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Introduction 

The power grid which is designed to function  
as a network is vulnerable to physical  and cyber 
disruption. The sources of vulnerability include natural 
disasters, equipment failures, human errors, or 
deliberate sabotage and attacks. As the power grids 
become heavily loaded with long distance 
transmission, the complex system become even more 
vulnerable as we have observed in several massive 
outages in the last decade.  In a vulnerable system, a 
simple incident such as an equipment failure or a line 
touching a tree can lead to a cascaded sequence of 
events, leading to widespread blackouts. 

The power grid, unconcerned to most public 
most of the time when it is operating in normal 
condition, gets attention only when such outages occur.  
As shown in Table I, there were several major power 
outages in the US power grid in the last three decades 
[1, 2]. Additionally, in August 2003, even a greater 
outage occurred in the North-eastern United States.   
However, since our research on the small world 
perspective started in 2002, the 1996 outage, the most 
vivid and greatest disaster in power system reliability 
at that time, was the main focus of the paper.  
       Actually, the 1996 outage occurred twice, apart 
by about a month.  On July 2, 1996 a short circuit on a 
345-kV line in Wyoming started a chain of events 
leading to a break-up of the western North America 
power grid which resulted in five islands with a 
blackout in southern Idaho with loss of 11,750MW of 
load. The August 10, 1996 failure resulted in break-up 
of the Western Systems Coordinating Council (WSCC) 
grid into four islands with loss of 30,390 MW of load 
affecting 7.49 million customers in western North 
America [3]. 
  In general, generators in power systems are 
always subject to periodic disturbances, e.g., periodic 
load variations in steady state, swings of the other 
generators in transient state, and so on.  The response 
of a power system to these impacts is oscillatory.  If 
the oscillations are damped, so that after sufficient time 
has elapsed the deviation or the change in the state of 
the system due to the small impact is small (or less 
than some prescribed finite amount), the system is 
stable.  If, on the other hand, the oscillations grow in 
magnitude or are sustained indefinitely, the system is 
unstable. When the stability of the system is 
investigated, it is often convenient to assume that the 
disturbances causing the changes disappear.  Stability 

is then assured if the system returns to its original state.   
  
TABLE I. MAJOR ELECTRICITY RELIABILITY EVENTS 

IN NORTH AMERICA. 
         Major Events             Dates 
Northeast Blackout  November 9-10, 1965 
New York City Blackout  July 13-14, 1977 
Los Angeles Earthquake  January 17, 1994 
Western States Cascading Outage  December 14, 1994 
Western States Cascading Outage July 2, 1996 
Western States Cascading Outage August 10, 1996 
Minnesota-Wisconsin “Near Miss” June 11-12, 1997 
Northeast Ice Storm January 5-10, 1998 
Upper Midwest Cascading Outage June 25, 1998 
San Francisco Blackout December 8, 1998 
 

  The overall system dynamics can be 
represented by a set of dynamic equations (one for 
each dynamic device) together with a set of static 
network equations which define the interaction 
between the dynamic devices [4].   

If the mathematical description of the system is 
in state-space form, i.e., if the system is described by a 
set of first-order differential equations,  

BuAx
dt
dx += ,     

and the free response of the system can be determined 
from the eigenvalues of the A matrix. If all eigenvalues 
have a negative real part, all modes decay with time 
and the system is said to be stable.  If any one 
eigenvalue has a positive real part, the corresponding 
mode grows exponentially with time and eventually 
dominates the system behavior.  Such a system is said 
to be unstable. 
        However, the cascading outages experienced in 
summer 1996 disclosed the inherent need for an 
enhancement in the current power grid operation and 
dynamic system analysis. One of the prominent 
mechanisms of failure was a transient oscillation, 
under conditions of high power transfer on long paths 
that had been progressively weakened through a series 
of seemingly routine transmission line outages.  Later 
analysis of monitor records provided many indications 
of potential oscillation problems. Less direct 
indications of a weakened system were observed by 
system operators for some hours, but there had been no 
means of interpreting them. Operating records 
suggested that better tools might have provided system 
operators with about six minutes warning prior to the 
event that triggered the actual breakup [5].   

