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ABSTRACT
In this work, we propose a new paradigm called power emulation, which ex-
ploits hardware acceleration to drastically speedup power estimation. Power
emulation is based on the observation that most power estimation tools typ-
ically perform the following sequence of operations: simulating the circuit
to obtain value traces or statistics for the inputs of its constituent compo-
nents, evaluating power models for each circuit component based on the in-
put values seen during simulation, and aggregating the power consumption
of individual components to compute the circuit’s power consumption. We
further recognize that the steps involved in power estimation (power model
evaluation, aggregation) can themselves be thought of as synthesizable func-
tions and implemented as hardware circuits. Thus, any given design can be
enhanced by adding to it “power estimation hardware”, and the resulting
power model enhanced circuit can be mapped onto a hardware prototyping
platform. While drastic speedups in power estimation (orders of magnitude)
are possible using this approach, a significant challenge arises due to the in-
crease in circuit size as a result of adding power estimation hardware. We
propose a systematic methodology to reduce the size of the power model en-
hanced circuit through a suite of techniques, including power model reuse
across different circuit components, regulating the granularity of components
for power modeling, exploiting inter-component power correlations, resource
sharing for power model computations, and the use of block memories for
efficient storage within power models. We demonstrate the benefits of the
proposed power emulation paradigm by applying it to register-transfer level
(RTL) power estimation for industrial designs, resulting in speedups from
around 10X to over 500X compared to state-of-the-art commercial power es-
timation tools.

Categories and Subject Descriptors
B.5.2 [Hardware]: Register-Transfer-Level Implementation - Design Aids -
Simulation; B.8.2 [Hardware]: Performance and Reliability - Performance
Analysis and Design Aids; C.4 [Computer Systems Organization]: Perfor-
mance of Systems - Modeling techniques

General Terms
Design, Measurement, Performance, Algorithms, Experimentation

Keywords
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FPGA, Hardware Acceleration, Register-Transfer Level, Simulation

1. INTRODUCTION
Power consumption has emerged as a primary design metric for a wide

range of electronic systems, ranging from battery-powered appliances (e.g.,
cell phones, PDAs, and networked sensors), to high-performance computing
and communication systems. In fact, power consumption is regarded a likely
limiting factor to the increasing scales of integration predicted by Moore’s
law [1]. Minimizing and managing power consumption requires appropriate
tool support for power estimation and optimization at various stages in the
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design flow. Extensive research in the low power design area has addressed
the problem of power estimation for circuits described at varying levels of ab-
straction, including the transistor level, logic (or gate) level, register-transfer
level, behavioral level, and system level. These technologies have been incor-
porated into various commercial power estimation tools [2, 3, 4, 5].

Advances in fabrication technologies have led to shrinking device sizes,
and consequently increasing chip complexities. The increase in circuit sizes
and testbench complexities is straining the capabilities of conventional power
estimation tools. For example, RTL power estimation for a 1.25 million tran-
sistor MPEG4 decoder circuit when decoding just 4 frames of a video stream
required 43 minutes and 55 minutes using two different state-of-the-art com-
mercial tools that we evaluated [3, 6]. Gate- and transistor-level power esti-
mation tools are even slower (10 to 100X). The poor speed of power estima-
tion tools limits their utility in the design flow. Clearly, such estimation tools
cannot be used in an iterative manner for architectural exploration. Hence,
efficient power estimation for large designs is a critical challenge. Raising
the level of abstraction to the system level can lead to substantial efficiency
improvements, but accuracy is significantly compromised.

This work addresses the problem of efficient power estimation by exploit-
ing hardware accelerators (that have been commonly used for accelerating
functional simulation). Power estimation is typically performed by evaluat-
ing power models for different circuit components, based on the input values
seen to each component during circuit simulation. We observe that on the
power models can themselves be thought of as hardware circuits. Thus, any
design can be enhanced with power estimation hardware, and mapped onto
a hardware prototyping platform (such as an FPGA). While the basic idea
of power emulation is applicable at any level of abstraction, in this paper,
we explore it in the context of RTL power estimation. We propose a sys-
tematic power emulation methodology, and demonstrate that it can facilitate
orders of magnitude speedup in power estimation (by factors of 10X to over
500X). We identify and address the major challenges involved in power em-
ulation, including the increase in size of the circuit when power estimation
hardware is added to it. We demonstrate the feasibility and benefits of the
proposed power emulation methodology through experiments on several in-
dustrial designs. Our results show that power emulation has the potential to
significantly extend the capabilities of current power estimation tools. Much
like functional emulation, power emulation can enable the investigation of
hardware power consumption characteristics in the context of realistic sys-
tem environments and workloads (e.g., booting up an OS) — a task that can
often be achieved only after fabrication with current design flows.

