environment [45] motivated INFN APE lab to
start the development of a Distributed Simulator of Spiking
Neural Network with Spike-Timing Dependent Synaptic
Plasticity (DPSNN-STDP) [46]mini-application benchmark.
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Figure 6: Energy consumption per event for the x86 architectures tested. (a) shows the results for the Gauss application, while (b) shows the
Brunel application.

Currently, the WaveScalES experiment in the Human Brain
Project uses this engine to simulate the activity of cortical
slow waves on high-resolution models of cortical areas,
including several tens of billions of synapses and the ExaNeSt
[15] project includes DPSNN in the set of benchmarks that
drive the development of future interconnects for platforms
including millions of embedded ARM cores.

In [47], a �rst comparison of the power, energy, and
speed of execution on ARM cores versus Intel Xeon quad-
cores is reported. �ere, DPSNN has been run on NVIDIA
Jetson TK1 boards (which include a quad-core ARM Cortex-
A15 @2.3GHz, 28 nm CMOS technology) and on clusters
mounting quad-core Intel Xeon CPU (E5-620 @2.4GHz,
32 nm CMOS). Here we extend the measures to the new-
generation NVIDIA Jetson TX1 SoC based on ARMv8 archi-
tecture. Jetson TX1 includes four ARMCortex-A57 cores plus
four ARM Cortex-A53 cores in big.LITTLE con�guration.
We havemeasured its performances in executing the DPSNN
code along with those of a coeval mainstream Intel processor
architecture using a hardware/so�ware con�guration suitable
to extrapolate a direct comparison of time-to-solution and
energy-to-solution at the level of the single core. �e energy
consumption has beenmeasured using themultimeter system
described in Section 3.

We have used a Jetson TX1 board and a Supermicro
SuperServer 7048GR-TR with two hexa core Intel E5-2620
v3 @ 2.40GHz as hardware platforms, and we have run four
MPI processes on both, simulating 3 s of the dynamics of a

network made of 104 Leaky Integrate and Fire with Calcium

Adaptation (LIFCA) neurons connected via 18× 106 synapses.
Results are shown in Figures 7 and 8 and can be summarized
as follows: although the x86 core architecture is about �ve
times faster than the ARM Cortex-A57 core in executing the
simulation, the energy it consumes to do it is about three
times higher than the energy consumed by the ARMCortex-
A57 core.

5.4. Computed Tomography. Among the various scienti�c
applications explored within the COSA project, X-Ray Com-
puted Tomography turned out to be a particularly well suited
case for the use of low-power SoCs, as described in [48].

X-ray Computed Tomography can be gainfully applied
to the �eld of Cultural Heritage in order to reconstruct the
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Figure 7: Time-to-solution for the DPSNN simulation on the x86
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internal structure of art objects in a noninvasive way for
both scienti�c investigations and restoration purposes. �is
is typically both time-consuming and power-consuming;
also, in most situations, executing the reconstruction so�-
ware directly where and when the X-ray measurements
are acquired is infeasible. Hence, the possibility of running
the reconstruction algorithm on a mobile, possibly battery-
powered, device is particularly appealing.
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Figure 9: Slices per second (a) and per Joule (b) of OpenMP and CUDA versions of the Filtered Backprojection algorithm executed on
traditional high-end Xeon architecture (red) and on Jetson TK1 board (blue). �e rightmost bar shows the combined GPU + CPU solution
on Jetson TK1; that is, only 3 CPU threads are used for the OpenMP version. Otherwise, the OpenMP version uses all the available threads,
that is, 24 threads on Xeon and 4 threads on Jetson TK1.

For our study, we have considered the C and MPI Fil-
tered Backprojection algorithm for Computed Tomography
reconstruction [49] developed by the X-ray Imaging Group
of the Physics and Astronomy Department at the University
of Bologna [50]. �e Filtered Backprojection algorithm is
heavily used in 3D Tomography reconstruction, and perfor-
mances can be easily measured in terms of 2D slices (of a 3D
volume) reconstructed per time unit and per energy unit.

We have exploited the Graphics Processing Unit (GPU)
of the Jetson TK1 SoC, available in the COSA cluster located
at CNAF, and maximized the simultaneous use of CPU and
GPU by combining a multithreaded OpenMP version and a
GPU-CUDA version of the reconstruction algorithm, which
have been executed in parallel on the SoC. We ran the
OpenMP and CUDA implementation in two di	erent SSH
sessions at the same time on the same platform.We have used
threeOpenMP threads for theCPU implementation, running
on three of the four available cores, and one thread for the
CUDA implementation, running on the fourth core.

Figure 9 compares the numbers of slices per time unit
(a) and per energy unit (b) reconstructed using the CPU
(OpenMP version) and the GPU (CUDA version) on a Jetson
TK1 SoC and on the reference Xeon server equipped with
a NVIDIA K20 GPU for a characteristic image from the
considered dataset (we refer the reader to [48] for more
details). Power consumption has been measured using the
multimeter system described in Section 3.

In [48], we showed that only three Jetson K1 boards
equipped with Giga Ethernet interconnections allow recon-
structing as many 2D slices (of a 3D volume) per unit time as
a traditional high-performance computing node, using one
order of magnitude less energy.

