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Abstract: Suppose G is a finite group. The power graph represented by P(G) of G is a graph, whose
node set is G, and two different elements are adjacent if and only if one is an integral power of the
other. The Hosoya polynomial contains much information regarding graph invariants depending
on the distance. In this article, we discuss the Hosoya characteristics (the Hosoya polynomial and
its reciprocal) of the power graph related to an algebraic structure formed by the symmetries of
regular molecular gones. As a consequence, we determined the Hosoya index of the power graphs of
the dihedral and the generalized groups. This information is useful in determining the renowned
chemical descriptors depending on the distance. The total number of matchings in a graph Γ is known
as the Z-index or Hosoya index. The Z-index is a well-known type of topological index, which is
popular in combinatorial chemistry and can be used to deal with a variety of chemical characteristics
in molecular structures.

Keywords: molecular structure; chemical graphs; power graphs; finite groups; Hosoya index; Hosoya
polynomial

1. Introduction

A topological index is a numeric value that represents the symmetry of a molecular
structure. Indeed, it is a mathematical classification of a chemical graph that offers a mathe-
matical function in a quantitative structure–property relationship (QSPR). It links numerous
physicochemical characteristics of molecular structured chemical substances, such as the
strain energy, stability, and boiling point. Numerous characteristics of chemical compounds
having a molecular structure can be examined using several kinds of topological indices.
In 1947, H. Wiener presented the notion of the first topological index in researching the
boiling point of paraffin, which he called the path number [1]. As a result, it was dubbed
the Wiener index, and it was the moment that the idea of topological indices began.

Polya’s [2] concept of computing the polynomials was used by many chemists to
identify the molecular orbitals of the unsaturated hydrocarbons. In this context, the
spectrum of a graph has been extensively examined. According to [3], Hosoya used this idea
in 1988 to determine the polynomials of several chemical structures, which were labeled
the Hosoya polynomials and attracted widespread attention. In 1996, Sagan et al. [4] then
retitled the Hosoya polynomial as the Wiener polynomial, although most experts still refer
to it as the Hosoya polynomial. The information regarding distance-based graph invariants
may be obtained from the Hosoya polynomial. In [5], Cash noticed a connection between
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the hyper Wiener index and the Hosoya polynomial. Estrada et al. [6] investigated several
interesting applications of the expanded Wiener indices.

The graphs presented in this paper are all simple graphs, meaning they have no loops
nor multiple edges. Suppose G is a finite group. The power graph represented by P(G)
of G is a graph, in which G is its node set and two unlike elements are edge connected
if and only if one of them is an integer power of the other. In [7], Kelarev and Quinn
discussed the approach of directed power graphs related to groups and semigroups. Later,
the authors of [8] illustrated the power graph P(S) of a semigroup S and identified the
class of semigroups, whose power graphs are the complete graphs. Furthermore, they
discussed that for any finite group G, the associated power graph is the complete graph if
and only if the group G is cyclic of order one or pk, where p is any prime and k ∈ N.

In the current literature of theory of graphs, the power graph is now an exciting topic
in several branches of mathematics, that is group theory, ring theory, and Lie algebra.
Cameron et al. [9] discussed the matching numbers and gave the upper, as well as the
lower bounds for the perfect matching of power graphs of certain finite groups. They
also derived a formula of matching numbers for any finite nilpotent groups. The authors
of [10–13] presented an overview of finite groups with enhanced power graphs that enable
the formation of a perfect code. They further established all possible perfect codes of the
proper reduced power graphs and gave a necessary and sufficient condition for graphs
having perfect codes. In [14], the authors concentrated on the power indices graph and
classified all such graphs in some specified categories.

The authors of [15] examined the maximum clique and found the largest number
of edges of power graphs for all the finite cyclic groups. Sriparna et al. [16] deliberated
about the node connectivity of P(Zn), whenever n is the product of some prime numbers.
Furthermore, several other researchers inquired about different concepts of algebraic
graphs; for instance, see [17–20] and the references therein.

A matching or an independent edge set is the collection of edges that share no nodes.
When a node is coincident with one of the matching edges, it is referred to as matched.
Otherwise, there is an unmatched node. The maximum number of matchings in a graph
is referred to as the Z-index or Hosoya index. Hosoya [21] first proposed the Z-index in
1971 and then extended the topological index as a common tool for quantum chemistry
in [22]. It has since been shown to be useful in a variety of molecular chemistry problems,
including the heat of vaporization, entropy, and the boiling point. The Z-index is a well-
known topological index example that has significant relevance in combinatorial chemistry.
Considering numerous graph structures, many researchers investigated extremal problems
in regard to the Z-index. Extremal characteristics of different graphs, unicyclic graphs, and
trees were extensively studied in [23–26].

In this article, we represent the cyclic group Zn of order n, the generalized quaternion
group Q4n, and the dihedral group D2m of order 4n and 2m, respectively. It is very chal-
lenging to calculate the (reciprocal) Hosoya polynomial, as well as the Z-index of power
graph P(G) of a group G. In this regard, we provide both the Hosoya and the reciprocal
Hosoya polynomials and also discuss the Z-index of the power graph P(G) of a group G,
when G is D2m or Q4n.

