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ABSTRACT Convolutional Neural Network (CNN) has attained high accuracy and it has been widely

employed in image recognition tasks. In recent times, deep learning-based modern applications are evolving

and it poses a challenge in research and development of hardware implementation. Therefore, hardware

optimization for efficient accelerator design of CNN remains a challenging task. A key component of the

accelerator design is a processing element (PE) that implements the convolution operation. To reduce the

amount of hardware resources and power consumption, this article provides a new processing element

design as an alternate solution for hardware implementation. Modified BOOTH encoding (MBE) multiplier

and WALLACE tree-based adders are proposed to replace bulky MAC units and typical adder tree

respectively. The proposed CNN accelerator design is tested on Zynq-706 FPGA board which achieves

a throughput of 87.03 GOP/s for Tiny-YOLO-v2 architecture. The proposed design allows to reduce

hardware costs by 24.5% achieving a power efficiency of 61.64 GOP/s/W that outperforms the previous

designs.

INDEX TERMS Convolutional neural network, booth encoding multiplier, WALLACE tree adders, FPGA,

adder tree, object detection.

I. INTRODUCTION

DEEP learning evolves from machine learning and it

is quickly becoming an essential part of daily life.

A deep convolutional neural network is a part of deep learn-

ing and it facilitates to resolve many complex image-related

tasks [1]–[3]. It has been successfully applied in a wide

range of applications that include classification, speech

processing and recognition, and object detection [4]–[6].

Moreover, deep learning is also becoming a potential solution

for many industrial applications. These applications include

autonomous vehicles, smart robots and camera technologies,

and surveillance [7]–[10]. GPUs, FPGAs, and ASICs are

used to implement the CNN accelerator design. GPUs have

the advantage of design flexibility, but are energy ineffi-

cient and usually require a long execution time. The ASICs

consume less power than the GPUs, but the flexibility is

sacrificed, and the implementation cycle is quite long in

consideration of the chip fabrication. In comparison with

GPUs and ASICs, FPGAs have a good trade-off in terms of

design flexibility, the implementation cycle, and the power

consumption. FPGAs can be reconfigured depending on

the application requirement. The FPGA designs can also

be easily converted to ASIC designs. In recent times, the

benefits of FPGAs in energy-efficiency, reconfigurable archi-

tecture, and customizable features draw the attention of many

researchers to put their focus on FPGA based accelerator
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design. However, it remains a challenge to develop a hard-

ware design of CNN accelerator for energy and area efficient

systems.

FPGA becomes a suitable candidate as compared to GPU

to implement the CNN accelerator [11]–[15]. However,

FPGA has a limited number of hardware resources like MAC

units and on-chip memories. Therefore, there is a need to

find an efficient method to overcome these problems. Over

the years, optimizing the CNN design on FPGA has been

presented by many researchers [16]–[18]. Limited MAC units

on FPGA caused a problem to perform convolution [14]. If

a direct hardware mapping of CNN on FPGA is required,

DSP blocks became the bottleneck [19]. To implement

convolution on FPGA, multi-operand adders are equally

important as much as MACs. Consider the direct hard-

ware mapping on FPGA, 69% of the logic is consumed

in first convolution layer by multi-operand adders [20]. To

overcome the limitations of MACs, an optimization strat-

egy based on the WALLACE tree multiplier was proposed

as an alternate solution to power and area hungry MAC

units [21]. Time-multiplexed serialization and approximate

computing techniques were employed to counter multi-

operand adders (MOAs) but failed to achieve expected

results [20]. WALLACE tree adders provided an alternate

solution to MOAs [22].

The CNN structure typically contains multiple operations.

However, convolution is the most expensive computation

engine of CNN in order to implement on hardware like

FPGA. Its complexity can be determined by the fact that

more than 90% of the computational time is consumed by

convolution [23]. Convolution process is based on the 3-D

multiplication and addition of input feature maps (or chan-

nels) Nc with Nk convolution kernels Kx×Ky and it can be

represented as (1) [22]:

O(n, u, v) =

Nc
∑

i

Kx
∑

x

Ky
∑

y

I(i, s× u+ x, s× v+ y)

× W(n, i, x, y) (1)

The output feature map is obtained after convolution (dot-

product) of the input feature map with the kernel weights and

multipliers are used to perform this task. After multiplica-

tion, the outputs are given to the next stage of the adder tree

to perform the addition on intermediate results. The pseu-

docode for the convolutional layer is shown in code 1. From

pseudocode 1, it is evident that convolution consists of four

levels of loops that slide along both kernel and feature maps.

Therefore, it resulted in large design space to find a solution

to implement parallelism, sequencing of computations, and

divide the large data into smaller data sets to accommodate

into built-in memory. Loop optimization techniques such as

loop unrolling, tiling, and interchange helped to handle these

problems [18].