1.1 Related Work
Extensive work has been performed in power estimation techniques at the

transistor, gate, and register-transfer levels of design abstraction [7, 8, 9]. At
the transistor level, power estimation is typically performed as a by-product of
circuit simulation. Gate-level power estimation requires the computation of
signal statistics for the signals in the circuit, which can be performed through
simulation, probabilistic analysis, or simulation with statistical sampling [7,
8]. Of these, simulation with a comprehensive testbench is the most com-
monly used in practice, due to its accuracy and the ability to produce detailed
feedback such as power breakdown vs. time for different circuit components.
At the register-transfer level, approaches to power estimation include ana-
lytical techniques [10, 11], characterization-based macromodels [12, 13, 14],
and fast synthesis into gate-level descriptions [15]. While a few attempts have
been made to perform hardware power estimation at the behavioral level [16,
17, 18], their accuracy is limited due to the lack of structural circuit informa-
tion in behavioral descriptions. At the system level, most research has focused
on developing power models for different system components, including pro-
cessors [19], memories [20, 21], on-chip buses [22, 23], etc.

In practice, most current commercial design flows utilize RTL and gate-
level power estimation tools. However, due to their poor efficiency for large
designs, their applicability is limited until late in the design flow, or they are
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applied only to small parts of a design. Speedup techniques such as statistical
sampling [24] and circuit partitioning for parallel mixed-level simulation [25]
offer useful improvements in efficiency, but are not sufficient in the face of
ever-increasing circuit complexities.

We believe that the idea of leveraging emulation platforms for power esti-
mation is complementary to most previous work, and can be applied at dif-
ferent levels of abstraction. In [26], we proposed the basic concept of power
emulation and offered an estimate of the speedup possible using this tech-
nique. However, realizing the benefit of power emulation requires addressing
the main challenge outlined in this work, namely, reducing the area overhead
due to power estimation hardware. We propose a systematic methodology that
incorporates various area reduction techniques and demonstrate the feasibility
of this technology for large designs in the context of RTL power estimation.

2. POWER EMULATION: PRELIMINARIES

While the concept of power emulation is applicable at multiple levels of
abstraction, we discuss it here in the context of register-transfer level (RTL)
power estimation. Since RTL descriptions in practice can contain an arbitrary
combination of macroblocks (arithmetic units, registers, multiplexers, etc.)
and random logic gates, the proposed techniques apply to gate-level descrip-
tions as a special case.

For subsequent explanations, we consider a characterization-based power
estimation methodology, wherein a “power macromodel library” is obtained
by characterizing the power consumption of a universal library of RTL com-
ponents using gate- or transistor-level implementations. These power macro-
models are used to compute the power consumption of each component in
the RTL circuit, based on the values of the component’s input/output signals
during simulation.

The basic idea in power emulation is to identify the operations performed
during power estimation, express them as hardware circuits, and append them
to the circuit under consideration. Fig. 1 illustrates this process with the help
of an example RTL circuit, which is used to perform binary search. The cir-
cuit, which we call the power model enhanced circuit, has several new com-
ponents specifically added for power estimation, which are shaded in Fig. 1.
The enhancements include (i) power models that are instantiated for each
RTL component to track the component’s input/output signals and compute a
power value whenever triggered, (ii) a power strobe generator to trigger the
evaluation of the power models, and (iii) a power aggregator to accumulate
the power consumption of individual RTL components to compute the total
power consumption.
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Figure 1: An example RTL circuit enhanced for power emulation
Power strobe generation is similar to clock generation and is done sep-