There are still several gaps in the current study about the determination of the Hosoya
polynomials, the reciprocal Hosoya polynomials, and also the Z-index or Hosoya index of
the power graphs of a finite cyclic group Zn, the dihedral group D2m, and the generalized
quaternion group Q4n. We look at one of these problems in this article.

2. Basic Notions and Notations

This part reviews several fundamental graph-theoretic properties and well-known
findings that will be important later in the article.

Suppose Γ is a simple finite undirected graph. The node and edge sets of Γ are
represented by V(Γ) and E(Γ), respectively. The distance from u1 to u2 in a connected
graph Γ denoted by dis(u1, u2) is defined as the shortest distance between u1 and u2. The
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total number of nodes, denoted by |Γ|, is said to be the order of Γ. Two nodes v1 and v2
are adjacent if there is an edge between them, and we denote them by v1 ∼ v2, otherwise
v1 � v2. The valency or degree represented by deg(u1) of a node u1 is the collection of
nodes in Γ, which are adjacent to u1. A u1 − u2 path having dis(u1, u2) length is known
as a u1 − u2 geodesic. The largest distance between a node u1 and any other node of Γ is
known as the eccentricity and is denoted by ec(u1). The diameter denoted by diam(Γ) of
Γ is the largest eccentricity among all the nodes of the graph Γ. Furthermore, the radius
symbolized by rad(Γ) of Γ is the lowest eccentricity among all the nodes of the graph Γ.

Suppose Γ is a graph of order n. According to Hosoya, the polynomial of Γ with a
variable y is defined as follows:

H(Γ, y) = ∑
i≥0

dis(Γ, i)yi.

The coefficient dis(Γ, i) represents the number of pairs of nodes (v, w) so that dis(v, w) = i,
where i ≤ diam(Γ). Ramane and Talwar [27] proposed the reciprocal status Hosoya
polynomial of Γ, which is given as:

Hrs(Γ, y) = ∑
vw∈E(Γ)

yrs(v)+rs(w),

where rs(w) = ∑v∈V(Γ),w 6=v
1

dis(w,v) is referred to as the transmission or the reciprocal status
of a node w.

Suppose Γ1 and Γ2 are two connected graphs, then Γ1∨Γ2 is the join of Γ1 and Γ2 whose
node and edge sets are V(Γ1)∪V(Γ2) and E(Γ1)∪ E(Γ2)∪ {y ∼ z : y ∈ V(Γ1), z ∈ V(Γ2)},
respectively. A complete graph is a graph that has an edge between any single node in the
graph, and it is symbolized by Kn. Other unexplained terminologies and notations were
taken from [28].

Definition 1. Assume that G is a group. Then, the center of G is given as:

Z(G) = {g1 : g1 ∈ G and g1g2 = g2g1, for all g2 ∈ G}.

The dihedral group D2m is the group of symmetries, and its order is 2m, where m ≥ 3.
The presentation of a dihedral group is given by:

D2m = 〈a, b : am = b2 = 1, bab = am−1〉.

Throughout this paper, we mean m = pα, where α ∈ N and p is any odd prime number. We
now split D2m as follows:

H1 = 〈a〉, H2 =

m
2 −1⋃
ı=0

Hı
2 = {aıb, a

m
2 +ıb} = {b, ab, a2b, . . . , am−1b},

where 0 ≤ ı ≤ m
2 − 1 and H3 = 〈a〉 \ {e}. Since |a| = m and |aib| = 2, for all 1 ≤ i ≤ m,

where the identity e is connected to every other node in its power graph, the subgraph
induced by H1 is a complete graph Km.

Furthermore, the presentation of generalized quaternion group Q4n of order 4n for
n = 2k, where k ∈ N, is given as:

Q4n = 〈y, z | y2n = 1, yn = z2, zyz−1 = y−1〉.

We now split Q4n as follows:

Ω = {e, yn}, A1 = 〈y〉, A2 =
n−1⋃
i=0

Ai
2, where Ai

2 =
{

yiz, yn+iz
}
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and A3 = A1 \Ω. Since A1 is cyclic, its induced subgraph is complete, and it is denoted by
K2n. A remarkable feature of Q4n is that the involution yn and the identity e are adjacent
to every other node in their power graph. Several researchers [29–32] have analyzed the
complete description of the above-mentioned groups and their power graphs. The first
survey paper on power graphs was published in 2013 [33], and the most recent study
was [34].

Proposition 1 ([31]). The power graph P(D2m) of D2m satisfies:

P(D2m) = K1 ∨
(
Km−1 ∪ Km

)
.

Proposition 2 ([31]). The power graph P(Q4n) of Q4n satisfies:

P(Q4n) = K2 ∨ (K2n−2 ∪ nK2),

where nK2 represents the n copies of K2.

3. Hosoya Properties

The Hosoya polynomial and its reciprocal status of the power graphs of the dihedral
and generalized quaternion groups are determined in this section.

3.1. Main Results

Theorem 1. Let P(D2m) be the power graph of D2m. Then:

Hrs(P(D2m)) = (m− 1)y
7m−4

2 + my3m−1 +

(
m− 1

2

)
y3m−2.

