
   Abstract— A new class of neural prosthetic systems aims 
to assist disabled patients by translating cortical neural activity 
into control signals for prosthetic devices. Based on the success 
of proof-of-concept systems in the laboratory, there is now 
considerable interest in increasing system performance and 
creating implantable electronics for use in clinical systems. A 
critical question that impacts system performance and the 
overall architecture of these systems is whether it is possible to 
identify the neural source of each action potential (spike 
sorting) in real-time and with low power. Low power is 
essential both for power supply considerations and heat 
dissipation in the brain. In this paper we report that several 
state-of-the-art spike sorting al gorithms implemented in 
modern CMOS VLSI processes are expected to be power 
realistic. 
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I.  INTRODUCTION 
 
 Neural prosthetic systems that assist disabled patients 
by translating neural activity from the brain into control 
signals for prosthetic devices rely on neural recordings from 
implanted electrode arrays. Electrode arrays are implanted 
neurosurgically in the brain region of interest, but the 
precise distance between each electrode tip and surrounding 
neurons is uncontrolled. As a result, implantable electrodes 
are manufactured with only moderately high impedances 
(e.g., 100-300 KO) to ensure recordings from at least one 
neuron. In practice, such electrodes typically record action 
potentials from more than one neuron. It is standard 
scientific practice to assign each distinct action potential 
waveform to a different neuron. This so-called spike sorting 
process results in neural activity attributable to identified 
neurons, and is widely thought to allow maximum 
information extraction from a given data set since individual 
neurons are believed to be the fundamental information 
coding units in the brain. 
 If all of the action potentials appearing on one electrode 
are considered to come from a single neuron, two problems 
arise. First, it is incorrect to assume that just because two 
neurons are close enough to each other to influence the same 
electrode that they have identical tunings for movement. Just 
because one neuron responds strongly to rightward arm 
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movements does not mean that all of the nearby neurons 
respond in the same fashion. Properly attributing action 
potentials to their neural source can lead to significantly 
greater information extraction, which is essential for high-
performance neural prosthetic systems. Second, even if 
nearby neurons do have similar tunings, if the different 
waveforms are all considered to come from one neuron the 
activity of this “neuron” is overestimated. Such 
overestimates, and incorrect attribution in general, impedes 
answering questions about how neural activity changes and 
adapts through time. Taking such adaptation into account is 
another essential feature in modern neural prosthetic system 
design.  
 There appears to be significant doubt in the neural 
prosthetic system community that implanted real-time spike 
sorting is possible. The concern is that spike sorting, though 
valuable if not essential for high-performance systems, may 
be too power consuming, large and even complex to be 
implemented in an implantable neural prosthetic system. 
 Implantable spike sorting is important for one additional 
reason, beyond those mentioned above. Even with a 
relatively conservative sampling rate of 10kHz, it is not 
realistic to telemeter out broadband data for hundreds or 
thousands of electrodes simultaneously [1]. Data 
compression techniques are needed. An implantable spike 
sorting integrated circuit could be placed between the ADC 
and the telemetry circuits resulting in a system that 
broadcasts the time and neural identity of every action 
potential.  
 In this paper, we investigate the practicality of 
implementing a digital spike -sorting integrated circuit. We 
consider two modern spike sorting algorithms and argue that 
the number of computational operations required and the 
energy consumed by using standard CMOS VLSI make 
implantable spike-sorting chips realistic even for arrays with 
very large numbers of electrodes. 
 

II.  METHODOLOGY 
 

A.  Spike Sorting Overview 
 

 Most spike sorting algorithms consist of two separate 
stages. The first stage trains the algorithm on a fixed amount 
of recorded data so that a set of parameters can be learned. 
These parameters will be used for real-time data 
classification in the second stage. Certain features are 
common to nearly all spike sorting algorithms. First, a high 
pass filter must be used to eliminate the 0.5Hz to 100Hz low 
frequency local potential signal (LFP). Then, spike times 
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must be identified. Often, events are aligned to their exact 
peaks through interpolation techniques. Most algorithms 
also use dimensionality reduction to reduce the 
computational burden and prevent over fitting the training 
data set with a confining, complex model.  
 However, various training algorithms differ in several 
key aspects, including the method used for dimensionality 
reduction, the metric used to decide which neuron a spike is 
associated with, and the iterative clustering algorithm used 
to obtain an optimal set of parameters in the training stage.  
 