A better detection and recognition of instability 
“signatures” in system dynamic activity was suggested 
as an interim solution.   However, the broader message 
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left by the outages was that a new paradigm is needed 
for an enhanced overall control of large power 
systems. 
       However, more serious and vexing problem is 
that, as reported in the 2003 Northeast Blackout report 
from NERC, there are causes but there is not the cause 
of wide spread blackout.  In other words, some events 
contributed to the blackout but they are not necessary 
the cause of the blackout.   Also, dynamic simulations 
and contingency plans are available but not used 
accurately nor on-time. Moreover, one cannot simulate 
all the situations in advance.  Therefore, the causes of 
the blackouts are similar and the recommendations 
after the havocs are similar, but the problems have not 
been solved.    
       This paper suggests an alternative look on the 
power grid and blackouts, not using the conventional 
system dynamics but from a new graphical point of 
view. This paper does not attempt to find causes or 
sequences of blackout, instead, it wants to explain in 
terms of network topology what the difference is 
before a blackout and after, and thus tries to argue that 
a topological index could be used, or at least further 
investigated, for blackout analysis.  Further, it is hoped 
that the index is utilized in the normal situation to 
monitor the strength of the power grid and the 
vulnerability of it. 
 
System Dynamics and Network Topology 
 
        Analysis by eigenvalue techniques has shown that 
low frequency oscillations are inherent to inter-
connected power systems.  The frequency and damping 
of inter-area modes depends on the weakness of the tie 
line and on the load carried by the tie line.  Also, 
higher frequency modes are caused by relatively weak 
transmission link between interconnected areas.   
       It is well known that the WSCC system for 
instance is prone to lightly damped low frequency 
inter-area oscillations in the frequency range of 0.2 – 
0.3 Hz; they have been observed on the system many 
times.  These oscillations are a characteristic of groups 
of machines oscillating against other groups of 
machines through weak ties.  This is a phenomenon 
associated with small-signal stability, and is a function 
primarily of network/generator topology and excitation 
controls. 
        However, the nature of the oscillations is not 
yet fully understood. This inter-area oscillation is the 
"weakest link" in the current dynamic analysis based 
on the eigenvalue technique.   Full understanding can 
only be obtained following the detailed study of a 
number of different real systems, followed by 
systematic validation by measurements and practical 
experience [6].   
      The blackouts reported, thus, expressed the 
need for an enhanced and a more robust technique to 
be adopted for modeling and analysis of system 
dynamics.  In general, one may argue that unreliable 
models in planning process provided a common point 
of failure for the entire decision making whereby the 

power system was planned and operated.  Further, the 
control engineer often found that major control 
systems produced wide area effects that were not well 
instrumented at that time, and that they sometimes 
operated under conditions that planning studies could 
not anticipate [7]. 
        It has been vaguely but steadily recognized that 
the inter-connections tend to be weaker than the tightly 
meshed local networks, and that a linearly stretched 
network could be related to the instability phenomenon 
[6].  However, network topology has never entered in 
to the dynamic analysis.  
        Network anatomy is important to characterize 
because structure always affects function. It is 
recognized in power system dynamics that the 
qualitative nature of a system’s connectivity is 
important in determining both its structural and 
dynamic properties. In many networks there is a 
dynamical aspect of error tolerance: the removal of a 
node could affect the functionality of other nodes as 
well.  Thus in many systems errors lead to cascading 
failures, affecting a large fraction of the network.                   
Therefore, topology may offer insightful explanations 
to the questions on cascading failures:  How is it that 
small initial shocks can cascade to affect or disrupt 
large systems that have proven stable with respect to 
similar disturbances in the past? Why did a single 
power line trigger a massive cascading failure, when 
similar failures in similar circumstances did not do so 
in the past?  As the topology of social networks affects 
the spread of information and disease, the topology of 
the power grid may affect the robustness and stability 
of power transmission. 
        Recently, power grid obtained another 
attention, this time not from public but from scientists 
and engineers whose interests are in the area of 
complex systems and non-linear behaviors, by an 
article in sociology, which stated that power grid is one 
of “small world” networks [8]. In graph theory, “small 
world” comes between random and complete graphs.  
In a complete graph where nodes are connected as 
lattice, average distance between arbitrary nodes is 
much bigger than that of random graph in which nodes 
are connected in a random fashion.   Small world is a 
semi-random graph which produces a sharp reduction 
of the average distance between arbitrary nodes while 
the system is still relatively localized.     
        The wide appeal of this concept of small world 
is that the small world property seems to be a 
quantifiable characteristic of many real-world 
structures and networks.  Many papers in many 
different scientific and societal fields report similar 
small world behavior in the real-world networks.   The 
real world structures reported as having small world 
phenomena are: World Wide Web (WWW) sites, 
Internet domains, professional article co-authorship, 
 E. coli. graph, food webs, synonymous words, and C. 
Elegans worm neural networks.   
        Some publications of small world presentation 
suggest that power grid may be an example of a small 
world.  More interesting question is that, if all power 