It is important to note that the reconstructed images have
been always compared in terms of pixel-by-pixel standard
deviations with the image reconstructed using the original,
serial code to check the correctness of the reconstruction
process. �erefore, our results seem to be very promising in
view of the construction of an energy-e
cient computing
system of a mobile tomographic apparatus.

5.5. Einstein Toolkit. �e scienti�c problem considered in
this application is a high-resolution simulation of inspiral
and merger phase of binary neutron star systems, which
are among the most likely sources of gravitational waves
targeted for detection by LIGO/Virgo [51–53].�e numerical
setup of the test is based on the Einstein Toolkit (ET)
Consortium code [54], which performs the time evolution of
matter coupled to Einstein’s equations (General Relativistic
Hydrodynamics), and it is the same as that used in production
setting and described in detail in [55].

�e numerical complexity of the code re�ects the need to
compile the whole Einstein Toolkit [56], which is an open set
of over 100 components (Cactus thorns) for computational
relativity and consists of 1000 source �les written in C,
C++, F77, and F90 that implement OpenMP parallelism and
MPI distribution of execution and partition of workloads
and memory allocations. In this setting, the following are
included:

(i) Cactus framework for parallel high-performance
computing

(ii) Mesh re�nement with Carpet

(iii) Matter evolution with GRHydro [57]

(iv) Metric evolution usingMcLachlan BSSN evolution of
the matrix

(v) Initial data computed using the LORENE CODE.

Simulations based on this framework are routinely exe-
cuted on all the major HPC systems and the basic perfor-
mance test reported here refers to the “Galileo” Tier-1 HPC
system. Galileo is located at the CINECA HPC center in
Bologna [58] and is partially �nanced by INFN. On this
system, we performed scaling reference test (see Figure 10)
using di	erent resolutions, ranging from 0.75 to 0.09375
(corresponding to 1100m to 138m). In order to perform a
simulation of 30ms of physical time, using resolution �� =
0.25 (the �nest grid), a production run on Galileo requires a
week on 256 cores and allocates 108GB of physical RAM on
the system.
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�e code has been successfully compiled and run on
several COSA boards. �e ET “Hilbert” (ET 2015 05) stable
release has been compiled on all the four considered COSA
platforms and the binary codes have been executed using par-
allel distribution with the MPI and OpenMP programming
paradigms. �is is very good news, as it shows that the so�-
ware environment available on the considered architectures
is enabled to run actual HPC applications.

�e second objective has been the evaluation of the
performance that the SoCs are able to deliver on this real
simulation case. Due to the memory constraint of the COSA
platforms, we had to impose additional symmetry and a very
coarse resolution (�� = 0.75) in order to limit memory
con�guration below 2GB. We evolved the system on a
con�guration with cubic multi-Grid mesh with �ve levels of
re�nement and we performed 800 time evolution steps.

In Figure 11, the performances of the tested systems are
shown on a single node in order to avoid possible e	ects
of the communication network in place. All the available
cores have been allocated with only MPI processes or only
OpenMP threads or mixed processes and threads. �is gives
an assessment of the CPU speed and intranode performance,
which are consistent with respect to the relationship between
the peak performances of the di	erent cores.
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Figure 12: Simulation on Galileo and COSA architectures, with
resolution �� = 0.75.

�e internode communication has been stressed by scal-
ing from 1 to the maximum number of available nodes (see
Figure 12). �is procedure shows the possibility to scale and
distribute the workloads between di	erent nodes, but since
the communication in the COSA CNAF cluster is based on
Ethernet technology instead of high-speed interconnection
technology (like In�niBand on Galileo), the plots show
poor scalability and con�rm that high-speed communication
between nodes should be adopted in order to use such system
for real HPC applications.

5.6. Bioinformatics. We have also tried to run on the COSA
CNAF cluster a few signi�cant applications from the Bioin-
formatics realm, as described in [59]. In the tests described
below, power consumption has been measured using the
multimeter system described in Section 3.

First, we have considered GROMACS (GROningen
MAchine for Chemical Simulations, [60]), free, open-source
so�ware formolecular dynamics simulations usedworldwide
to simulate the Newtonian equations of motion for systems
with hundreds to millions of particles, for example, proteins
or polymers. GROMACS is written in ANSI C, and both a
parallel version using standard MPI and a GPU accelerated
version using CUDA are available.

�e porting of GROMACS version 5.1 to Jetson TK1
platform has been easy, and simulations of a real-life use
case (approximately 55000 atoms) have been run using 32
cores, that is, 8 Jetson TK1 boards connected through 1Gbit/s
Ethernet and CPU + GPU on a single node. In the CPU-only
multicore mode, the SoC was proven to be ten times slower
than the reference high-end server equipped with two Intel
Xeon E5-2620 v2 CPUs. However, it is slightly better in terms
of power ratio. Instead, for the CPU + GPU run on just one
node, the Jetson TK1 is only 5.5 times slower but 6.6 times
more power-e
cient.