B. Spike Sorting Algorithms Selected 
 

In this paper, two different spike sorting algorithms of 
different complexity were implemented. The algorithms 
selected are not necessarily representative of the vast 
number of spike sorting algorithms available, but by 
focusing on a small set of algorithms, it allows us to show 
that real time spike sorting is possible, even in the most 
complex cases. Both training algorithms begin with a high 
pass filter with a 600 Hz cutoff, threshold at 3s, and use 
oversampling and interpolation to align spikes to their 
centers of mass. 
 
 1) The K-means Algorithm 
  The training stage of the K-means algorithm is 
shown in Fig. 1. The set of aligned events are projected into 
the space spanned by the first three principle components of 
the data. The spikes are randomly grouped into M data sets, 
where M is the number of neurons per electrode. The means 
of the partitions are calculated, and then each spike is 
regrouped according to which mean it is closest to. This 
process is iterated until convergence. 

For real time classification, detected events are 
projected along the stored principle components and 
classified as belonging to the cluster whose mean has the 
smallest squared Euclidean distance from the projected 
point. 

2) The Sahani Spike Sorting Algorithm 
  The training algorithm for Sahani’s spike sorting 
algorithm (SA) is shown in Fig. 2. SA uses samples of the 
background noise to project the events into the noise 
whitened principle component analysis (PCA) space [2].  

 
Fig 1. High level block diagram of K-means training 

 

 
Fig 2. High level block diagram of SA Training 

 
  Relaxation Expectation-Maximation (REM) and 
cascading model selection (CMS) are used to cluster the 
data and fit the clusters to a mixture model. Real time 
classification consists of filtering, thresholding, projecting 
into the noise-whitened robust PCA space, and then using 
maximum a posteriori classification for assignment. 

Our justification for choosing Sahani’s algorithm is as 
follows: SA is one of the most sophisticated and 
computationally intensive algorithms published. By 
analyzing the estimated power consumption of this 
algorithm, we can set an upper bound on the power 
consumption of current algorithms. 
 
C. Power Estimate Methods Used 

 Power estimation of the above mentioned spike sorting 
algorithms is calculated by recasting the operations 
performed to simple instructions that can be implemented in 
hardware. A detailed analysis of the algorithms was carried 
out and approximate figures for the number of operations 
(namely adds and multiplies) required for each task were 
obtained. Operation counts for some complex linear algebra 
functions used in the algorithms, like matrix 
decompositions, were taken from standard texts on 
numerical linear algebra [6]. Operation counts were then 
translated to power by using the figure 1mWatt/GOPS [3]. 
This figure is used as the standard power consumption per 
operation for ASICs implemented in 0.13µm technology. 
Finally, an approximate power usage from memory accesses 
was added. This was taken as double the power from 
instruction execution [4]. The figures should be taken as an 
"order of magnitude" indication. However, we believe that 
these figures are indicative of the power consumption, and 
thus achieve the objective of showing that these systems can 
be implemented in an implantable neural prosthetic. 

D. Generation of Realistic Synthetic Data 

 Realistic synthetic data sets were generated in order to 
obtain the error rates for the various algorithms. While the 
data tested is not representative of every possible situation 
that might arise in a neural prosthetic application, it does 
give one a general of idea of how well the algorithms could 
perform in certain situations and how their error rates might 
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be expected to compare. Templates were obtained from 
several sets of actual neural data recorded from a rhesus 
macaque monkey. The relative and absolute firing 
frequencies of each neuron were noted. 
 Segments of synthetic neural data were then generated. 
First, an action potential template is chosen at random from 
a given set, where the probability of choosing a particular 
template is given by that neuron's relative firing rate in the 
actual data set. Then, a spike time was chosen from a 
uniform random variable between zero and thirty seconds. 
The refractory period considerations were included. The 
template waveform was then run through a linear phase 
interpolating filter with a uniform random delay between 
zero and one sampling period to randomize the location of 
the peak with respect to the sampling interval. Noise and the 
LFP extracted from the actual data were then added. 
 Error rates were obtained by training the spike sorting 
algorithm on one set of synthetic data, and then running a 
real time classification algorithm on a second set of 
synthetic data generated from the same templates.  
 