arately for each clock domain in the design. Power aggregation is simply
implemented as a sequence of additions to accumulate the total power from
the outputs of the power models. The power models themselves represent the
most significant portion of the power estimation hardware, hence we examine
them in further detail. Since the power model is just a hardware manifesta-
tion of the corresponding RTL component’s power macromodel, its internals
depend on the nature of the power macromodel function. For the sake of the
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Figure 2: Structural netlist of a power model for a component with N
input/output bits
following explanations, let us consider the cycle-accurate linear regression
based macromodel [13, 14], which expresses the power consumed in an RTL
component with n input/output bits as ∑n

i � 1 Coe f fi � T 	 xi 
 , where Coe f fi rep-
resent the power model coefficients, and T 	 xi 
 is the transition count (0 or 1)
at each input/output bit. The hardware implementation of this power model
used for the purpose of power emulation is shown in Fig. 2. The inputs to the
power model include the input/output bits of the component being monitored,
and a power strobe. The output of the power model is the component’s power
consumption. The power model performs the following computation

Power � tc 	 queue x1 	 0 

� queue x1 	 1 
�
�� Coe f f1�������
� tc 	 queue xN 	 0 
�� queue xN 	 1 
�
�� Coe f fN

where, tc represents the transition count (XOR) function. The inputs to tc
come from a set of internal queues that maintain the previous and current
values of each component input/output. Since the transition count is a bi-
nary value, the multiplications in the power model equation are simply im-
plemented using vector AND gates, as shown in Fig. 2. The products of the
coefficients and respective transition counts are added to obtain the power
consumed by the component in the current strobe period.

3. MOTIVATION
In this section, we discuss the performance of conventional RTL power

estimation for a large design and the benefits of using power emulation in
accelerating this process. We also present the challenges involved in the use
of power emulation.

Let us consider an MPEG4 decoder that is used in chips for mobile hand-
sets. The design consists of seven sub-designs, with a total of 26,048 RTL
components. The sub-designs include an input buffer (Readbit), a DCT
coefficients block (Dct coeff), a variable length decoder (Vld), an in-
verse quantization block (Ispq), an inverse DCT (Idct da), a motion vec-
tor block (Mv), and a motion compensation block (Mc). Table 1 compares
the execution times for RTL power estimation and power emulation for the
MPEG4 decoder, while decoding 4 frames of an input video stream. For RTL
power estimation, we report the time taken using (a) NEC’s internal power
estimation tool [6] and (b) PowerTheater [3], both running on a 900MHz
UltraSparc-III workstation with 8GB RAM. For power emulation, we present
the results when we consider a target platform consisting of an FPGA with
unlimited resources, clocked at the design’s functional emulation speed of 30
MHz. The results show that 524X (411X) speedup is possible using hardware
emulation with respect to NEC’s RTL power estimator (PowerTheater).

Table 1: RTL power estimation vs. power emulation for the MPEG4
design

NEC-RTPower PowerTheater Power Emulation
Run Time 3300sec 2587sec 6.3 seconds

However, the gains of power emulation can be realized only if the enhanced
RTL description can be fit into an emulation platform. Fig. 3 presents the area
overheads of adding power models to each sub-design in the MPEG4 design.
Each sub-design was synthesized with Synplicity’s Synplify Pro [27]
and targets the largest Xilinx Virtex-II FPGA, the XC2V8000 [28]. The area
reports indicate the following: (i) on an average, the power model enhanced
RTL description increased the design area by as much as 18 � 2X , (ii) the en-
hanced version of Vld itself exceeded the capacity of the XC2V8000 FPGA
and (iii) fitting the power model enhanced MPEG4 design on an emulation
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platform would require a capacity nearly 4 � 5 times larger than the XC2V8000
FPGA.
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Figure 3: Area requirements for the original and power model en-
hanced RTL descriptions of various blocks in the MPEG4 design

The results clearly indicate that the area overheads of power model en-
hanced circuits are unreasonably high and can prevent the deployment of
power emulation in many designs. Thus, for power emulation to be practical,
we require various techniques that can reduce the hardware requirements of
enhanced RTL designs, without compromising power estimation accuracy.