The basic entity of the CNN accelerator is a processing

element (PE) that performs the convolution task. In this work,

a modified Booth encoding (MBE) algorithm is proposed

FIGURE 1. System Architecture.

Code 1 The Pseudocode for a Convolutional Layer

1 for(r = 0; r < R; r + +) {

2 for(c = 0; c < C; c+ +) {

}

——————————−→ Loop-4

3 for (no = 0; no < M; no+ +) { ———————-−→ Loop-3
4 for (ni = 0; ni < N; ni+ +) { ———————-−→ Loop-2
5 for (x = 0; x < K; x+ +) {

6 for (y = 0; y < K; y+ +) {

}

—————-−→ Loop-1

out_fmap[no][r][c] + = weight[no][ni][x][y]*
in_fmap[ni][S*r + x][S*c + y];

}}}}}}

and implemented to perform multiplication. Similarly, a deep

binary adder tree is replaced by the WALLACE tree-based

adders. The key benefits to achieve from proposed design are

high power efficiency and low hardware cost. Therefore, the

proposed PE based on MBE multiplier with WALLACE tree

adders has the advantage of low power consumption with

the reduced hardware overhead. The main contributions of

this work are summarized as follows:

1. Due to constraints of computational resources,

optimization for CNN accelerator design is performed

based on uniform loop unrolling and tiling for convo-

lution layers.

2. Replacing the MAC unit with an MBE multiplier to

overcome the problem of bulky MACs. The different

designs of MBE are implemented:

a. With a sign extension logic in the generation of

partial products.

b. To overcome the challenge of sign extension,

sign extension elimination is applied. As a result,

a correction vector is generated and it helps to

save hardware resources that are occupied by sign

extension logic.

c. WALLACE reduction using carry-save

adders (CSAs) are designed to reduce the

partial products.

3. WALLACE tree-based adders are proposed to replace

the MOAs that consume most of the logic and area.

The proposed architecture is implemented and tested for

object detection task and achieves the power efficiency of

61.64 GOP/s/W. The LUTs consumption of proposed PE

unit is reduced by 29.5%, power consumption is improved to

22.1%, and the overall system’s hardware reduction attained

by 24.5% that outperforms the previous approaches.
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Code 2 The Pseudocode for a Proposed Accelerator Design

1 for (r = 0; r < R; r+ = Tr) {
2 for (c = 0; c < C; c+ = Tc) {
3 for (no = 0; no < M; no+ = Tm) {
4 for (ni = 0; ni < N; ni+ = Tn) {
5 for (x = 0; x < K; x+ +) { On-Chip data computation
6 for (y = 0; y < K; y+ +) {
7 for (nrr = r; nrr < min(r + Tr,R); nrr + +) {
8 for (ncc = c; ncc < min(c+ Tc,C); ncc+ +) {
9 for (noo = no; noo < min(no+ Tm,M); noo+ +) {
10 for (nii = ni; nii < min(ni+ Tn,N); nii+ +) {

out_fmap[noo][nrr][ncc] + = weight[noo][nii][x][y]*
in_fmap[nii][S*nrr + x][S*ncc + y];

}}}}}}}}}}

The rest of the paper is organized as follows. In Section II,

the proposed CNN accelerator design overview, memory

organization, and prior works on multipliers are presented.

The proposed PE unit based on MBE multiplier with

WALLACE tree-based adders is described in Section III.

Experimental results and discussion are in Section IV

followed by a conclusion in Section V.

II. SYSTEM ARCHITECTURE AND OVERVIEW

The accelerator design for the inference phase of CNN con-

sists of computation engine, on-chip memory buffers, and

off-chip memory. Computation engine contains processing

elements (PEs) and it is the main core of the CNN accel-

erator to perform convolution task. The required data for

PEs are stored to on-chip memories after fetching from the

external memory.

A. ACCELERATOR DESIGN OVERVIEW

The system architecture of the CNN accelerator is shown

in Fig. 1. A CNN accelerator design on FPGA consists

of several major components like computation engine, on-

chip buffers, interconnects, memory controllers, and off-chip

memory. The data need to be processed are stored in exter-

nal memory. There are limitations of on-chip memory and

therefore, data is first stored in on-chip buffers and then

transferred to the PEs. In this work, optimization is per-

formed for a computation engine of accelerator design and

an optimized PE is implemented and used for a proposed

design.

B. PROCESSING ELEMENT

The main computation part of CNN accelerator design is

PE. In PE, convolution is performed on the input feature map

with the shifted window of K×K kernel to generate one pixel

in an output feature map. For CNN accelerator design, there

are many potential solutions that can be explored to reduce

the hardware implementation cost. Loop transformation tech-

niques like loop unrolling, loop tiling, and loop interchange

are used to optimize the computation of convolution layer

to efficiently use the FPGA hardware resources [18].