Theorem 2. Suppose P(Q4n) is a power graph of Q4n. Then:

Hrs(P(Q4n)) =

(
2(n− 1)

2

)
y2(3n−1) + 4(n− 1)y7n−2 + y2(4n−1) + 4ny6n + ny2(2n+1).

Theorem 3. The Hosoya index of P(D2m) is as follows:

1 +
(

m
2

)
+ m +

m
2

∑
i=2

[(
1
i

) i−1

∏
k=0

(
m− 2k

2

)
+

(
m

i− 1

) i−2

∏
k=0

(
m− 2k− 1

2

)]
.

Theorem 4. For n ≥ 2, the Hosoya index of P(Q4n) is given as:

1 +
n

∑
i=1

d1
i +

2

∑
i=1

d2
i +

n

∑
i=1

d3
i +

n+1

∑
i=2

d4
i + d5

2 +
n

∑
i=2

d6
i +

2n

∑
i=2

d7
i ,

where:

d1
i =

1
i

i−1

∏
k=0

(
2(n− k)

2

)
, d2

1 = 4n, d2
2 = 4n(n− 1

2
),

d3
i =

(
n
i

)
, d4

2 = 4n
(

2(n− 1)
2

)
,

d4
i = 2n

{
2

i− 1

i−2

∏
k=0

(
2(n− k− 1)

2

)
+

2n− 1
i− 2

i−3

∏
k=0

(
2(n− k− 1)

2

)}
,

where 3 ≤ i ≤ n,
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d4
n+1 =

4n(n− 1
2 )

i− 2

i−3

∏
k=0

(
2(n− k− 1)

2

)
, d5

2 = 8n(n− 1
2
), d6

2 = 4n(n− 1),

d6
i = 2n

{
2
(

n− 1
i− 1

)
+

(
n− 1
i− 2

)
+ 4(n− 1)

(
n− 2
i− 2

)}
, where 3 ≤ i ≤ n,

d7
i =

i−1

∑
j=1

1
j

j−1

∏
k=0

(
2(n− k)

2

)(
n

i− j

)
, where 2 ≤ i ≤ 2n.

3.2. Hosoya Polynomial

To find the Hosoya polynomial, we first prove some important results.

Proposition 3. Suppose P(D2m) is the power graph of D2m. Then:

dis(P(D2m), `) =


2m, for ` = 0;
m(m+1)

2 , for ` = 1;
3m(m−1)

2 , for ` = 2.

Proof. As we know that diam(P(D2m)) = 2, we need to determine dis(P(D2m), 0),
dis(P(D2m), 1), and dis(P(D2m), 2). Now, take a node set Vk for any pair of nodes of
P(D2m), then:

|Vk| =
(
|P(D2m)|

2

)
+ |P(D2m)| = m(2m + 1).

Suppose:
C(P(D2m), `) = {(i, j); i, j ∈ V(P(D2m)) | dis(i, j) = `},

and dis(P(D2m), `) = |C(P(D2m), `)|. Then:

Vk = C(P(D2m), 0) ∪ C(P(D2m), 1) ∪ C(P(D2m), 2). (1)

As we know, dis(i, i) = 0, ∀ i ∈ V(P(D2m)), so:

C(P(D2m), 0) = {(i, i); i ∈ V(P(D2m))},

and this is actually V(P(D2m)). Thus, C(P(D2m), 0) = 2m. Using Proposition 1, P(D2m) =
K1 ∨ (Km−2 ∪ Km) with V(K1), V(Km−1) = H3, and V(Km) = H2. Therefore,

C(P(D2m), 1) = {(i, j); i = e, j ∈ H2} ∪ {(i, j); i = e, j ∈ H3}
∪ {(i, j); i, j ∈ H3 and i 6= j}.

Consequently, C(P(D2m), 1) = m + (m− 1) + (m−1
2 ) = m(m+1)

2 . Using Equation (1), we
obtain:

|Vk| = dis(P(D2m), 0) + dis(P(D2m), 1) + dis(P(D2m), 2).

Hence,

dis(P(D2m), 2) = |Vk| − dis(P(D2m), 0)− dis(P(D2m), 1)

= m(2m + 1)− 2m− m(m + 1)
2

=
3m(m− 1)

2
.
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Proposition 4. Suppose P(Q4n) is the power graph of Q4n. Then:

dis(P(Q4n), `) =


4n, for ` = 0;
2n(n + 2), for ` = 1;
6n(n− 1), for ` = 2.

Proof. As we know that diam(P(Q4n)) = 2, we need to determine dis(P(Q4n), 0),
dis(P(Q4n), 1), and dis(P(Q4n), 2). Suppose Vk is the collection of all pairs of nodes
of P(Q4n), then:

|Vk| = 2n(4n + 1).