4. DESIGN TECHNIQUES FOR POWER
EMULATION

In this section, we present various techniques that reduce the area require-
ments of power model enhanced circuits. We base our techniques on the ob-
servation that power models dominate the overall area, since they are instanti-
ated for every component in the design. Therefore, our suite of optimizations
attempts to reduce the number of power models in a design, and also to enable
area-efficient implementations of the power model logic, without a significant
loss of estimation accuracy.

4.1 Power Model Re-Use Through Clustering
The number of power models required for a design can be reduced by

grouping components into clusters, and using a single power model to ser-
vice all components in a cluster. In effect, a component may be considered by
the power model (or “sampled”) only once in several cycles, similar to statis-
tical sampling [24]. The architecture of a generic power model that services
a cluster of M components is shown in Fig. 4(a). It consists of (i) an input
multiplexer that selects the component inputs being monitored in a cycle, and
(ii) a basic N-bit power model for calculating the component power consump-
tion value, where N is the maximum bitwidth among all components in the
cluster. The area of the generic power model is chiefly governed by trade-offs
between the number of components being serviced (which decides the mul-
tiplexer size) and the largest bitwidth component (which decides the size of
the remaining power model logic such as the adder tree).
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Figure 4: (a) Generic power model for M components with maximum
component bitwidth N, and (b) Area/accuracy vs. number of power mod-
els for the Bubble Sort design

EXAMPLE 1. : Fig. 4(b) analyzes the impact of clustering on area reduc-
tion and estimation error for an example design, Bubble Sort. The design
contains 777 RTL components, and we consider various clustering solutions
by varying the number of generic power models allowed. At one extreme, we
have 777 power models (one power model per component) and this baseline
configuration results in the highest area cost with no additional estimation er-
ror beyond the inherent error from RTL macromodels. When the number of
generic power models reduces to six, the area curve has reached a minimum
value of 7,615 LUTs (3X smaller), and there is an additional estimation error
of 1% due to clustering.

As the number of power models is decreased further, we first note that the
estimation error increases sharply. This is to be expected, since the estimation
error depends on the frequency with which a component is sampled for power
consumption, and sampling frequency decreases as the number of compo-
nents serviced by a model increases. Secondly, we observe that area require-
ments start increasing again. The concave nature of the area curve in Fig. 4(b)
is explained by tradeoffs between multiplexer and adder area costs. Note that
queues do not add area because flip-flops are paired with LUTs in the FPGA
architecture [28]. Decreasing the number of power models means that each
model services more components, requiring larger multiplexers which begin
to outweigh the benefits of having fewer power models. Thus, we must care-
fully consider the conflicting trends imposed by the multiplexer and adder
costs of a generic power model, while performing clustering.

4.2 Exploiting Inter-Component Power Corre-
lations

The power consumptions of several components in a design are often cor-
related due to the circuit topology. Correlations can be exploited to reduce
the number of components being explicitly monitored, since the power con-
sumption of a set of correlated components can be potentially inferred by
monitoring a subset of them. For example, if Px and Py are power variables
correlated by a function f such that Py � f 	 Px 
 , then we can monitor only
component x to obtain Px, and apply f to compute Py.

For power emulation, since the correlation function will also be imple-
mented in hardware, we additionally require function f to be simple, requir-
ing very few hardware resources. For example, a linear fitting function meets
these requirements. Additionally, the linear correlation must be strong and
this can be captured by the statistical correlation coefficient (ρ) [29] between
two power variables Px and Py. A high value of ρ indicates strong linear
correlation.

EXAMPLE 2. : Fig. 5 plots the correlation between the power profiles
of various component pairs in the Bubble Sort design. Using a 12-to-
1 multiplexer as our reference component (power variable P1), we examine
its correlation with two other 12-to-1 multiplexers (power variables P2 and
P3), and a register that forms an input to our reference component (power
variable P4). Fig. 5(a) shows that P1 and P2 are perfectly correlated with ρ � 1
(it turns out that they are a duplication of the same component to improve
timing). Fig. 5(b) shows that components P1 and P3 are weakly correlated
with ρ � 0 � 263, while Fig. 5(c) shows that P1 and P4 are correlated non-
linearly, but weakly correlated linearly. Thus, in this example, we monitor
P1, P3 and P4 and use P1 to infer P2.