Due to limited resources on FPGA, the whole convolu-

tion cannot be performed at once. Therefore, an idea of

loop unrolling is employed to increase the utilization of

FPGA computational resources. With the idea of loop tiling,

FIGURE 2. The computation engine of CNN.

convolution is cut into slices and each slice performing

the convolution [14], [18]. Therefore, it helps in effectively

using the limited on-chip memory because FPGA has a lim-

ited memory to store the data. Loop interchange determines

the computation order of the four loops as shown in pseu-

docode 1. There are two types of loop interchange technique

called inter-tile and intra-tile. Inter-tile loop order determines

that how data moves from external memory to on-chip and

intra-tile tells how data moves from on-chip buffers to PEs.

The pseudocode of the proposed accelerator design is shown

in code 2. Similarly, tile sizes for pseudocode 2 are given

below:

0 < Tn× Tm ≤ (# of PEs)

0 < Tm ≤ M

0 < Tn ≤ N

0 < Tr ≤ R

0 < Tc ≤ C

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(2)

where M = Number of output feature maps; N = Number of

input feature maps; R = Row, C = Column, <Tm,Tn> =

Unroll factor. The generated hardware using the pseu-

docode 2 is shown in Fig. 2.

The data reuse principle is applied for input feature map

and kernel weights are updated online. Because of the lim-

ited hardware resources on FPGA, <Tm,Tn> = <16, 16>

unroll factor is adopted. The computation engine is imple-

mented in a tree-shaped poly structure and 16 inputs are

coming from the input feature map and kernel weights.

To unroll the loop Tm, 16 poly structures are duplicated.

The total number of PEs in proposed accelerator design

are 16. The processing element is shown in Fig. 3 and it

can be observed that 16 inputs from input feature map and

kernel weights are convolved to produce output. Therefore,

a total of 16 multipliers and 15 adders are utilized to perform

convolution operation in each processing element.

To implement hardware on FPGA, the performance of

two different approaches of implementation can be 90% dif-

ferent from each other [18]. CNN accelerator design may

require hundreds to thousands of hardware MAC units on

FPGA. It creates a problem considering the computation cost
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FIGURE 3. Hardware mapping of processing element for convolution layers.

FIGURE 4. (a) Convolution graph (b) On-chip memory organization (Tn = Tm = 16).

on FPGA because MAC units are limited in number and also

consume area and power [24].

Similarly, there is another bottleneck in convolution is the

use of a deep binary adder tree to perform the addition.

If we are going to implement the full hardware mapping

of the convolution layer, it requires NcKxKy − 1 binary

adders on FPGA after the multiplication phase as represented

in (1). The complexity of the adder tree can be realized

such that only the first layer of AlexNet consumes 69%

of resources [20]. Therefore, an optimization is required to

replace the MAC units and adder tree structure. The main

objectives are to reduce the amount of hardware resources

TABLE 1. Comparison of required number of PEs and on-chip data storage.

and make system energy efficient. In this design, multipliers

are going to be replaced by a modified Booth encoding algo-

rithm. Similarly, a typical binary adder tree is replaced by

WALLACE tree-based adders.

C. MEMORY ORGANIZATION

The convolution graph is shown in Fig. 4 (a). The input

feature maps N are convolved by a shifting window of K×K

kernel weights to generate one pixel in an output feature map.

The stride of the sliding window is S which is normally

smaller than K. M output feature maps will form the set

of input feature maps for the next layer. Therefore, memory

structure is designed based on the sizes of input feature maps,

output feature maps, and the number of kernel weights.

The convolution operation requires frequent switching

of different input features and convolution kernels, which

results in great data access pressure. To lower the cost of

data access from external memory, increase data reuse, and

to adjust the dataflow between the adjacent levels of memory

hierarchy, loop unrolling, loop tiling and loop interchange

are applied to customize the computation and communica-

tion patterns of the accelerator with three levels of memory

hierarchy. As a result, the number of computational units

that can be used simultaneously on an on-chip calculation

is significantly increased, at the cost of only increasing the

amount of data that is stored on-chip each time. Table 1

shows the comparison before and after the optimizations

applied.

From (2) unroll factor is selected as <Tm,Tn> =

<16, 16>. Therefore, after selecting this unroll factor, the

PEs can be implemented simultaneously from 1 to Tn × Tm
as shown in Table 1. The computation engine is imple-

mented in a tree-shaped poly structure as discussed in

the previous section and shown in Fig. 2. In Table 1,

consider Win = ((Tr − 1)S + K)((Tc − 1)S + K)Tn and

Wweight = Tn × Tm × K × K are the buffer sizes of memory

accesses to input feature maps and kernel weights respec-

tively. With specific tile size selection <Tm,Tn,Tr,Tc>, the

number of memory accesses is changed from 2 × N × K

× K to Win +Wweight.