Let
C(P(Q4n), `) = {(i, j); i, j ∈ V(P(Q4n))|dis(i, j) = `},

then dis(P(Q4n), `) = |C(P(Q4n), `)|, and:

Vk = C(P(Q4n), 0) ∪ C(P(Q4n), 1) ∪ C(P(Q4n), 2). (2)

Since, dis(i, i) = 0, for any i ∈ V(P(Q4n)), so:

C(P(Q4n), 0) = {(i, i); i ∈ V(P(Q4n))}

and this is equal to V(P(Q4n)). Thus, C(P(Q4n), 0) = 4n. Using Proposition 2, where

V(K2) = {e, yn}, V(K2n−2) = A3, and V(nKn) = A2 =
n−1⋃
=0

A
2, therefore, we have:

C(P(Q4n), 1) = {(i, j); i ∈ Ω, j ∈ A2} ∪
n−1⋃
=0

{
(i, j); (i, j) ∈ A

2 and j 6= i
}

∪ {(i, j); i ∈ Ω, j ∈ A3} ∪ {(i, j); (i, j) ∈ A3 and j 6= i}
∪ {(i, j); (i, j) ∈ Ω and j 6= i}.

Consequently, dis(P(Q4n), 1) = 4n + n(1) + 2(2n− 2) + (2n−2
2 ) + 1 = 2n(n + 2). Using

Equation (2), we obtain:

|Vk| = dis(P(Q4n), 0) + dis(P(Q4n), 1) + dis(P(Q4n), 2).

Hence,

dis(P(Q4n), 2) = |Vk| − dis(P(Q4n), 0)− dis(P(Q4n), 1)

= 2n(4n + 1)− 4n− 2n(n + 2)

= 6n(n− 1).

The following results yield the Hosoya polynomials of the power graphs of the dihe-
dral and the generalized quaternion groups.

Theorem 5. Consider the power graph P(D2m) of D2m. Then:

H(P(D2m), y) =
m
2

(
3(m− 1)y2 + (m + 1)y + 4

)
.

Proof. By substituting the coefficients dis(P(D2m), `) derived in Propositions 3 and 4 into
the formula for the Hosoya polynomial, we obtain:
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H(P(D2m), y) = dis(P(D2m), 2)y2 + dis(P(D2m), 1)y1 + dis(P(D2m), 0)y0

=

(
3m(m− 1)

2

)
y2 +

(
m(m + 1)

2

)
y + 2my0

=
m
2

(
3(m− 1)y2 + (m + 1)y + 4

)
.

We obtain the desired polynomial.

Theorem 6. Consider the power graph P(Q4n) of Q4n. Then:

H(P(Q4n), y) = n
(

6(n− 1)y2 + 2(n + 2)y + 4
)

.

Proof. By substituting the coefficients dis(P(Q4n), `) derived in Propositions 3 and 4 into
the formula for the Hosoya polynomial, we obtain:

H(P(Q4n), y) = dis(P(Q4n), 2)y2 + dis(P(Q4n), 1)y1 + dis(P(Q4n), 0)y0

= (6n(n− 1))y2 + (2n(n + 2))y + (4n)y0

= n
(

6(n− 1)y2 + 2(n + 2)y + 4
)

.

This proves the statement.

4. Reciprocal Status Hosoya Polynomial

This part determines the reciprocal status of every node in the power graphs.

Proposition 5. If v is a node of P(D2m), then:

rs(v) =


2m− 1, when v = e;
m, when v ∈ H2;
3m−2

2 , when v ∈ H3.

Proof. Using Proposition 1, P(D2m) = K1 ∨
(
Km−1 ∪ Km

)
with node set {e} ∪ H2 ∪ H3.

Therefore, if v = e, then ec(v) = 1, and following the concept of the reciprocal status, we
have:

rs(v) =
(

1
1

)
(m + m− 1) = 2m− 1.

When v ∈ H2, implying ec(v) = 2, also, we apply the concept of the reciprocal status, so
we have:

rs(v) =
(

1
1

)
(1) +

1
2
(2m− 2) = m.

When v ∈ H3, implying ec(v) = 2, also, we apply the concept of the reciprocal status, so
we have:

rs(v) =
(

1
1

)
(m− 1) +

m
2

=
3m− 2

2
.

Combining them, we obtain the required quantity.

Proposition 6. If v is a node of P(Q4n), then:

rs(v) =


4n− 1, when v ∈ Ω;
2n + 1, when v ∈ A2;
3n− 1, when v ∈ A3.

Proof. Using Proposition 2, the node set of P(Q4n) is Ω∪ A2 ∪ A3. Therefore, when v ∈ Ω,
implying ec(v) = 1, also, we apply the concept of the reciprocal status, so we have:
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rs(v) =
(

1
1

)
{1 + 2n− 2 + 2n} = 4n− 1.

When v ∈ A2, implying ec(v) = 2, also, we apply the concept of the reciprocal status, so
we have:

rs(v) = 3
(

1
1

)
+

(
1
2

){
2(n− 1) +

(
4n
2
− 2
)}

= 2n + 1.

When v ∈ A3, implying ec(v) = 2, and by the definition of the reciprocal status, we have:

rs(v) =
(

1
1

)
(2n− 3 + 2) +

(
1
2

)
(2n) = 3n− 1.

Combining them, we obtain the required quantity.

Proof of Theorems 1 and 2

The following results compute the reciprocal status Hosoya polynomial of the power
graph of a group G.