(a) (b) (c)
Figure 5: Scatter plots from the Bubble Sort design showing (a) per-
fectly linearly correlated, (b) weakly linearly correlated and (c) strongly
non-linearly correlated power variables

4.3 Changing Component Granularity
A power model enhanced RTL description contains power models at the

granularity of basic RTL components. We can modify this policy by increas-
ing the granularity of the components for which power models are constructed

702



and instantiated. In other words, we can construct a new entity comprising
several RTL components, characterize this entity and use the resulting power
model. Thus, by increasing the component granularity, we lower the num-
ber of power models, leading to a decrease in area. However, as shown by the
following example, increasing component granularity has a significant impact
on estimation accuracy.

EXAMPLE 3. : We consider the design DES that implements the popu-
lar DES encryption algorithm and contains several chains of two-input OR
gates. In the enhanced RTL description, a power model is dedicated to each
OR gate, but we can combine several consecutive gates in a chain to form a
wide-OR entity and construct the corresponding power model. Fig. 6 plots
the impact on estimation accuracy as the size of the coalesced gate increases
(from 3 inputs to 11 inputs). The plot shows that the absolute error increases
monotonically. This trend can be explained by the fact that when several 2-
input gates are coalesced and subsumed by a large power model, the internal
signals are no longer explicitly visible to the new power macromodel. This
implies that it is often only practical to group small numbers of components
into a single entity.
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4.4 Resource Sharing Within Power Models
Classical resource sharing techniques can also be employed to make the

computation within each power model area-efficient, by extending the power
model computation across multiple cycles, and sharing hardware across clock
cycles. At the same time, the estimation error increases, since higher power
model latencies translate to less frequent sampling of component inputs and
outputs. Fig. 7 plots the area and estimation error for the Bubble Sort
design as a function of the number of adders allowed per power model. As
expected, estimation error decreases as we increase the number of adders
per power model. At the same time, area exhibits an interesting trend by
descending rapidly, reaching a minimum, and then rising slowly. When the
number of adders is small, the same adder is re-used in multiple cycles of a
given power model computation. Consequently, large multiplexers are placed
at the input of each adder to select the correct coefficient during each cycle. In
fact, multiplexer overhead dominates power model area so much that there is
a drastic drop in area when the number of adders increases from 1 to 2. Also,
adders are area-efficient because the FPGA architecture contains dedicated
carry-chain logic [28]. Thus, for a growing number of adders beyond the
optimal value of 8, we see a slowly increasing area curve.
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Figure 7: Area and accuracy vs. number of adders within each power
model for the Bubble Sort design

4.5 Using Block Memories
When clustering is applied to create a generic power model, there must be

a coefficient array for each type of component supported in the cluster. The
size of each array increases to match the maximum bitwidth of the generic
model (to avoid extra control logic). If implemented directly in LUTs on an
FPGA, the coefficient arrays are a major contributor to the area overhead.
Fortunately, FPGAs provide block memories, which are ideal for storing co-
efficients. Xilinx’s CORE Generator tool [28] offers the ability to configure a
block memory macro with parameters such as width and depth. Since block
RAM has at best a one cycle latency, it is essential to read multiple coeffi-
cients per cycle. This is achieved by packing coefficients into wide words
and fetching the data appropriately for the power model computations.

5. ALGORITHM
Figure 8 shows the overall flow for power emulation. The inputs to this

flow consist of the RTL design, the power model library, and the target FPGA
platform. The power model library has been optimized for area through re-
source sharing (based on a predfined adder limit per power model). For a
given RTL design, step 1 infers the power models needed for every compo-
nent in the design and inserts the necessary estimation code to produce the
enhanced RTL description. Step 2 then optimizes the power model enhanced
RTL description so that it can meet a target area budget (based on the capacity
of the emulation platform), while minimizing any loss in estimation accuracy.
The output of this step is an RTL description ready for power emulation that
can be fed to any FPGA synthesis, place and route tool flow (step 3). Fi-
nally, the netlist can be downloaded to the FPGA and executed with the given
testbench to produce the design’s power profile.
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Figure 8: Power emulation flow
The key step in emulation is step 2 of Figure 8, which is described in detail