In FPGA, block RAM (BRAM) comes as a single port or

dual port. It means that one value can be accessed at a sin-

gle clock cycle. However, it is not feasible for a design like

CNN. In our proposed system, multi-dimensional memory

mapping is designed to facilitate the access of multiple

data simultaneously. Fig. 4 (b) shows the memory orga-

nization and it consists of input buffers, output buffers, and

weight buffers. Each buffer set contains independent buffer

banks. The number of input buffer banks is equal to Tn and
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FIGURE 5. The parallel structure of proposed CNN accelerator design and a PE unit.

output buffer banks are equal to Tm as shown in Fig. 4 (b).

The weight buffers contain multiple memories in a group

and the data is arranged according to computation required

to be performed as depicted in Fig. 2.

FPGA receives data from external DDR memory on the

AXI interface. DMA is controlling the flow of data between

external memory and on-chip memories. The commands

from the processing system (PS) are issued to the pro-

grammable logic (PL) using the AXI-Lite interface and the

internal controller is controlling the flow of data depending

on the commands which are received. In order to exchange

data effectively, Ping-Pong memory mode is applied for input

and output buffers. The data flow and parallel structure of

CNN accelerator design is represented in Fig. 5. It can be

observed that PE is taking the parallel inputs from feature

maps and kernel weights buffers to perform the convolution.

Furthermore, three stages of pipelining are implemented in

each PE unit to optimize the calculation order.

D. ACTIVATION FUNCTION AND POOLING LAYER

In CNN architecture before the pooling layer, activation func-

tion is applied to transform the input. The purpose of the

activation function is to introduce non-linearity. Many acti-

vation functions are used in CNN architecture like Sigmoid,

Tanh etc. However, in this accelerator design, Leaky ReLU

is applied. The benefit of leaky ReLU is that it can help to

prevent the neurons from dying during training.

The pooling layer is employed to reduce the dimensions

of feature maps. It helps to reduce the computations in the

network and also discard the unnecessary information. Max-

pooling and average-pooling are typical pooling functions.

In this proposed design, max-pooling is used as shown in

Fig. 5.

E. BATCH NORMALIZATION

It is known that batch normalization offers many differ-

ent improvements. For example, it can help in speeding

up the training time. It has been observed that the batch

normalization improves the accuracy of the network over

that of the one without using the batch normalization, for

typical YOLO networks. However, it is not necessary to

use the batch normalization for a small network like tiny-

YOLO-v2 to speed-up the feedforward path [25]. Therefore,

in the proposed accelerator design, batch normalization is not

implemented.

F. PRIOR WORKS ON MULTIPLIER DESIGN

Convolution is multiplication or dot-product of input feature

maps and kernel weights. To implement the convolution,

MAC is necessary to perform multiplication. However, the

MAC unit has a problem with consuming area and power. It

contains a multiplier and accumulator, and each multiplier on

FPGA or ASIC costs a large number of logic gates and high

power [26]. To implement parallel multipliers, it consists

of three operations such as partial product generation, par-

tial product reduction, and final addition by carry propagate

adder (CPA) [27].

To multiply two L bit numbers a and b, the partial products

can be generated either by using an ANDing operation or

by implementing a modified Booth encoding algorithm [28].

The first method generates partial product PPL by ANDing

each bit bL of the multiplier with all the bits of the mul-

tiplicand a. Fig. 6 shows the generation of partial products

using ANDing operation.

After the generation of partial products, there is a need to

reduce the PPs efficiently. Considering a L1 ×L2 multiplier,

different techniques are used to reduce L1 layers of the partial

products to two layers for their final addition using any CPA.

WALLACE reduction is one of the most commonly

adopted schemes to reduce layers of partial products.

1) WALLACE TREE MULTIPLIER

In previous work [21], the WALLACE tree

multiplier (WTM) was proposed to replace the MAC

unit as shown in Fig. 7. In this design, the input fea-

ture map and kernel weights are coming as an input to
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FIGURE 6. Generation of partial products using ANDing operation.

FIGURE 7. WALLACE tree multiplier (WM) for CNN accelerator.

this multiplier. To generate the PPs, ANDing operation

is performed as shown in Fig. 6. After generating the

partial products, the WALLACE tree reduction is applied

to produce the final product. To further simplify the

design, combinational logic is used to implement the full

adders (FA) and half adder (HA) which are based on the

CSA technique depicted in Fig. 7.

For a L × L multiplier, L numbers of PPs are gen-

erated. For example, 16 number of partial products are

generated for a 16-bit multiplier. Therefore, it consumes

an effective hardware and there are six FA adder delays

in its path [21]. Reducing the number of PPs is another

optimization technique. There is a need to replace the

WALLACE tree multiplier with a multiplier that generates

less number of PPs. MBE is such a multiplier design that

further reduces the number of PPs and as a result, con-

sumes fewer hardware resources compared to the WALLACE

tree multiplier. Therefore, the modified Booth encoding

multiplier is proposed and implemented to replace the

WALLACE tree multiplier.