CRIS, Third International Conference on Critical Infrastructures, Alexandria, VA, September 2006 

  

grids are indeed small worlds, what implication of the 
small world property of power grid would have in 
power grid operation, planning, stability, and 
vulnerability.  Specifically, related to the cascading 
outages experienced in the last decade, what 
information of the small world property of the power 
grid can be of use to prevent similar events and to give 
early warnings to the grid operators to avoid such 
disasters, or at least, to explain those events in a 
different perspective other than systems dynamics.   
        This paper studied power transmission grid of 
several typical networks to examine if they are small 
world and attempted to explain if there is any inherent 
correlation between the small world graphical 
properties of a power grid with cascade outages it 
experienced.  
 
Graph Theory and Small World Networks 
 
         A power grid's inherent risk of failure depends 
on factors such as the magnitudes of population and 
loads in relation to generation resources.  It is 
suggested that highly meshed transmission networks 
with evenly distributed load and generation are more 
reliable than networks arranged longitudinally, in 
loops, or radial (as on peninsulas, for instance) [9].   
Also, a linearly stretched network is weaker than 
tightly meshed local networks [6].  This chapter first 
reviews graph theory and the "small world" network, 
following the excellent sections presented in the 
reference [10], and then explores implications of the 
small world network in the power grid.                                                             
 
a) Basic Graph Theory 

 
         A graph is nothing more than a set of points 
connected in some fashion by a set of lines.  More 
theoretically, a graph G consists of nonempty set of 
elements, called vertices (or nodes), and a list of 
unordered pairs of these elements, called edges (or 
lines).   Graphs can be used to represent all kinds of 
networks, where the vertices represent network 
elements such as substations, transformers, and 
generators in power grid system and the edges, some  
predefined relationship between connected elements  
such as high voltage transmission lines.   

The set of vertices of the graph G is called the 
vertex set of G denoted by V(G), and the list of edges 
is called the edge list of G, denoted by E(G).    If v and 
w are vertices of G, then an edge of the form vw is said 
to join or connect v and w.  The number of vertices in 
V(G) is termed the order of the graph, n, and the 
number of edges in E(G), its size, M.   The maximum 

size of E(G), 
2

1
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=  corresponds 

to a “fully connected” or complete graph.  On the other 
hand, sparseness implies maxMM << . 

On the other hand, the number of edges incident 
with a given vertex v, i.e., the number of v’s adjacent 
neighboring vertices, is called the degrees of v, 

denoted by kv.  One static frequently used in network 
classification is the average degree, k, which quantifies 
the relationship between n and M: 

     
n
Mk 2= .                                               (1) 

However, one of the two most important 
statistics of graph is the characteristic path length, 
L(G), that is, the average distance between every 
vertex and every other vertex.   The “distance,” d(i, j), 
here refers not to any separately defined metric space 
but to the minimum number of edges that must be 
traversed in order to reach vertex j from vertex i.  In 
other words, L is the shortest path length between i and 
j. For a random graph, a reasonable asymptotic 
approximation is  

    .
)ln(
)ln(

k
nLrandom ≈                           (2)