in Figure 9. The methodology takes as its input the power model enhanced
RTL design and its testbench, the power model library (which is automatically
pre-constructed for a given resource sharing and block memory configura-
tion) and various parameters including a target area constraint (target area)
and a clustering algorithm control factor (k). The output of the algorithm is
a power emulation ready RTL description that can meet the area constraint
with a minimum loss of estimation accuracy. Step 2.1 in the algorithm in-
volves running RTL simulation for a short, user-specified interval to generate
the power profiles for all the components. The power profiles are then used
to generate various statistics such as (i) mean and (ii) variance of each com-
ponent’s power profile, and (iii) inter-component power correlation factors.
These statistics are used by the area reduction techniques that follow (steps
2.3-2.8).

Step 2.3 combines components whose power consumption statistics are
strongly and linearly correlated. We utilize a user-specified threshold on the
inter-component power correlation factors to identify such component sets
and create a combined power model for each set. The new power model can
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estimate the power consumption for all the components by monitoring the
inputs of any one of the correlated components. This reduces the number of
components with explicit power models.

Step 2.4 identifies sets of components for which we can construct higher
granularity power models. Since the number of such sets is exponential, based
on our empirical evidence, we consider only connected components (higher
potential of area savings) and small sets with upto three components (likely
to have lower loss of estimation accuracy). Finally, if the fitting error for
the resultant power model is higher than a user-specified limit, then the new
power model is not a good choice and is not utilized.

The task now is to reduce the number of power models further by de-
termining component clusters that can be mapped to generic power models.
Steps 2.5-2.8 provide a two-phase strategy in order to meet the target area
constraint with a minimum loss of accuracy. In the first phase (step 2.5), we
apply a hierarchical clustering algorithm that determines k possible cluster-
ing solutions that meet the target area constraint. In the second phase, we first
compute a measure of the relative significance of each component based on
the component’s power mean and variance (step 2.6). This allows us to com-
pute a desirable sampling rate for each component. Since the area-optimized
solutions of step 2.5 can result in undersampling for some components and
oversampling for others, we perform classical multi-way component swap-
ping between clusters in step 2.7 to minimize the undersampling. Step 2.8
then chooses the solution with the lowest undersampling to generate an RTL
description ready for power emulation. These steps are detailed in the follow-
ing sub-sections.

5.1 Hierarchical Clustering For Area Reduc-
tion

We use a hierarchical clustering algorithm [30] that takes as its input the
list of components, and outputs several candidate clustering solutions that
meet the specified target area constraint. Starting from an initial state wherein
every component forms a distinct cluster and each cluster is associated with a
power model, the algorithm proceeds as follows:

1. We evaluate pairwise the cost of combining two clusters into a single
cluster. The cost is given by the size in LUTs of a generic power model
that will be used to service all the components in the combined clus-
ter. In other words, if CLi and CL j are two clusters, the area cost of
a generic power model that services the cluster CLi

� CL j is approxi-
mately given by

Area 	 CLi
� CL j 
�� 	 max 	 BWCLi � BWCL j 
�� 1 
�� Areaadd� max 	 BWCLi � BWCL j 
�� Areamux 	��CLi � � �CL j � 


where the first term denotes the contribution due to the power model
computation and the second term denotes the contribution due to the
input multiplexer. BWCLi denotes the bitwidth of the largest compo-
nent in cluster CLi (with cardinality �CLi � ) , Areaadd denotes the size
of a basic adder required to add the products of the power model co-
efficients and transition counts, and Areamux 	 n 
 is the area of a n-to-1
multiplexer.

2. We now choose the pair of clusters that can be combined to result in
the best area savings (Area 	 CLi 
 + Area 	 CL j 
 - Area 	 CLi � CL j 
 ) and
update the bitwidth of the resultant cluster as max 	 BWCLi � BWCL j 
 .3. We repeat the above steps until k solutions meet the target area con-
straint are found or all components are in a single cluster.

