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Abstract: A safe and stable operation power system is very important for the maintenance of national
industrial security and social economy. However, with the increasing complexity of the power
grid topology and its operation, new challenges in estimating and evaluating the grid structure
performance have received significant attention. Complex network theory transfers the power grid
to a network with nodes and links, which helps evaluate the system conveniently with a global view.
In this paper, we employ the complex network method to address the cascade failure process and
grid structure performance assessment simultaneously. Firstly, a grid cascade failure model based
on network topology and power system characteristics is constructed. Then, a set of performance
evaluation indicators, including invulnerability, reliability, and vulnerability, is proposed based on
the actual functional properties of the grid by renewing the power-weighted degree, medium, and
clustering coefficients according to the network cascade failure. Finally, a comprehensive network
performance evaluation index, which combines the invulnerability, reliability, and vulnerability
indicators with an entropy-based objective weighting method, is put forward in this study. In order
to confirm the approach’s efficacy, an IEEE-30 bus system is employed for a case study. Numerical
results show that the weighted integrated index with a functional network could better evaluate the
power grid performance than the unweighted index with a topology network, which demonstrates
and validates the effectiveness of the method proposed in this paper.

Keywords: complex networks; grid structure performance; evaluation methodology; cascade failure;
weak point identification

1. Introduction

With the development of power systems, the rapid growth of the power grid and
the expansion of its interconnection has led to a dramatic growth in the complexity of the
system. Grid failures are also causing more and more economic losses and impacts on
industrial communities and civil lives [1]. This indicates that there are significant difficulties
with the power system’s stability, security, and reliability, and it is very important to
analyze the nature of the grid structure and help put forward improvement strategies. As
commonly known, the power system is a typical complex network with a large number
of nodes and transmission lines, with complex topology and operating characteristics.
Complex networks comprise some or all of the properties of self-organization, self-similarity,
attractors, small worlds, and scale-free systems. In order to scientifically analyze the
structural performance of power systems, it is helpful to find the weak points of power
grids and then analyze the operational characteristics of the grids, which can be carried out
with a complex network method [2].

Many scholars have investigated the structural characteristics of power grids using the
complex network theory. One of the important research branches is to model the cascading
failure process of power grids and evaluate the characteristics of the systems. Cascade
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failure is the phenomenon that occurs when the network fails and the faulty node causes
other related nodes to fail, possibly leading to the collapse of the whole network [3]. Most
existing cascade failure studies of power systems focus on two aspects. One aspect is the
study of power system cascade failure propagation mechanism modeling [4–13], and the
other one is the dynamic cascade failure study using power flow information [14–19].

In modeling the cascade failure propagation mechanism of power systems, Wu et al. [4]
proposed a novel cascade failure propagation model to evaluate the robustness of several
complex networks. Lee et al. [5] modeled complex networks of smart grids and performed
cascading dynamic vulnerability analysis. Guo et al. [6] proposed a transmission line cascade
failure probability model and analyzed the system vulnerability. Rahnamay-Naeini et al. [7]
proposed a novel dynamic probabilistic model for grid cascading faults analysis. Fan et al. [8]
presented a cascading fault model based on complex network theory that integrates hidden
transmission line faults and node overload faults during outages. Peng et al. [9] proposed an
updated cascading fault model. Fan et al. [10] proposed a complex network–based structure
retention model for grid cascading failures. Li et al. [11] considered the performance impact of
spurious data injection attacks on cascading failures of physical systems in power networks.
Dai et al. [12] proposed a new time-based cascading fault dynamic model. Gao et al. [13]
introduced a stochastic cascading failure model based on complex network theory to study
the robustness of power CPS in virtual power plants (VPPs).

In terms of dynamic cascade failure research using power flow information, Guo et al. [14]
analyzed the robustness through cascade failure simulation based on alternating current(AC)
theory. Sun et al. [15] developed a complex network cascade failure model by combining dy-
namic AC currents. Yan et al. [16] analyzed the efficiency of a typical direct current(DC) power
flow–based cascading fault simulator in critical moment cascading fault analysis. Azzolin
et al. [17] combined synthetic grid generators with a DC cascade failure simulator to study the
key factors affecting cascade failures in power systems. Li et al. [18] proposed a cascading
fault model based on AC optimal currents. Noebels et al. [19] proposed an integrated AC
cascade failure model to analyze grid resilience.

The above studies mentioned complex network theory and grid cascade failures. How-
ever, the impact of the functional properties of the grid itself on the structural properties of
the grid has rarely been taken into consideration.