Furthermore, we ported a space-aware system biology
stochastic simulator to the newer Jetson TX1 boards. �e
considered simulator couples Dynamical Probabilistic mem-
brane systems [61] with a modi�ed version of the -leaping
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stochastic simulation method [62, 63], which takes into
account size and volumes of objects in crowded systems and
allowsmodeling biochemical systems executing thousands of
simulations in parallel.

Again, the porting of the S-DPP algorithm to low-
power Jetson TX1 boards has been straightforward, and com-
puting performances are satisfying (2-3 times slower than
the reference high-end Xeon servers), with 10 times lower
power consumption. As is the case with all the considered
applications, performances become poor when attempting
real multinode runs due to the high network latency of the
interconnection.

6. Conclusions

In this paper, we have presented the results coming from
the COSA (Computing On SOC Architecture) project, aim-
ing at investigating novel hardware platforms and so�ware
techniques that can be exploited to realize energy-e
cient
computing systems for scienti�c applications. �e hardware
platforms taken into consideration are those with high ratio
of �op per watt. We have considered standard multicore and
many-core devices such as CPUs and GPUs and System on
Chip (SoC) developed for the mobile and embedded realms.
�ese sectors and the HPC world have historically been very
isolated, but we are now experiencing very important conver-
gence between the twomarkets.�is is true forwhat concerns
constraints (i.e., energy-e
ciency) and needs (i.e., computing
power). �e COSA project is investigating the possibility
to exploit this convergence to increase performance/power
ratio in computing systems running scienti�c applications.
Porting real-life applications from various scienti�c �elds to
low-power Systems on Chip architectures derived from the
embedded and mobile markets is one of the main objectives
of the project. Hardware platforms based on both Intel and
ARM architectures have been considered and benchmarked
with synthetic tests and real-life applications belonging to
various scienti�c �elds, ranging from High Energy Physics
to Biomedicine,�eoretical Physics, Computer Tomography,
and Neural Network simulations.

�e results of our work show that it is now actually
possible, and in some cases even very easy, to compile and
run complex scienti�c workloads on low-power, o	-the-
shelf devices not conceived by design for high-performance
scienti�c applications.

For certain applications, the computing performances
are satisfying and even comparable to those obtained on
traditional high-end servers, with much lower power con-
sumption, in particular if the GPU available on SoCs is
exploited.

Comparing high-end HPC servers with development
boards hosting low-power Systems on Chip taken from the
mobile and embedded world is clearly not fair if only energy
aspects are taken into account. In fact, there are workloads
that simply cannot be run on o	-the-shelf hardware and
embedded platforms, but, nevertheless, thework presented in
this paper showed that, for certain applications, even parallel
applications, the use of low-power architectures represents a
feasible choice in terms of tradeo	 between execution times

and power drain. However, the high-end platforms are still
capable of better absolute computing performance. Among
the limitations that low-power SoCs-based platforms still
show, we can list the following: small maximum RAM size,
high latency of the network connections, few and small PCI
slots, and missing support for ECC memory. For all these
reasons, o	-the-shelf systems can hardly be used for extreme
scale applications and highly demanding HPC computations;
anyhow, our experience shows that systems based on low-
power SoCs can be a viable solution to reduce power
consumption if a proper integration is carried on. Indeed, the
exploitation of this kind of hardware in a production environ-
ment requires by de�nition many nodes to be integrated, and
the costs of such integration should be carefully analyzed and
taken into account when making comparisons with standard
architectures systems. �e analysis of this integration cost is
out of the scope of this paper and is demanded to a future
work.

In general, performances become poor when attempting
real multinode runs on platforms without native Ethernet
connections. Some of these platforms, in fact, implement the
network connections through slow USB-Ethernet bridges.
However, almost all the SoCs under evaluation provide
PCI lanes that, if supported by motherboards with proper
connectors, can be exploited to install low-latency cards
allowing for network performances comparable to those
obtained in standard high-end servers. However, to further
improve the network performance of SoCs-based system, the
project is also investigating the adoption of custom toroidal
interconnections prototyped with state-of-the-art FPGAs.

As for high-end platforms, whenever the scienti�c work-
loads succeed in exploiting the large number of graphics cores
available in the SoCs, it is possible to obtain good speed gains
and increase in computing power perwatt.�is is true also for
the considered applications and in particular for those that we
have been able to run on the NVIDIA Jetson platforms (both
TX1 and TK1) exploiting the CUDA environment.

Another research line that the project is investigating to
reduce energy consumption of HPC application runs does
not focus on hardware but on so�ware. Modern operating
systems, in fact, allow controlling the performance of various
hardware components (i.e., tuning the RAM bus and CPU
and GPU clocks) with libraries calls and APIs. Our results
show that, if properly instrumented to reduce the GPU
frequency when executing certain functions, the considered
application can save ≈7% of the total consumed energy
without impacting performances.

In the future, the COSA project will continue to analyze
real-life applications performances on novel architectures,
from both low-power and high-end ecosystems, including,
for example, the recently released Intel Knights Landing
many-core systems. In particular, for the low-power plat-
forms, the performances of clusters with low-latency inter-
connections will be explored.
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