5.2 Determining Optimum Component Sam-
pling Rates

We derive the optimum sampling rates for each component based on the
observation that components whose power consumption characteristics are
associated with a higher mean or variance must be sampled more frequently.
Let comp1, comp2 ����� compn denote n RTL components of a design. Assum-
ing that we are sampling this set of components, the objective is to minimize
the aggregate error due to sampling. If δPi represents the estimated error due
to sampling a component compi, then the aggregate error for the entire design
is given by

∆P � ∑n
i � 1 δPi

Furthermore, during minimization, the errors associated with components
with higher power should be more significant compared to other components.
Therefore, we weigh the estimated error δPi by the fractional power fi for the
corresponding component, which is computed as follows:

fi � Pcompi � ∑n
i � 1 Pcompi

Therefore, the objective function being minimized can be written as
Minimize ∆P weighted � ∑n

i � 1 fi � δPi
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Figure 10: Sampling rates computed based on the power consumption
characteristics (mean and standard deviation) of different RTL compo-
nents in the design DES

For normally distributed power profiles of an RTL component compi, δPi is
governed by the following equation [24].

δcompi � t � scompi ��� Ni
In the above equation, scompi refers to the standard deviation of the power
profile of compi, Ni is the number of samples for the component compi and t
is a positive constant. Therefore, the objective function can be re-written as

Minimize ∆P weighted � ∑n
i � 1 fi � scompi ��� Ni

The constraints that must be obeyed during minimization can be formulated
as follows. We sample one component per sampling period from the cluster
of n components for the duration of the simulation. If we denote Ntot to be
the total number of simulation samples,

N1
� �����
� Nn ! Ntot �

and � Ni " 1 �$# i � 1 ����� n
Since the above constraints are linear and the objective function is nonlin-
ear, our minimization problem is a linearly constrained optimization problem.
There are many well-known solvers such as MINOS [31] that can be used to
determine the values of Ni. Once N1 � ����� � Nn are determined, the sampling
rate for each component Ri can simply be written down as follows.

Ri � Ni � Ntot
Figure 10 shows the results of the above optimization procedure for the

design DES. The design contains 1520 RTL components, and for each com-
ponent, we plot the sampling rates computed based on the mean and standard
deviation of the component’s power consumption characteristics. For exam-
ple, point P denotes the highest sampling rate of 0 � 2864 and corresponds to
a component characterized by high mean power (10 � 8µW) and high standard
deviation (6 � 1µW).

5.3 Minimizing Undersampling
Let clusters CL1, CL2 ����� CLm denote a solution output by the hierarchical

clustering algorithm. Assuming a uniform sampling rate for all the compo-
nents in a given cluster, we can determine a measure of the estimation error
introduced for a component comp j in cluster CLi with a computation latency
of τi by computing the distance from its optimum sampling rate (denoted by
the undersampling factor δR ji):

δR ji � R j � 1 � 	 τi � �CLi � 
�� i f R j % 1 � 	 τi � �CLi � )� 0 � i f R j ! 1 � 	 τi � �CLi � 

where, (a) 1 � 	 τi � �CLi � 
 denotes the uniform sampling rate for all compo-
nents in a cluster CLi with cardinality CLi, (b) R j is the optimum sampling
rate given in Section 5.2, and (c) the undersampling is zero if the opti-
mum component sampling rates are met by the clustering solution, i.e., if
R j ! 1 � 	 τi � �CLi � 
 . Therefore, the aggregate undersampling for the present
clustering solution is given by

∆R 	 CL1 � CL2 ����� CLn 
 � ∑n
i � 1 ∑comp j & CLi δR ji

We minimize ∆R 	 CL1 � CL2 ����� CLn 
 by using an iterative improvement al-
gorithm based on the Kernighan-Lin heuristic [32] to select components and
move them to other clusters in order to reduce undersampling, while ensuring
that the target area constraint is not violated.

6. EXPERIMENTAL RESULTS
We present the results of applying the proposed power emulation flow to

various industrial designs. Our experimental set-up is as follows. Given a
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Table 2: Accuracy, area and speed comparisons for power emulation

Benchmark Statistics Execution time (sec) Estimated power (mW ) FPGA area (LUTs)
Design Comp ' Gate,FU,Mux,Reg ( NEC PT Emu. Speedup RTL Emu. Error Orig. Emu. A.O.