                      
The other important statistic is the clustering 

coefficient of a graph.  The neighborhood of a vertex 
v, Γ(v), is defined as the sub-graph that consists of the 
vertices adjacent to v (not including v itself).  Then, the 
clustering coefficient of Γ(v), γv, characterizes the 
extent to which vertices adjacent to any vertex v are 
adjacent to each other.   In other words, the clustering 
coefficient of a vertex v is defined by the ratio of the  
number of edges in the neighborhood of v and the total 
number of possible edges in the neighborhood: 

       
2/))1((

)}({
−⋅

Γ
=

vv
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vE
γ                                     (3) 

 
where E is the expected value of the neighborhood of a 
vertex. A measure of clustering over the entire graph 
G,γ, is defined as the average of γv over all )(GVv ∈ .  
Therefore, γ =1 would imply a complete graph, and γ 
= 0 would imply that no neighbor of any vertex is 
adjacent with any other neighborhood.  In power grid, 
γ implies the degree to which substations (or 
generators or load centers) are connected via 
transmission lines to each other.  For a random graph, 
a reasonable approximation for the clustering 

coefficient is
n
k

random ≈γ . 

 
b) Small World Networks 
 
        A recent paper, Collective dynamics of "small-
world" networks, which appeared in Nature, has 
attracted considerable attention [8]. The paper 
investigated what happens between the two extreme 
graphs: complete and random graph.  Their computer 
experiments indicated that introducing a relatively 
small number of random connections dramatically 
changed the character of the graph. That is, the graphs 
retained their properties of being highly clustered, but 
the average path lengths dropped dramatically. These 
new graphs are called "small world" networks. 

The small world graph, which is highly 
clustered yet have characteristic path length equivalent 
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to random graphs, exhibits the following 
characteristics: 
 
 ),( knLL random≈  and ),( knrandomλλ >>    (4) 
 
The small-world networks seem to be good models for 
a wide variety of physical situations.  According to the 
model, the power grid for the western U.S., the neural 
network of a nematode worm, and the Internet Movie 
all have the characteristics of "high clustering 
coefficient but low characteristic path length" of small-
world networks.   
      For the Western States Power Graph (WSPG), they 
analyzed the power transmission grid for the states 
west of the Rocky Mountains and calculated the 
topological characteristics. The resultant WSPG was 
large and sparse, with n = 4941 and k = 2.67. The 
critical path length and the clustering coefficient were 
LWSPG= 18.9 and γWSPG = 0.08, respectively.   This 
clustering coefficient γWSPG is 160 times larger than the 
expected value for an equivalent random graph, but 
LWSPG is only about 1.5 times greater.  So it was 
decided that the WSPG was small world after all.   
However, the reference [10] is the only material of 
reporting a power grid as a small world network.  
Others, without actual analysis, merely quoted the 
reference and declared the power grid as a small 
network. 
      In addition to the degree sequences, shortest 
connecting paths, and clustering coefficient as 
presented in the section, a graph associated with 
adjacency matrices can be characterized by spectral 
method, which also provides global measures of the 
network property [11, 12]. 
       In the spectrum analysis, the eigenvalues of a 
graph are defined as the eigenvalues of its adjacency 
matrix.  
The adjacency matrix A(G) is the n×n matrix which Ai,j 
is the number of edges joining the vertices i and j.   
If the weight of the edges is the same, then all entries 
of the matrix would be either 0 or 1. The set of 
eigenvalues of a graph is called a graph spectrum, and 
this characterizes the principal properties and structure 
of a graph.  For example, if the biggest eigenvalue λ1 = 
0, we know G is not connected, and “wide” graphs 
tend to have higher λ1 than “narrow ones” [13].  In the 
paper, the graph spectrum is not considered in the 
analysis of power grid. 
 
c)  An Example with 14-Bus Network 
 
        An example using a simple power network 
would be appropriate to illustrate the two graphical 
statistics and their calculation.  Shown in Figure 1 is 
the 14-Bus network [14], which has 14 nodes and 20 
edges (or lines). 
The degree (or number of neighbor nodes), the critical 
path length, and the clustering coefficient of each node 
are calculated and tabulated in the Table II. 
From the table, we can draw the following: with 
average number of neighbors 2.857, average critical 

path length (L) is 2.374 and the clustering coefficient 
(γ) is 0.367.  On the other hand, a random graph with 
the same number of node, with the same degree of 
2.857, would have Lrandom=2.51 and γrandom=0.204.   
 