Proof of Theorem 1. Using Proposition 5, this means that there are three types of edges
(u ∼ v, u ∼ w, v ∼ v) in P(D2m), according to their end nodes’ reciprocal statuses, where
u = 2m− 1, v = 3m−2

2 , and c = m. The edge partition is shown in the following Table 1.
By incorporating the edge set’s partition specified in Table 1 into the formula for the

reciprocal status Hosoya polynomial, we obtain the following.

Hrs(P(D2m)) = ∑
Eu∼v

yu+v + ∑
Eu∼w

yu+w + ∑
Ev∼v

yv+v

= (m− 1)y2m−1+ 3m−2
2 + my2m−1+m +

(
m− 1

2

)
y

3m−2
2 + 3m−2

2

= (m− 1)y
7m−4

2 + my3m−1 +

(
m− 1

2

)
y3m−2.

Table 1. P(D2m) is partitioned into edges based on their reciprocal statuses.

Type of Edge Edge Set’s Partition Edges Count

u ∼ v Eu∼v = {ab ∈ E(P(D2m)) : rs(a) = u, rs(b) = v} |Eu∼v| = m− 1
u ∼ w Eu∼w = {ab ∈ E(P(D2m)) : rs(a) = u, rs(b) = w} |Eu∼w| = m
v ∼ v Ev∼v = {ab ∈ E(P(D2m)) : rs(a) = v, rs(b) = v} |Ev∼v| = (m−1

2 )

Proof of Theorem 2. From Proposition 6, there are five types of edges (u ∼ u, u ∼ v, v ∼ v,
v ∼ w, w ∼ w) in P(Q4n). Consequently, the edge partitioning is shown in Table 2 along
with the reciprocal status of their end nodes, when u = 6n

2 − 1, v = 4n− 1, w = 2n + 1.
We obtain the reciprocal status Hosoya polynomial formula by substituting the edge

partition of P(Q4n), which is provided in Table 2.

Hrs(P(Q4n)) = ∑
Eu∼u

yu+u + ∑
Eu∼v

yu+v + ∑
Ev∼v

yv+v + ∑
Ev∼w

yv+w + ∑
Ew∼w

yw+w

=

(
2(n− 1)

2

)
y2(3n−1) + 4(n− 1)y(3n−1)+(4n−1) + (1)y2(4n−1)

+ (4n)y(4n−1)+(2n+1) + (n)y2(2n+1)

=

(
2(n− 1)

2

)
y2(3n−1) + 4(n− 1)y7n−2 + y2(4n−1) + (4n)y6n + (n)y2(2n+1).
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Table 2. P(Q4n) is partitioned into edges based on their reciprocal statuses.

Type of Edge Edge Set’s Partition Edges Count

u ∼ u Eu∼u = {ab ∈ E(P(D2m)) : rs(a) = u, rs(b) = u} |Eu∼u| = (2(n−1)
2 )

u ∼ v Eu∼v = {ab ∈ E(P(D2m)) : rs(a) = u, rs(b) = v} |Eu∼v| = 4(n− 1)
v ∼ v Ev∼v = {ab ∈ E(P(D2m)) : rs(a) = v, rs(b) = v} |Ev∼v| = 1
v ∼ w Ev∼w = {ab ∈ E(P(D2m)) : rs(a) = v, rs(b) = w} |Ev∼w| = 4n
w ∼ w Ew∼w = {ab ∈ E(P(D2m)) : rs(a) = w, rs(b) = w} |Ew∼w| = n

5. Hosoya Index

The Hosoya index of the power graphs of finite groups is examined in this section. On
a graph with n nodes, the greatest feasible value of the Hosoya index is provided by the
complete graph Kn [35]. In general, the Hosoya index of Kn, where n ≥ 2, is as follows:

1 +

n
2

∑
i=1

(
1
i

) i−1

∏
k=0

(
n− 2k

2

)
,

this may be seen concerning the entire non-void matchings specified in Table 3, whereas di
represents the cardinality i matchings, where 1 ≤ i ≤ n

2 .

Table 3. The total non-void matchings in Kn.

Km d1 d2 d3 d4 · · · di

K2 (2
2)

K3 (3
2)

K4 (4
2)

1
2 (

4
2)(

2
2)

K5 (5
2)

1
2 (

5
2)(

3
2)

K6 (6
2)

1
2 (

6
2)(

4
2)

1
3 (

6
2)(

4
2)(

2
2)

K7 (7
2)

1
2 (

7
2)(

5
2)

1
3 (

7
2)(

5
2)(

3
2)

K8 (8
2)

1
2 (

8
2)(

6
2)

1
3 (

8
2)(

6
2)(

4
2)

1
4 (

8
2)(

6
2)(

4
2)(

2
2)

...
...

...
... ...

. . .
...

Km (m
2 )

1
2 (

m
2 )(

m−2
2 ) 1

3 (
m
2 )(

m−2
2 )(m−4

2 ) 1
4 (

m
2 )(

m−2
2 )(m−4

2 )(m−6
2 ) · · · 1

i ∏i−1
k=0 (

m−2k
2 )

Proof of Theorem 3. From the structure of P(D2m), the identity e is the only node that is
connected to every other node in V(P(D2m)). Therefore, there are three types of edges in
P(D2m), i.e.,:

Type 1: u1 ∼ u2, for u1, u2 ∈ H3;

Type 2: u1 ∼ u2, for u1 ∈ H3, u2 = e;

Type 3: u1 ∼ u2, for u1 ∈ H2, u2 = e.