In addition, some scholars have studied the evaluation method of network characteristics
by analyzing the effect of cascade failure [4–6,19–22]. Peng et al. [20] used complex theory
to build a smart grid system model and proposed a reliability analysis method that takes
into account the effects of cascading failures and other factors. Jiang et al. [21] proposed a
heuristic critical node identification method to study network robustness against cascading
faults. Fan et al. [22] proposed a method for grid vulnerability analysis considering cascading
faults. Li et al. [23] studied the robustness of Chinese power grid systems under various attack
and defense scenarios by considering cascading failures. However, the above studies mostly
analyzed from a single perspective and rarely proposed multiple evaluation indices for a
comprehensive evaluation of the global characteristics of the power grid.

Therefore, this paper proposes a method for evaluating the performance of power grid
structures based on cascading failures. This method does not need to consider the power
flow characteristics and greatly simplifies the grid cascade failure analysis process. At the
same time, a variety of evaluation indices are proposed for different grid characteristics.
The objective weighting method is also employed to synthesize the indices so that a
comprehensive evaluation of the grid characteristics can be made in a proper manner. The
differences between the work in this paper and the existing literature are shown in Table 1.
By conducting numerical experiments on an IEEE-30 bus system, we have come to the
following three findings:

1. The comprehensive evaluation index of a power grid structure performance pro-
posed in this paper can analyze the grid operation status more comprehensively than
previous indices;
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2. With the cascading failure analysis on the network, we find out that the performance loss
of the grid structure is not directly related to the number of failed nodes of the network;

3. The functional weighted integrated evaluation index proposed in this paper can better
reflect the changes in network structure performance in the case of node failure than
the unweighted topology evaluation index.

Table 1. The differences between the work done in this paper and the existing literature.

The Work in Existing Literature The Work Conducted in This Paper

Research Focus

1. The study on power system cascade
failure propagation mechanism modeling;
2. The dynamic cascade failure study
using power flow information.

1. No need to take the power flow characteristics
into consideration;
2. A variety of evaluation indices are proposed for different
grid characteristics;
3. Objective weighting method is employed to synthesize
the indices so that a comprehensive evaluation of the grid
characteristics can be made in a proper manner.

The contents of this article include four sections. In Section 2, a complex network
model of the power grid based on complex network theory is put forward, and basic
network indicators are constructed to evaluate the basic model characteristics with power
grid information. In Section 3, a comprehensive, objectively weighted index, which com-
bines the power-weighted network reliability, vulnerability, and invulnerability indicators
simultaneously, is created using the entropy value method to evaluate the performance of
the network structure. In Section 4, a cascade failure model and grid structure performance
evaluation process are proposed to further evaluate the dynamic performance of the net-
work structure. Finally, an IEEE-30 bus system is employed for a case study, which helps
verify and validate the feasibility and effectiveness of the method and indices proposed in
this paper.

2. Grid Modeling Based on Complex Network Theory

Based on complex network theory, this section constructs a power-weighted grid
complex network model and puts forward the indicators to evaluate the grid network
characteristics.

In order to model the power system by complex network theory, we made the follow-
ing assumptions:

(1) A complex network with values and directions is created. The power plants,
substations, and transmission line terminals are abstracted to the nodes in the complex
network model, respectively;

(2) Connections in grid devices where power flows exist can be abstracted as edges of
the complex network. The weights of the edges in the model are influenced by the rated
power of the grid nodes that are proposed in (1);

(3) The direction of grid power flow is abstracted as the inflow and outflow directions
of each node in the complex network model, with consideration of the energy transfer char-
acteristics of the power system. Specific cases, such as power flow flip, are not considered
in this paper.

2.1. Construction of Complex Network Models for Power Grids

According to complex network theory, the network consists of a node set N and an
edge set E, which can be denoted as G = (N, E). In order to construct a grid model based on
complex network theory and carry out network characteristic analysis, this paper abstracts
power plants, substations, and transmission line terminals as complex network nodes
and the transmission lines between substations as the edges of the complex network. If
two nodes are connected by a physical line, an edge is built between the two nodes. To
facilitate the calculation process, the underlying connection between the nodes is stored in
the form of an adjacency matrix, in which element 1 represents the existence of a connection
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relationship and element 0 means no connection relationship. A directed network is defined
by distinguishing the direction of the edges, so the adjacency matrix of a directed network
is not necessarily symmetric.