 
 

Figure 1. 14-Bus Network 
 
The critical path length of the 14-Bus network is close 
to that of the random graph, but the clustering 
coefficient is only twice of that of the random graph.   
The 14-Bus network then is more like a random graph.   
As can be seen in the following chapter, the number of 
nodes in the power network seems to determine the 
characteristics of the network: bigger networks are 
more of "small world" networks while smaller ones are 
usually close to random networks. 
 
TABLE II.GRAPHICAL PROPERTIES OF THE 14-BUS 
NETWORK  

Node 
Number Degree, k 

Critical 
Path 

Length 

Clustering 
Coefficient

1 2 2.692 1.0 
2 4 2.154 0.5 
3 2 2.615 1.0 
4 5 1.836 0.3 
5 4 1.923 0.333 
6 4 2.077 0.167 
7 3 2.231 0.333 
8 1 3.154 0.0 
9 4 1.923 0.167 

10 2 2.462 0.0 
11 2 2.538 0.0 
12 2 2.769 1.0 
13 3 2.462 0.333 
14 2 2.385 0.0 

 

d) “Small World" Implication to Power Grid 
 
        As we discussed before, the key topological 
characteristic of small world phenomenon is the 
presence of a small fraction of a very long-range, 
global edges, which contract otherwise distant parts of 
the graph, while most edges remain local, thus 
contributing to the high clustering coefficient. 
Since the qualitative nature of a system’s connectivity 



CRIS, Third International Conference on Critical Infrastructures, Alexandria, VA, September 2006 

  

is important in determining both its structural and 
dynamic properties, the removal of a node (i.e., the 
outage of a generator or substation transformer, or a 
sudden pull-out of a large load) or an edge (a 
transmission line) could affect the functionality of 
other nodes as well.     
       In some case, notably in disease spreading, the 
relevant dynamical properties seem to be dominated by 
the characteristic length of the graph.   In other cases, 
the dominant one of the dynamic relevance is the 
clustering coefficient, or both.  Of course, there are 
cases neither one seems to have any relevance with 
dynamic property [15]. 
      In terms of network vulnerability, it is shown 
that "scale-free" graphs are much less vulnerable to 
random perturbation than are traditional random 
graphs with same average degree [16]. Scale free 
networks are those whose degree distribution follows a 
power law for large k, and those, even whose degree 
distribution has an exponential trail; degree 
distribution significantly deviates for a Poisson 
distribution, which is typical of random graph.  
       Is power grid actually a small world network?  
Are its dynamic properties relevant to its graphical 
statistic such as the critical path length or the clustering 
coefficient? At least we know that the shape of 
network is, at least qualitatively, connected to the 
stability of power grid [5]. Also, from the graph 
theory, we know that topology affects the dynamic 
aspect of node/edge removal.   To answer the two  
questions, therefore, we need a topological analysis of 
power network and of relationships of topology and 
system dynamics.  In the analysis, two topological 
measures (L and γ) are explored as possible indices or 
indicatives of cascading failures.  

In this paper, we trace the topological measures 
with the sequence of the cascading events to relate the 
topology and the inherent instability of a power grid.   
 
Topological Analysis of Power Grid and Outages  
 
       We first analyzed power grids for a small world 
network investigation.  Second, we reconstructed the 
1996 outages using the power grid data and the outage 
report.  Then, we performed a sensitivity analysis to 
compare the graphical statistics of the line removals 
following the actual sequence of cascading outages and 
those of the removal of randomly selected lines.   
 
a) Topological Analysis of Power Grids 
 

We analyzed several power networks of various 
sizes to inspect if power network in general is small 
world network.  The networks we analyzed are: 

•  IEEE Standard 118-Bus network [14] which 
has 118 nodes and 179 edges,  

•  MAPP (Mid-Continental Area Power Pool) 
network of 230kV and above only, which has 
575 nodes and 754 edges, 

•  Nordel network, the interconnected power 
systems of Finland, Norway, Sweden, and 

parts of Denmark, of 100 kV and above only, 
which has 410 nodes and 564 edges, 

•  KEPCO (Korea Electric Power Corporation) 
network of 66kV or above only, which has 
553 nodes and 783 edges, and 

•  ERCOT (Electric Reliability Council of 
Texas) network of 345kV only, which has 
148 nodes and 209 edges. 