Since we know that the subgraph induced by H1 is complete, i.e., Km, thus, P(D2m)
has two distinct types of matchings:

T1 Matchings of Type 1 and Type 2 edges;
T2 Matchings of Type 1 and Type 3 edges:

T1: For each type, the number of matchings may be calculated as follows: Due to the fact
that the edges of Type 1 and Type 2 are the edges of a complete graph Km, which is
induced by the nodes in H1, so the number of matchings in this type can be obtained
by counting the matchings in Km, which are given in Table 4, where di denotes the
number of matchings of order i, for 1 ≤ i ≤ m

2 ;

T2: Every matching of this kind may be generated by substituting one edge of Type 3 for
any edge of Type 1. Given that every Type-1 edge is also an edge of Km−1, which is
induced by the nodes of H3, so every matching of Type-1 edges is also a matching of
Km−1. The total number of certain matchings is described in Table 5, where for any
1 ≤ i ≤ m

2 , di signifies the total number of matchings of order i.
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Given that Type 3 has m edges, the essential matchings may be produced as:

• Matchings having one order: These are the m such matches that correspond to
the m Type-3 edges;

• Matchings having two orders: All of these matchings may be achieved by
inserting a Type-3 edge through every other matching having one order in Km−1.
Using Table 5, there are m edges of Type 3, as well as (m−1

2 ) matchings having
one order in Km−1. As a result of the product rule, the number of matchings
having two order is: m(m−1

2 );
• Matchings having three orders: Every one of these matchings may be achieved

by inserting a Type-3 edge into every other matching of order two in Km−1. Thus,
there are m Type-3 edges, as well as 1

2 (
m−1

2 )(m−3
2 ) matchings having two order

in Km−1, by Table 5. As a result of the product rule, the number of order three
matchings is:

m
2

(
m− 1

2

)(
m− 3

2

)
;

• Order four matchings: Any of these matchings may be generated by inserting
one edge of Type 3 through every order three matching in Km−1. Thus, there are
m Type-3 edges, as well as 1

3 (
m−1

2 )(m−3
2 )(m−5

2 ) matchings having three orders in
Km−1, by Table 5. As a consequence of the product rule, the number of matchings
of order four is given by:

m
3

(
m− 1

2

)(
m− 3

2

)(
m− 5

2

)
;

• Order i matchings: In general, every order i matching may be generated by
adding one edge of Type 3 to every order i− 1 matching in Km−1. According to
Table 5, there are m possible edges of Type 3 and 1

i−1 ∏i−2
k=0 (

m−2k−1
2 ) matchings

of order i− 1 in Km−1. Therefore, by the product rule, the number of matchings
of order i is:

m
i− 1

i−2

∏
k=0

(
m− 2k− 1

2

)
.

Next, using the sum rule, the entire matchings in each order (matchings (T1) +
matchings (T2)) may be calculated as: The number of matchings of order one is
as follows:

m +

(
m
2

)
.

Order two has the sequel number of matchings:

m
(

m− 1
2

)
+

1
2

(
m
2

)(
m− 2

2

)
.

Order three has the following number of matchings:

m
2

(
m− 1

2

)(
m− 3

2

)
+

1
3

(
m
2

)(
m− 2

2

)(
m− 4

2

)
.

Order four has the following number of matchings:

m
3

(
m− 1

2

)(
m− 3

2

)(
m− 5

2

)
+

1
4

(
m
2

)(
m− 2

2

)(
m− 4

2

)(
m− 6

2

)
.

Generally, order i has the following number of matchings:



Entropy 2022, 24, 213 11 of 15

1
i

i−1

∏
k=0

(
m− 2k

2

)
+

m
i− 1

i−2

∏
k=0

(
m− 2k− 1

2

)
,

where 2 ≤ i ≤ m
2 .

Thus, the Hosoya index of P(D2m) is given by:

1 + m +

(
m
2

)
+

m
2

∑
i=2

{
1
i

i−1

∏
k=0

(
m− 2k

2

)
+

m
i− 1

i−2

∏
k=0

(
m− 2k− 1

2

)}
.

Table 4. The total non-void matchings in Km.

Km d1 d2 d3 d4 · · · di

K3 (3
2)

K5 (5
2)

1
2 (

5
2)(

3
2)

K7 (7
2)

1
2 (

7
2)(

5
2)

1
3 (

7
2)(

5
2)(

3
2)

K9 (9
2)

1
2 (

9
2)(

7
2)

1
3 (

9
2)(

7
2)(

5
2)

1
4 (

9
2)(

7
2)(

5
2)(

3
2)

...
...

...
...

...
. . .

...
Km (m

2 )
1
2 (

m
2 )(

m−2
2 ) 1

3 (
m
2 )(

m−2
2 )(m−4

2 ) 1
4 (

m
2 )(

m−2
2 )(m−4

2 )(m−6
2 ) · · · 1

i ∏i−1
k=0 (

m−2k
2 )

Table 5. The total non-void matchings in Km.