Bubble Sort 777 ' 660,2,78,37 ( 11.6 80.2 1.2 ' 9.7X,66.8X ( 0.33 0.31 6.1% 1605 5665 3.5X
HVPeakF 1526 ' 1364,10,101,51 ( 120.3 136.8 1.7 ' 70.8X,80.5X ( 0.14 0.14 0.0% 3192 9016 2.8X

DCT 1632 ' 1021,5,328,278 ( 172.9 173.3 3.7 ' 46.7X,46.8X ( 8.22 7.76 5.6% 6121 19242 3.1X
IDCT 819 ' 623,11,135,50 ( 130.9 108.7 2.5 ' 52.4X,43.5X ( 0.62 0.60 3.2% 2803 9640 3.4X
Ispq 3111 ' 2537,16,345,213 ( 900 1266.3 2.6 ' 346.2X,487.0X ( 1.24 1.21 2.4% 4282 12180 2.8X
Vld 11094 ' 10133,21,704,236 ( 62.2 227.8 2.3 ' 27.0X,99.0X ( 1.08 1.06 1.9% 6363 18800 3.0X

MPEG4 26048 ' 23191,93,1944,820 ( 3300 2587 6.3 ' 524X,411X ( 4.74 4.51 4.9% 24907 72351 2.9X

C behavioral description of a design, we run the behavioral synthesis tool
CYBER [33] to synthesize RTL implementations. We perform RTL power
estimation by using (a) PowerTheater [3], and (b) NEC’s in-house power
estimation tool [6]. For power emulation, we used the flow described in
Section 5 to generate the power emulation ready RTL. RTL power estimates
and power emulation results are obtained for NEC’s CB130M [34] standard
cell based technology. The power enhanced circuits were synthesized using
Synplify Pro [27]. Power emulation times include the time required to
simulate the testbench using the Modelsim HDL simulator, and the time to
perform power emulation on a PC-based emulation platform using the Xilinx
Virtex-II FPGA [28].

Table 2 summarizes the results of our experiments. Major column De-
sign lists the benchmarks, including the MPEG4 and Bubble Sort designs
described earlier. We also report results for the following sub-designs of
MPEG4: IDCT, Ispq, and Vld. Other designs include HVPeakF (a peaking
image filter used in HDTV applications) and DCT (an implementation of the
DCT signal processing algorithm). Minor column Comp represents the total
number of RTL components in the design, while column ' Gate,FU,Mux,Reg (
provides a component breakdown in terms of the number of logic gates, func-
tional units, multiplexers, and registers.

For the two RTL power estimation tools and the proposed power emula-
tion technique, we report the execution times and the corresponding power
estimates. These numbers are reported in major columns Execution time and
Estimated power, respectively. Minor columns NEC, PT and Emu. represent
RTL power estimation using NEC’s power estimator, PowerTheater, and the
proposed power emulation, respectively. Minor columns Speedup and Er-
ror denote the estimation time speedups (with respect to the two RTL power
estimation tools) and percentage error due to power emulation. The last ma-
jor column FPGA area reports the size of the original design (Orig.), power
emulation ready RTL (Emu.), and the relative overhead (A.O.).

The results given in Table 2 indicate that power emulation achieves signif-
icant performance improvements over existing RTL power estimation tools
(average speedups of 161X and 225X over NEC’s RTL power estimator and
PowerTheater, respectively). The cost of power emulation in terms of esti-
mation accuracy averages 3 � 4%, and the power emulation ready design is,
on an average, 3 � 1 times the area of the original design. The largest bench-
mark (MPEG4) shows the best performance improvement from using power
emulation because its size and complexity make RTL power estimation very
slow.

7. CONCLUSIONS
In this work, we discussed a new paradigm for efficient power estimation

called power emulation. Power emulation harnesses hardware prototyping
platforms for power estimation, leading to orders of magnitude efficiency im-
provements. We proposed a systematic methodology to realize power emula-
tion in the context of a high-level design flow and a suite of area optimization
techniques that makes power emulation feasible for large designs. Finally,
we demonstrated the efficacy of the proposed techniques for several indus-
trial designs.
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