 
        Actually, a program to read data of connectivity 
and to calculate the necessary outputs needs a well-
designed algorithm.  For the algorithm of calculating 
the critical path and the clustering coefficient, we 
applied a cellular automata approach as a search tool 
for neighboring nodes.  This approach saved a lot of 
code space and running time.   

Table III below summarizes the graphical 
properties of the networks.  One thing common to all 
the networks, regardless of the number of nodes or 
edges, is that the average degrees (k) are almost the 
same ranging from 2.62 to 3.03.   This means that a 
power node has about 3 neighboring nodes in average.  
The L and γ do not show a consistent result: one 
network’s critical path length is close to that of random 
graph while its clustering coefficient is not big enough 
compared with that of random graph, or one with a big 
clustering coefficient has twice big critical path length 
of that of random graph.  Also, bigger networks show 
higher clustering coefficients and, at the same time, 
slightly longer critical path lengths, and could join the 
group of small world networks. 

 
TABLE III. GRAPHICAL PROPERTIES OF 

SELECTED POWER NETWORKS  

 node, 
n 

edge, 
M 

degree, 
k randomL

L
randomγγ

118Bus 118 179 3.03 1.47 6.8 
MAPP1 575 754 2.62 2.39 18.4 
Nordel2 410 564 2.75 2.37 21.4 
KEPCO3 553 783 2.83 1.24 23.5 
ERCOT4 148 209 2.82 1.47 7.3 

1 230kV and above only; 2 100kV and above only; 3 
66kV and above only; 4 345kV only 
 

b) WSCC Network 
 

According to a FERC 715 report [17], WSCC 
network of year 1996 consists of different levels of 
high voltage transmission lines.  The network with 
100kV and higher voltage contains 4610 nodes and 
6244 edges.  It has 1646 nodes and 2348 edges if only 
voltages of 200kV and higher are considered. If only 
transmission voltage of above 300kV is included, it has 
352 nodes and 449 edges.  Topological analysis of 
WSCC grid shows that it could be classified as a small 
world (see Table IV), similarly claimed in [10], even 
though there are no clear cut-off lines in the ratios of  

randomL
L  and randomγγ  for being a small world 

network. 
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TABLE IV       GRAPHICAL PROPERTIES OF THE WSCC 

NETWORK 

WSPP node
, n 

edge, 
M 

degre
e, k L γ randoL

L

 
randoγγ

 
>100 
kV 4610 6244 2.71 25.2

5 
0.04
6 2.87 78.23 

>300 
kV 352 449 2.51 17.2

8 
0.04
8 2.56 7.10 

 

d)  Topology of 1996 WSCC Power Outage 
 
       Based on the FERC 715 network of WSCC and 
the outage reports [3, 5], the cascading faults of 
summer 1996 are reconstructed.  Only the lines and 
substations of above 300kV are considered in the 
study.   The node names are the ones used in the FERC 
715 report, but the line numbers (numbers next to 
lines) are generated by the authors for the analysis.  
The area of the 1996 failures is illustrated in Figure 2.    
The nodes encircled with dotted lines indicate 
generating sites. 
 

 Figure  2. Reconstruction of the WSCC outages in 
1996. 
 

The July 2 failure was triggered by an event of 
flashover to a tree on the Jim Bridger-Goshen line (line 
#106).  Then, the Jim Bridger-Kinport line (#100) was 
tripped.   These two line losses tripped Jim Bridger 
units and, consequently, the line #95 was removed 
from the service.  Later, lines #105 and #219 were also 
removed from the service [9].   
  The triggering event for the August 10 failure 

occurred when the Allston-Keeler line (line #143) 
sagged close to a tree and flashed over.   However, 
prior to the failure, there were two forced outages of 
John Day-Marion (line #202) and Big Eddy-Ostrander 
(line # 151) lines.   On the failure date, after the loss of 
line #143, the Keeler-Pearl line (line #191) opened by 
the Keeler breaker operation. At the same time thirteen 
McNary units sequentially tripped and, consequently, 
lines #204 and #203 were lost.  This started system 
power and voltage oscillations [3].   
 