2) MODIFIED BOOTH ENCODING MULTIPLIER (RADIX-4)

Consider A and B are k-bit and l-bit two’s complement

integers respectively:

A = −ak−1 · 2k−1 +

k−2
∑

i=0

ai · 2i (3)

B = −bl−1 · 2l−1 +

l−2
∑

j=0

bj · 2j (4)

Interestingly, the Booth encoding algorithm can be used

for two’s complement as well as unsigned multipliers [29]. It

TABLE 2. Radix-4 modified booth encoding and partial-product selection (j = 2α).

TABLE 3. Radix-4 modified booth encoding partial-product generation.

is to note that firstly “0” value is set for b−1 and appended to

the rightmost of B. Consider a multiplier for two’s comple-

ment, l should be even otherwise B is one-bit sign-extended

to ensure l is even. Similarly for unsigned, B is zero-extended

with one “0” for odd values of l to make it even and if it

is already even, B is zero-extended with two “0”s.

Since it is Booth encoded algorithm and B is encoded

from a group of three bits to two bits. For each

j ∈ {0, 2, 4, . . . , l− 2}, bj+1, bj and bj−1 are encoded to b′
α

which is a signed digit. α considered here is α = j/2 and

b′
α = −2bj+1 + bj + bj−1. Each PP is calculated by multipli-

cation of multiplier A and b′
α . The final product is computed

as follows:

P =

l/2−1
∑

α=0

Pα · 22α =

l/2−1
∑

α=0

A · b′
α · 22α (5)

Final Booth encoding and PP selection are summarized

in [30, Tab. 2].

The multiplicand A is copied if the partial product is +A

after doing encoding. Since each PP is generated using a pair

of 2 bits of the multiplier, the PP is shifted by two places

to the left. For a PP to be +2A, there will be a left shift of

one bit for multiplicand before selection. For the encoded

digit of the multiplier that is −A, the two’s complement of

the multiplicand is copied. For the last encoded of −2A,

the two’s complement of the PP is further shifted left by

one-bit position. PP generation is shown in Table 3 for each

selection. It is noted that there will be k + 1 bits in the PP

to compensate the left shift of A and if A is not shifted then

the extra bit will be sign extension. The value “0” is set

for correction bit Eα to perform addition or value “1” for

compensation of two’s complement. It is placed in the LSB

position of the PP.

Each PP is sign-extended and there is a need to eliminate

the sign extension logic. Sign extension logic is performed

by inverting the sign bit, a value “1” is added to the same
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TABLE 4. Radix-4 modified booth partial-product matrix, k = l = 6.

FIGURE 8. The MBE Multiplier.

column, and PP is extended by constant “1”s. Now to elimi-

nate the sign extension logic, all these “1”s are added offline

to form a correction vector (CV) [28]. The number of “1”s

can be reduced by pre-adding the constants [30]. The sim-

plified PP matrix is shown in Table 4 considering a 6 × 6

multiplier [31], [32]. In Table 4, the conventional modified

booth encoding algorithm generates L/2 + 1 number of PP

rows rather than L/2 because of extra correction bits which

are placed at the least significant bit position of each partial

product row for negative encoding as shown in Table 3.

III. PROCESSING ELEMENT BASED ON MBE

MULTIPLIER AND WALLACE TREE ADDERS

A new processing element based on MBE multiplier to

replace MAC unit and WALLACE tree adders as an alternate

solution for deep binary adder tree is proposed. The hard-

ware cost is reduced and high power efficiency is achieved

with the proposed methods.

A. MBE DESIGN FOR MULTIPLICATION

It is discussed that multiplication consists of three major

steps: 1) encoding and generating partial products; 2) reduc-

ing the partial products by reduction schemes (e.g., Wallace

tree [33], [34]) to final two rows; and 3) adding the remain-

ing two rows of partial products by using a carry propagate

TABLE 5. Height of WALLACE tree using (4:2) with parallel inputs.

adder to obtain the final product. In this proposed design,

the focus is on the first two-step to reduce hardware cost,

delay, and power consumption of proposed multiplier [35].

The MBE technique is widely applied in parallel multipliers

because it can reduce the number of PP rows to half and

thus reducing the size and enhancing the speed of reduction

tree [35]–[37]. The MBE multiplier block diagram is shown

in Fig. 8. Without error correction bits, the number of PPs

with sign extension logic will be L/2 and a simple accu-

mulation process can be used to generate the final product.