III.  RESULTS 
 
A. Power Estimates 

1) Training  
We assume that, since electrode movement is 

generally very small, the spike signals will be relatively 
stable over time, and thus training needs to be performed 
relatively infrequently. We assume that training is 
conducted once every twelve hours for each electrode. Also, 
we assume that we will train one electrode at a time, and 
that training will be conducted continuously. Even with 
1000 electrodes, a relatively large number that anticipates 
electrode scaling trends, this allows training to take place 
over approximately 43 seconds for each electrode. Also, it is 
assumed that just before an electrode is to be trained, a thirty 
second segment of recent, filtered neural data is stored in 
memory. 

To obtain power estimates, upper bounds were used for 
some parameters based on what would be observed in a 
typical data set.  For example, the size of the training data is 
set to 900 spikes, a rather large number that assumes 
multiple, active neurons influencing one channel.  Also, due 
to the fact that clustering and statistical fitting algorithms are 
iterative by nature, an upper bound of 20 iterations was 
assumed. The operation counts for various parts of SA and 
K-means training are listed in Table I. We counted basic 
multiply and add operations, and all other operations were 
recast to these fundamental units.   

We see that the training algorithm requires 
approximately 2.74x108 operations per electrode. With our 
previous assumption of 43 seconds of training time per 
electrode, we can convert to a power number by the 
following expression: 
 
Power = (Total ops /training time) * 1mW / (109ops /sec) (1) 

      
In order to account for memory accesses, we double the 
resulting power number. Therefore, SA training power with 
1000 electrodes is estimated as 13 µW, and the total power 
for K-means training is estimated to be 6 µW. 
 

2) Real Time Classification 
        The classification process itself contributes 

relatively little to the overall power consumption of real 
time spike sorting. Most of the computational burden is 
dominated by the high pass filter and thresholding, both of 
which must be done in any digital neural prosthetic 
application, with or without spike sorting. 

We will assume that an IIR filter consisting of two 
second order sections is used. Also, a 30kHz sampling rate 
is assumed. The IIR filter necessitates 6.3x105 
ops/sec/electrode. Digital thresholding contributes 3x104 
ops/sec/electrode. Combined, these sections should 
contribute about 1.32µW/electrode. Assuming a "worst case 
classification complexity scenario", in which there are five 
different neurons influencing an electrode and fire at a 
combined average rate of 50 spikes per second, classifying 
the data using a Euclidean distance metric requires 1.3x104 
ops/sec/electrode. This corresponds to 0.026µW/electrode. 
In other words, even in the worst case for classification with 
a conservative filter, classifying the spikes requires only 
about a 2% increase in power over digital filtering and 
thresholding. In ordinary situations where only one or two 
neurons are recorded by an electrode and where the average 
firing rate is between 5 to 10 spikes/sec, the number of 
operations required for classification will typically be on the 
order of 1000 ops/sec/electrode. 
 Classification using maximum a posteriori yields 
similar results. Making similar "worst case assumptions" as 
before. MAP requires about 4.8x104 ops/electrode/sec, 
which corresponds to about 0.096µW/electrode.  
Classification power will again usually be about an order of 
magnitude smaller under normal conditions. 
 As such, the biggest hurdle to be overcome in real time 
classification, or any digital application, is the design of a 
power efficient method for high pass filtering broadband 
data over hundreds or thousands of channels at a time. The 
problem is made more difficult by the fact that the LFP is in 
the 0.5 - 100Hz frequency range, while much of the signal 
power is concentrated in the 1000-3000Hz range. With a 
sampling frequency of 30kHz, the necessary transition band 

  TABLE I 
 

Operation Estimates for Spike Sorting Algorithms 

Step SA Operations k-means Operations 

RMS Calculations 1.20E+02 1.20E+02 
Spike Alignment 1.20E+08 1.20E+08 
Noise Covariance 1.15E+05 --- 
PCA 6.37E+06 1.45E+06 
Model Training 1.48E+08 7.27E+06 
Total 2.74E+08 1.29E+08 

 



is somewhat steep. Also, the amplitude of the LFP is often 
as large as the amplitude of the most prominent spike 
waveform, so the stopband attenuation must be fairly 
significant. Therefore, while FIR filters may give somewhat 
better performance results than IIR filters, the higher order 
they necessitate requires a prohibitive amount of 
computation for filtering hundreds of channels at a time. 