Km d1 d2 d3 d4 · · · di

K2 (2
2)

K4 (4
2)

1
2 (

4
2)(

2
2)

K6 (6
2)

1
2 (

6
2)(

4
2)

1
3 (

6
2)(

4
2)(

2
2)

K8 (8
2)

1
2 (

8
2)(

6
2)

1
3 (

8
2)(

6
2)(

4
2)

1
4 (

8
2)(

6
2)(

4
2)(

2
2)

...
...

...
...

...
. . .

...
Km−1 (m−1

2 ) 1
2 (

m−1
2 )(m−3

2 ) 1
3 (

m−1
2 )(m−3

2 )(m−5
2 ) 1

4 (
m−1

2 )(m−3
2 )(m−5

2 )(m−7
2 ) · · · 1

i−1 ∏i−2
k=0 (

m−2k−1
2 )

Proof of Theorem 4. Using Proposition 2, the node set is V(P(Q4n)) = Ω ∪ A2 ∪ A3,
where A2 =

⋃n−1
=0 A

2. Therefore, we have the sequel types of edges in P(Q4n):

Type 1: u1 ∼ u2, for any u1, u2 ∈ A3;

Type 2: u1 ∼ u2, for any u1, u2 ∈ Ω;

Type 3: u1 ∼ u2, for any u1 ∈ A3, u2 ∈ Ω;

Type 4: u1 ∼ u2, for any u1 ∈ A2, u2 ∈ Ω;

Type 5: u1 ∼ u2, for any u1, u2 ∈ Aj
2 ⊆ A2, where 0 ≤ j ≤ n− 1.

Seven cases of matchings occur amongst the edges of P(Q4n) according to the follow-
ing categories:

(d1) Matchings amongst the Type-1, Type-2, as well as Type-3 edges;

(d2) Matchings amongst the Type-4 edges;

(d3) Matchings amongst the Type-5 edges;

(d4) Matchings amongst the Type-1 and Type-4 edges;

(d5) Matchings amongst the Type-3 and Type-4 edges;

(d6) Matchings amongst the Type-4 and Type-5 edges;

(d7) Matchings amongst the Type-1, Type-2, Type-3, and Type-5 edges.

The following method computes all the types of matchings as mentioned above:
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(d1) As we know that the subgraph induced by A1 is complete, that is, K2n, so all the Type-1,
Type-2, and Type-3 edges are exactly the edges of K2n, and all the matchings between
these edges are counted in Table 6, where d1

i denotes the number of matchings of
order i, where 1 ≤ i ≤ n;

(d2) For i = 1, 2, let d2
i indicate the number of order i matchings:

For (d2
1): The number of Type-4 edges that are 4n, which is equal to the number of

order one matchings. Consequently, (d2
1) = 4n;

For (d2
2): Suppose u1 ∼ u2 = e is a Type-4 edge with u2 ∈ Ω and u1 ∈ Aj

2 for a fixed
0 ≤ j ≤ n− 1. Then, in addition to the edge e, every edge of Type 4 with one end
in A2 \ {u1} and another in Ω \ {u2} forms a matching of order two. As a result,

(d2
2) = 4(n− 1

2
)(n) = 4n(n− 1

2
).

Hence, there is no order larger than two matching in this situation;

(d3) Type 5 has n edges, none of which have a similar node. Thus, for any order i, there
exists a matching such that 1 ≤ i ≤ n. Suppose (d3

i ) represents the number of order i
matchings. Then, (d3

i ) = (n
i );

(d4) Assume that (d4
i ) represents the number of order i matchings, where 1 ≤ i ≤ n + 1.

Thus, in this context, (d4
1) = 0. There are no Type-1 edges that connect a node to any

Type-4 edge in P(Q4n). Hence, we may obtain a matching in this situation by joining
every matching of Type-1 edges to any matching of the Type-4 edges. The edges of
Type 1 are also the edges of K2n−2, and there are (d1

`) matchings of order ` between
them, where 1 ≤ ` ≤ n− 1. Every (d1

`) can be found in Table 6. In between the edges
of Type 4, there are (d2

1) = 4n and (d2
2) = 4n(n− 1

2 ) matchings having one and two
orders, respectively.

As a result of the product rule, we obtain:

d4
2 = d2

1 × d1
1 = 4nd1

1.

When 3 ≤ i ≤ n, then:

d4
i = d2

1 × d1
i−1 + d2

2 × d1
i−2

= 4nd1
i−1 + 4n

(
n− 1

2

)
d1

i−2

= 2n
(

2d1
i−1 + 2

(
n− 1

2

)
d1

i−2

)
.