However, this technique costs more hardware resources and

power. The sign extension elimination logic is implemented

in our proposed design as described in Table 3. However, the

sign extension elimination generates one extra PP and num-

ber of PPs changes from L/2 to L/2+1 due to error correction

bits (as a CV) due to negation. Applying the WALLACE tree

reduction scheme after the generation of PPs with MBE can

further improve the multiplier delay [38]. The final product

is generated after the CPA.

Three MBE multiplier designs are implemented in this

work to replace the MAC units in CNN accelerator design

as shown in Fig. 9. Fig. 9 (a) shows the MBE multiplier

with sign extension is called hereafter as BMS and Fig. 9 (b)

shows the MBE multiplier with sign extension elimination

technique using a correction vector (BMSE). Fig. 9 (c) shows

the MBE multiplier and WALLACE tree for PPs reduc-

tion along with the sign extension elimination technique are

named as BMSEW. Therefore, an efficient BMSE multiplier

is selected for proposed PE unit considering power and

hardware consumption. It also consumes fewer logic gates

because no sign extension hardware is implemented in this

multiplier design.

B. ADDERS BASED ON WALLACE TREE REDUCTION

WALLACE tree is mostly used in multiplier architectures.

The objective is to reduce the layers of PPs generated during

multiplication. Carry save addition is applied in WALLACE

to avoid the carry propagation delay in its path. The PPs are
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FIGURE 9. Multiplier designs replacing MAC unit (a) MBE multiplier with sign extension (BMS) (b) MBE multiplier with sign extension elimination (BMSE) (c) MBE multiplier

along with WALLACE reduction for PPs with sign extension elimination (BMSEW).

TABLE 6. Tiny-YOLO-v2 architecture.

first reduced to two numbers using CSA tree then these two

numbers are added by CPA to get the final product. A reduc-

tion technique based on a (3:2) compressor using full adder

reduces three layers of PPs to two and (2:2) compressor

reduces two layers to two using half adder. WALLACE tree-

based adders using (3:2) and (2:2) compressors were used

to replace the typical binary adder tree [22]. As a result,

it reduces LUTs consumption and improves the propaga-

tion delay. Although the (3:2) compressor is well known

but in research, many higher-order compressor designs have

been proposed to further reduce the area, power, and delay

characteristics [39].

In this article, (4:2) compressor is selected to further

improve the system performance compared to [22]. The

internal structure of the exact (4:2) compressor is shown

in Fig. 10 (a) and it consisted of two full adders connected

serially. The three outputs of this design are given below:

Cout = (x1 ⊕ x2)x3 +
(

x1 ⊕ x2
)

x1 (6)

sum = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ Cin (7)

carry = (x1 ⊕ x2 ⊕ x3 ⊕ x4)Cin+
(

x1 ⊕ x2 ⊕ x3 ⊕ x4
)

x4

(8)

FIGURE 10. (a) Structure of (4:2) compressor. (b) Optimized implementation of

exact (4:2) compressor.

The optimized implementation of the exact (4:2) compressor

design using XOR-XNOR gates is shown in Fig. 10 (b) [40].

It is based on three XOR-XNOR gates (represented as

XOR*), one XOR and two 2-1 MUX. Consider the unitary

delay of � by any gate then (4:2) compressor has a delay

of 3� giving the delay of 1� less compared to the con-

ventional implementation [40]. Applying this structure into

WALLACE tree adders, each level of a tree with (4:2) com-

pressor reduces the number of operands by a factor of 2.

This reduction continues until we get the final two rows.

The height of a tree can be represented as:

h(4:2)(n) =
[

log2(n/2)
]

(9)

where h(4:2)(n) is the height of an adder tree for n-number

of parallel inputs after multiplication. The height of this

reduction tree of WALLACE based on (4:2) compressor for

parallel inputs are shown in Table 5. If we compare the

two compressor designs in terms of LUTs consumption, the

WALLACE adders based on (4:2) compressor in the first

stage of adder tree in PE unit consumes only 176 LUTs as

compared to 188 LUTs based on (3:2) compressor in [22].

A new PE unit based on MBE multiplier and WALLACE

tree-based adders using (4:2) compressor is presented in

Fig. 11. Previously, the WALLACE tree multiplier was used

to perform the convolution of input feature maps and con-

volution kernels [21]. In this work, the MBE multiplier is

proposed and implemented to replace the WALLACE tree
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FIGURE 11. The final proposed design for the PE unit that will replace the old PE

units in CNN accelerator design.

FIGURE 12. Propagation delay of different multiplier designs.

multiplier due to hardware overhead, power consumption,

and a long delay in its path. It will also avoid the usage

of bulky MACs. As a result of multiplication, 16 outputs

are generated. These parallel outputs become the inputs of

WALLACE tree adders (WAT). Each PE unit produces a par-

tial sum after the process of multiplication and addition

performed by WAT.