 
B.  Algorithm Performance Assessment 
 
 The most important characteristic of any spike sorting 
algorithm is its ability to accurately classify action 
potentials. How well the algorithms perform this task 
depends on the characteristics of the signal, like the SNR, 
the number of neurons, and how different the waveforms 
are. Using an IIR filter consisting of two second order 
sections, detected spikes were classified with greater than 
90% accuracy in all tested cases with SA and greater than 
85% accuracy in all tested cases with K-means.  
 As expected, both SA and the K-means algorithm 
performed similarly for high SNR channels. However, for 
lower SNR channels, or channels with spike waveforms that 
are fairly similar in amplitude and shape, SA’s performance 
is vastly superior to the K-means algorithm.  

The effects of different SNR levels were investigated by 
using several high pass FIR filters of different orders with a 
data set containing two action potential shapes of similar 
amplitudes. With a 56th order filter, both algorithms 
classified over 90% of the detected spikes correctly. SA also 
classified over 94% of detected spikes correctly with greatly 
reduced SNR using a 10th order filter. The K-means 
algorithm, on the other hand, fails catastrophically at low 
SNR. Even with a 32nd order high pass filter, it classifies 
less than 50% of the action potentials correctly.  

Both algorithms are equally susceptible to missed spikes 
with low order FIR filters. For example, both failed to detect 
67% of the total spikes with a 10th order FIR filter. Thus, 
although accurate classification can be obtained with low 
order FIR filters, the large amount of missed spikes 
prohibits using them in high performance systems. 
 Another problem that arises in spike sorting algorithms 
with outlier elimination is that they can mistakenly throw 
away legitimate action potentials, especially when two 
neurons fire temporally close enough such that their action 
potentials overlap. However, our experiments show that 
both algorithms classify actual spikes as outliers rarely. Less 
than 1% of spikes were eliminated in most cases. However, 
in cases in which neurons are highly correlated, special 
signal processing techniques for handling overlapping 
spikes not included in the tested algorithms may be needed. 
 SA offers many other advantages over simpler spike 
sorting algorithms. By using cascading model selection, SA 
can actually determine the number of neurons on its own, 
which is a crucial feature of any unsupervised spike sorting 
algorithm.  Also, by projecting the data in the noise 
whitened principle component space, SA maximizes the 

separability of the clusters. In other words, this projection 
has the greatest ratio of the average distance between 
clusters to the average spread of the data. It is therefore 
possible to separate clusters that would be indistinguishable 
in regular principle component analysis.  
 This performance assessment combined with the 
previous result on power estimation indicates that more 
sophisticated spike-sorting algorithms should be used, 
because their power penalty is very small compared to that 
of data filtering. 
 

IV.  DISCUSSION 
 
  We have shown that currently available spike sorting 
algorithms can be both reliable and power efficient. With 
100 electrodes, we can upper bound the power consumption 
to be about 143µW. Assuming a 5mm2 chip, this gives a 
power to area ratio of about 2.9mW/cm2, which is well 
below the 80mW/cm2 chronic heat dissipation threshold 
believed to cause tissue damage [5].  
 In addition, we have found that the high pass filter stage 
both dominates power consumption and greatly affects 
algorithm performance. Alternative methods of 
multichannel filtering for spike sorting should be 
investigated to further reduce the power consumption and 
improve performance as the number of available electrodes 
expands.  Two immediate solutions are to use a lower 
sampling rate and analog bandpass filters that 
simultaneously prevent aliasing and eliminate the LFP. 

 
V.  CONCLUSION 

 
 We have shown that digital spike sorting is feasible 
using currently available algorithms and technology. In 
addition, we have shown that algorithm training and real 
time classification combine to give less than a 10% power 
increase over simple filtering and thresholding even when 
assuming worst case conditions for every electrode. 
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