d)  L and γ Comparison - random 4 lines removal  
     vs. the failed 4 lines in the cascading faults 
 
        To inspect any topological changes when the 
root cause of the power lines was removed from the 
WSPP grid, and to compare the results with those 
cases when randomly selected lines were removed 
from the grid, we calculated the critical path lengths 
and the clustering coefficients on the following 
simulated scenarios.    
 

scenario 1:  No line is removed from the grid            
scenario 2: August 10 outage simulation (lines 

removed are: #142, #203, #143, and 
#204) 

scenario 3: August 10 outage simulation (lines 
removed are:#151, #202, #142, and 
#203) 

scenario 4: July 2 outage simulation #1 (lines 
removed are: #106, #100, #95, and #219) 

scenario 5: July 2 outage simulation #2 (lines 
removed are: #106, #100, #95, and #105) 

scenario 6: Arbitrary 4 lines are removed: #100, 
#200, #300, and #400 

scenario 7: Arbitrary 4 lines are removed: #101, 
#202, #303, and #404 

scenario 8: Arbitrary 4 lines are removed: #103, 
#203, #304, and #405 

scenario 9: Arbitrary 4 lines are removed: #10, #20, 
#30, and #40 

 
       A question may arise on this assumption that 
random removal of lines would not cause major 
disturbance: how could we assume that the removal of 
the randomly selected 4 lines would keep the system 
undisturbed?   An answer would be found from the fact 
that a sequence of events cascaded into the major 
outages.  This means that a sequence of events is a 
necessary and sufficient condition for a cascading 
outage not a random event. 
       From the calculation results of the above 9 
scenarios, which are illustrated in Figure 3, we can see 
that the critical path lengths for the July outage 
(scenarios 4 and 5) show much higher than those of 
other scenarios including the no-outage scenarios.   
        We can also see a little increase in the path of 
the two August outage scenarios (2 and 3).  However, 
it is significant that the path lengths of the August 
scenarios are still higher than the average of those of 
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no-outage scenario. The clustering coefficients do not 
show any noticeable difference in the outage and the 
no-outage scenarios.  
 

 
Figure 3. Illustration of the graphical property changes 
in 9 different scenarios. 
 
       We admit that the study is literally preliminary 
and there is an on going research effort on this subject 
matter.  The comparison of the scenarios could include 
more cases. The sequential event (or line removal) and 
its effect to the critical path length and the clustering 
coefficient could be performed.  Moreover, the study 
was performed on reduced size grid of the WSCC grid.    
However, the results shed some insight in that they 
could relate the cascading outages to static topological 
measures, along with the dynamic indices that have 
been traditionally used in the power system operation.    
 
Conclusions 
 
        Recent major outages revealed the need to 
improve on the current stability analysis methods of 
modeling and simulation of system dynamics and 
oscillations.  This paper presented an approach to see 
the current grid problem in another angle:  grid outages 
and vulnerability assessment by using topological 
estimators, i.e., critical path length and clustering 
coefficient.   
       The small world perspective would be able to 
determine the priority or importance of each 
transmission line in a power grid in terms of its 
possible role as a triggering point, if faulted, for a 
cascading failure and outage.  Those highly prioritized 
lines, then, should be first considered in maintenance, 
repair, and upgrade. 
        Also, the preliminary result of the paper would 
supplement existing, dynamic analysis of eigenvalue 
and frequency, and spur research activities for 
fundamental solution for the current energy and power 
grid crisis.   
        Another area of the small world application is 

that it could be a valuable tool as a route and 
connection guideline when new transmission lines are 
added or removed.  The added or removed lines, even 
though they may perfectly fit to power, voltage, and 
other stability and dynamic consideration, would 
greatly affect the grid topology.  
        The future work is to further investigate the 
possible correlation of the topological measures to 
cascading outages using the 2003 Northeast outage 
data.  Eventually, we seek to perform a graphical 
analysis of all North American power grids that 
experienced major outages, and to explain power grid 
and outages in terms of topological statistics.      
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