In the next section, the discussion and results are presented

about the overall system performance with the previous

approaches.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this article, Xilinx Zynq706 (XC7Z045 SoC) board is used

for the evaluation of a proposed design and Verilog HDL

is adopted to implement the architecture. Behavioral simu-

lation is performed with ModelSim SE 10.5, synthesis and

implementation is done with Vivado 2015.4. The proposed

design is based on pure RTL design flow and it does not

use the HLS flow. As a result, hardware optimizations are

performed by implementing our soft IP design using RTL

written in Verilog HDL.

A. NETWORK ARCHITECTURE

In order to test the performance and efficiency of the

proposed architecture in deeper networks, Tiny-YOLO-

v2 architecture is used. It consists of 9 convolution layers

FIGURE 13. Device utilization summary of multiplier designs.

TABLE 7. Implementation results of proposed design and previous PE units.

TABLE 8. Power and frequency of PE unit for different multipliers.

and 6 max-pooling layers as shown in Table 6. The model

is trained using a PASCAL VOC 2012 dataset [41]. It con-

sisted of 20 classes and approximately 5000 training images

in its dataset. The network is trained in a 32-bit environ-

ment on GPU and stored in a floating-point but an inference

phase; this high precision is not required. Therefore, 16-bit

fixed-point number representation is selected considering the

precision loss from PASCAL VOC pre-trained weights from

the Darknet framework. Table 6 shows the precision loss

costed by using a 16-bit fixed-point for each convolution

layer. The proposed system architecture on FPGA is using

16-bit fixed-point quantization and it incurs an accuracy loss

of approximately 1.9% compared with the full precision

network. It also gives the mean average precision (mAP)

of 51.12%.

B. IMPLEMENTATION RESULTS AND DISCUSSION

1) DELAY AND HARDWARE RESOURCES OF

MULTIPLIER DESIGNS

Four multiplier designs are synthesized using Vivado 2015.4

and the results are shown in Fig. 12 and Fig. 13 for path
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TABLE 9. Comparison of the proposed design with the previous implementations.

TABLE 10. Number of MACs required for different designs.

delay and device utilization on FPGA respectively. In Fig. 12,

the path delay faced by each multiplier is further divided

into its logic and net delay. BMS multiplier design faces

the highest delay due to the sign extension logic used in

this multiplier. Consequently, this multiplier utilizes more

adders to generate the final product and hence it faces more

delay. On the other hand, the path delay of BMSEW is

lowest amongst the other multipliers because WALLACE

reduction using in MBE helps to reduce the path delay [38].

Its delay is reduced by 19% while comparing with the MBE

multiplier design (BMS). This BMSEW design faces only

four adders delay in its critical path compared to six FA delay

of WALLACE tree multiplier for 16-bit operands [21]. The

path delay for WALLACE based architectures depends on

the number of PPs and it can be calculated and verified

using O(log3/2(N)) [21], [38].

Similarly, Fig. 13 shows the device utilization sum-

mary for different multiplier designs. It can be observed

that BMSE multiplier design consumes fewer hardware

resources while comparing to others. On the other hand,

MBE with WALLACE reduction and sign extension elim-

ination design (BMSEW) consumes relatively high LUTs

as compared to MBE without WALLACE (BMSE) because

many adders are used for parallel processing. Comparing

the delay and hardware costs of MBE multipliers with

WM, it can be observed from Fig. 12 that the timing of

BMSE is improved by 0.8% and 5.4% of BMSEW com-

paring with WM. Similarly, Fig. 13 shows that the BMSE

LUTs consumption is improved by 38.8% and 4.5% of

BMSEW compared to WM. Therefore, multiplier design can

be selected depending on the requirement of the critical-

ity of hardware resources or considering the delay-sensitive

designs. The main focus of this article is to save the amount

of hardware resources, therefore BMSE multiplier is used to

perform the multiplication task in convolution.

2) POWER, FREQUENCY, AND RESOURCES OF

PROPOSED PE UNIT

From the above discussion and results, the multiplier design

of BMSE is proposed in the PE unit as shown in Fig. 11.