Furthermore, when i = n + 1, then:

d4
i = d2

2 × d1
i−2 = 4n

(
n− 1

2

)
d1

n−1;

(d5) For i = 1, 2, (d5
i ) represents the total matchings of order i. Then, (d5

1) = 0. We can only
utilize matchings of order one between the edges of Type 4 in this case. Otherwise,
we are unable to employ any Type-3 edge, since both kinds of edges often share
the nodes in Ω. As a result, we can only obtain matchings of order two in this case.
Assume that N = {e = u1 ∼ u2} is the order one matching amongst the Type-4 edges
with u1 ∈ Aj

2, for 0 ≤ j ≤ n− 1. Then, any Type-3 edge that is non-adjacent with
u2 can lead to construct an order two matchings. Given that there are 2(n− 1) such
Type-3 edges, every of which may be utilized in every one of 4n matchings of order
one amongst Type-4 edges, so we obtain:

(d5
2) = 8n(n− 1);
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(d6) For 1 ≤ i ≤ n, (d6
i ), denote the number of order i matchings, then (d6

1) = 0. To
find matchings, both matchings of order one and two between the edges of Type 4
will be considered and any matching of order ` between the edges of Type 5, where
1 ≤ ` ≤ n− 1. Thus, by counting these matchings using the product rule, we obtain:

d6
2 = 1× 4× n×

(
n− 1

1

)
= 4n(n− 1),

and for 3 ≤ i ≤ n :

d6
i = 2n

{
2
(

n− 1
i− 1

)
+

(
n− 1
i− 2

)
+ 4(n− 1)

(
n− 2
i− 2

)}
;

(d7) Given that the edges of Type 1, Type 2, as well as Type 3 are also the edges of K2n,
which is induced by A1, so we may utilize them to identify matchings between the
edges of Type 5 and the edges of K2n. Let d7

i be the number of order i matchings.
Then, d7

i = 0. Because no edge of Type 5 shares a node with an edge of K2n, this
corresponds to each matching of the edges of Type 5. Therefore, each matching of the
edges of K2n can be used to determine a match in this situation. Since there exist d1

κ

matchings of the cardinality 1 ≤ κ ≤ n among the edges of K2n, as shown in Table 6,
as well as d3

 = (n
) matchings of the order 1 ≤  ≤ n among the Type 5 edges, thus, in

this example, the greatest order of a matching is 2n. As a result, we may determine
d7

i , for 2 ≤ i ≤ 2n, as follows:

d7
2 = d1

1d3
1,

d7
3 = d1

1d3
2 + d1

2d3
1,

d7
4 = d1

1d3
3 + d1

2d3
2 + d1

3d3
1,

...

d7
i =

i−1

∑
=1

d1
 d3

i−.

As a consequence, by the sum rule, the Hosoya index of P(Q4n) is as follows:

1 +
7

∑
i=1

(di) = 1 +
n

∑
i=1

d1
i +

2

∑
i=1

d2
i +

n

∑
i=1

d3
i +

n+1

∑
i=2

d4
i + d5

2 +
n

∑
i=2

d6
i +

2n

∑
i=2

d7
i ,

where:

d1
i =

1
i

i−1

∏
k=0

(
2(n− k)

2

)
, d2

1 = 4n, d2
2 = 4n

(
n− 1

2

)
, d3

i =

(
n
i

)
,

d4
2 = 4n

(
2(n− 1)

2

)
,

d4
i = 2n

{
2

i− 1

i−2

∏
k=0

(
2(n− k− 1)

2

)
+

2n− 1
i− 2

i−3

∏
k=0

(
2(n− k− 1)

2

)}
,

for 3 ≤ i ≤ n,

d4
n+1 =

2n(2n− 1)
i− 2

i−3

∏
k=0

(
2(n− k− 1)

2

)
,

d5
2 = 8n(n− 1

2
), d6

2 = 4n(n− 1),

d6
i = 2n

{
2
(

n− 1
i− 1

)
+

(
n− 1)
i− 2

)
+ 4(n− 1)

(
n− 2
i− 2

)}
, for 3 ≤ i ≤ n,

d7
i =

i−1

∑
=1

1


−1

∏
k=0

(
2(n− k)

2

)(
n

i− 

)
, for 2 ≤ i ≤ 2n.
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Table 6. The total non-void matchings in K2n.

K2n d1
1 d1

2 d1
3 d1

4 · · · d1
i

K2 (2
2)

K4 (4
2)

1
2 (

4
2)(

2
2)

K6 (6
2)

1
2 (

6
2)(

4
2)

1
3 (

6
2)(

4
2)(

2
2)

K8 (8
2)

1
2 (

8
2)(

6
2)

1
3 (

8
2)(

6
2)(

4
2)

1
4 (

8
2)(

6
2)(

4
2)(

2
2)

...
...

...
... ...

. . . ...
K2n−1 (2n

2 )
1
2 (

2n
2 )(

2n−2
2 ) 1

3 (
2n
2 )(

2n−2
2 )(2n−4

2 ) 1
4 (

2n
2 )(

2n−2
2 )(2n−4

2 )(2n−6
2 ) · · · 1

i ∏i−1
k=0 (

2(n−k)
2 )

6. Concluding Remarks

This work aimed to discuss the structural properties of the power graphs of finite
non-abelian groups. In this work, we found the Hosoya properties, that is the Hosoya
polynomials, the reciprocal status Hosoya polynomials, and the Z-index of the power
graphs of certain finite groups. The reciprocal status Hosoya polynomials described in
Theorems 1 and 2 are the most notable results of this context. We further illustrated the
Z-index in Theorems 3 and 4 of the power graphs of the dihedral and the generalized
quaternion groups, respectively.
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