Further, to perform the addition on intermediate results gen-

erated in a process of multiplications, WALLACE adders

based on (4:2) compressor are implemented as shown in

Fig. 11. Table 7 shows the synthesis results of one PE

unit of proposed design on FPGA and different architec-

ture designs presented in the literature. The listed works in

Table 7 are not based on the same FPGAs and the resources

and DSP architecture may differ from each other. However,

still some aspects of different designs can be compared,

such as the hardware overhead, since the architectures of

the mainstream FPGAs are quite similar. In [14], the PE unit

is regenerated and the MAC unit is replaced with WM. It

has utilized 16 multipliers and 15 numbers of adders to

perform convolution in one PE unit. Similarly, a PE unit

is regenerated using the multiplier design of [21] and addi-

tion is performed with WALLACE tree adders [22]. This

PE design used 05 blocks of 16x4 WALLACE tree adders

to perform addition on intermediate results after multipli-

cation. The design of [42] is based on convolution blocks

that perform the convolution task using multipliers and

adders. A total of 18 multipliers and 17 adders are used

to perform the convolution task. Our proposed design of
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the PE unit based on the BMSE multiplier with 05 blocks

of WAT using a (4:2) compressor achieves high hardware

efficiency as compared to previous designs. The LUTs con-

sumption of the proposed PE unit is improved by 41.2%

compared to [14] and 29.5% to [42]. Therefore, this PE

unit design of Fig. 11 is proposed and applied in our final

architecture.

The next important parameter of efficient hardware is

power efficiency. In this proposed design using MBE

multiplier, the focus is to reduce the area, delay, and power

consumption of multipliers [35]. Therefore, from Table 7 it

can be observed that the hardware costs of PE unit are sig-

nificantly reduced. Similarly, power is measured for different

PEs and proposed design. Table 8 shows the power consump-

tion and synthesis frequency of PE unit designs with different

multipliers. It can be observed that the power of PE using

WALLACE multiplier consumes more power while com-

paring with WALLACE multiplier with WALLACE adders.

It means adder tree is another factor that consumes hard-

ware resources and power. It is discussed in Section III

that replacing the built-in adders with WAT can improve

the hardware consumption, delay, and power. However, DSP

based PE unit design still achieves low power compared

to the other two PEs with WALLACE multiplier designs.

The power and frequency of proposed PE unit design of

Fig. 11 is compared with other designs. The power con-

sumption of the proposed PE is 22.1% of that of the

MAC-based PE unit. In the meanwhile, the maximum achiev-

able frequency is also improved by 201% when the design

is changed from built-in adders to WALLACE tree adders

because built-in adders are slow and consume more hardware

resources.

The system architecture is built on the PE unit as

depicted in Fig. 11 and Table 9 represents the comparison

of proposed architecture with the previous designs. Only

FPGA’15 [18] design is running the AlexNet model and

the rest of the designs in Table 9 are running the Tiny-

YOLO-v2 model on FPGA platform to test their proposed

designs. The bulky MAC units (DSP48 slices in FPGA)

are not used and further typical deep binary adder tree is

replaced. In this work, custom BMSE multiplier is imple-

mented instead of DSP48 slices and WALLACE based adders

with (4:2) compressor is to perform addition. Note that the

achieved peak performance is 89.28 GOP/s and the actual

throughput is about 87.03 GOP/s with the extra clock cycles

for memory access when the proposed CNN is used for

an object detection system. It can be observed that the

proposed system reduces hardware cost by 24.5% while

attaining a power efficiency of 61.64 GOP/s/W compared

to the previous work for the object detection task [46].

Similarly, it also gives us an improvement in a frame rate

of 13.61 and power efficiency by 17.54 GOP/s/W compared

with the design of [14]. Considering all previous designs,

zero number of DSPs are used in our work. Therefore,

the power efficiency of 61.64 GOP/s/W is achieved with

fewer hardware resources as compared to previous designs.

The proposed FPGA based design is free from the

DSP48 slices.

Since this design is free from the bulky MAC units, it

can be a good candidate for power and hardware efficient

systems. Table 10 shows previous designs with different

unroll factors. It is also presented that how many numbers

of MACs are required to perform the convolution task with

different unroll factors. MACs are not recommended and

require an alternate solution due to high area and power

consumption [26]. The proposed design in this article is

free from the MAC units instead implemented a custom

multiplier. Table 10 shows that zero number of MACs are

consumed.

V. CONCLUSION

In this paper, optimization techniques are proposed and

implemented to achieve better system performance, reduced

amount of hardware resources, and power efficiency of the

CNN accelerator design for object detection. MBE multiplier

is presented to replace the MAC units on FPGA. Another

challenge was to find an alternate solution for a typi-

cal adder tree. Therefore, WALLACE tree-based adders

with (4:2) compressors are used to replace the traditional

adder tree. The objective was to reduce the resources on

FPGA consumed by CNN accelerator and improve the

system performance in terms of power. More computa-

tions can be implemented on available hardware because

proposed design helps to reduce hardware consumption com-

pared to previous designs. Achieving high power efficiency

can help us to use the system in practical low power

applications.

The proposed system architecture and optimization tech-

niques opens new opportunities for ASIC implementation

targeting the low area and power applications. To test

the behavior of proposed architecture, Xilinx FPGA plat-

form is selected to implement the Tiny-YOLO-v2 network

for object detection. It validates that the proposed hard-

ware optimization solutions will help us to achieve high

performance in terms of resource utilization and power for

future system implementations.
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