In order to make the constructed network reflect the real-world grid functional charac-
teristics and grid state information more realistically and precisely, the power attributes
of the nodes are combined as weighted coefficients into the complex network adjacency
matrix by certain rules. We define it as follows:

Pij(t) = Gij(t)
∑

k∈K
wkPk

i−out(t) + ∑
l∈L

wl Pl
j−in(t)

2
+ Gji(t)

∑
m∈M

wmPm
j−out(t) + ∑

n∈N
wnPn

i−in(t)

2
(1)

where Pij(t) is the power weight of the edge connecting nodes i, j at moment t; Gij(t) are
the corresponding elements of the adjacency matrix; wx is the power state coefficient, which
is set as 1 when the x-th power tributary flows through the target edge and 0 otherwise;
Pk

i−out(t) is the power of the k-th branch out of node i; K is the total number of power bars
flowing out of node i; Pl

j−in(t) is the power of the l-th branch flowing into node j. L is the
total number of power bars flowing into node j; Pm

j−out(t) is the m-th branch power out of
node j; M is the total number of power bars flowing out of node j; Pn

i−in(t) is the n-th branch
power flowing into node i; N is the total number of power bars flowing into node i.

The inflow and outflow power at each node at any moment t satisfies

∑
n∈N

wnPn
i−in(t)− ∑

k∈K
wkPk

i−out(t) = 0

∑
l∈L

wl Pl
j−in(t)− ∑

m∈M
wmPm

j−out(t) = 0
(2)

The above model satisfies

Gij(t) + Gji(t) =
{

0, i, j are not connected
1, i, j are connected

(3)

That is, when nodes i and node j are connected with a two-way exchange function
in the network, at any moment t, there are two system statuses between them, either
connected or not connected. However, at a certain moment t, there can only be a one-way
power exchange or no power exchange; thus, it still meets the constraint Gij(t) + Gji(t) = 1.

2.2. Grid Complex Network Model Characteristics Indicators

Based on the weighted model in the previous section, grid network model characteris-
tics indicators were constructed based on complex network theory.

2.2.1. Degree

Degree value is a basic measure in complex network theory, which can reflect the
importance of a node in the whole network, and a single node degree can be calculated
with Formula (4).

di = ∑
j∈E

k j (4)

where kj takes 1 when i and j are connected with an edge and 0 otherwise.

2.2.2. Clustering Coefficient

Clustering coefficient is the measure for a network aggregation, which can reflect the
degree of network node clustering. Let the neighbor sets of node v be N(v), |N(v)|= ki ,
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then the clustering coefficient of node v is defined as the ratio of the number of edges Ei
between these ki nodes to the total number of possible edges ki(ki − 1)/2, as Formula (5).

Ci =
2Ei

ki(ki − 1)
(5)

The clustering coefficient is an important indicator to describe the structural character-
istics of the network. The average of all node clustering coefficients is called the average
clustering coefficient C (C∈[0, 1]), where C = 0 when all the nodes of the network are
isolated and, conversely, C = 1 when there are connected edges between each pair of nodes
within the network.

2.2.3. Betweenness

Betweenness is mainly divided into point centrality and edge centrality, which means
the number of times the shortest path of the network passes through a node or edge,
respectively, and reflects the influence of the node or edge on the network globally. The
larger the betweenness, the more times the shortest paths go through the node (edge); the
greater the flow load, and the more likely accidents occur.

The average of the betweenness of node i can be calculated as follows:

Bi = ∑
j 6=k

σjk(i)
σjk

(6)

where σjk denotes the number of all shortest paths from node j to node k and σjk(i) denotes
the number of all shortest paths from node j to node k that pass through node i. The more
times the shortest paths pass through node i, the more important the node.

3. Grid Structure Performance Evaluation Index

Based on the power-weighted grid complex network model characteristics metrics
proposed in the previous section, this section constructs grid resilience, reliability, and
vulnerability metrics. Then, the three types of indicators are objectively weighted and
combined using the entropy value method. Finally, a comprehensive evaluation index to
evaluate the complex network structure performance of power grids is constructed.

3.1. Grid Structure Performance Indicators
3.1.1. Grid Invulnerability

In this paper, a grid is considered the expression of a real power system. The gen-
eralized exponential distribution of the invulnerability index proposed by Gupta and
Kundu [24] is introduced to calculate the distribution network invulnerability by changing
the form of some expressions. A quantitative method of network invulnerability based on
the structural and functional characteristics of the network is proposed as Formula (7).

Pi = (1− e−(ε1X∗Di+ε2X∗Bi+ε3X∗Ci))× di
d0

(7)

where Pi is the network invulnerability without node i, X∗Di is the normalized value of the
weighted node degree of the corresponding metric of the network after removing node i.
X∗Bi is the normalized value of the weighted betweenness of the corresponding metric of
the network after removing node i. X∗Ci is the normalized value of the weighted clustering
coefficient of the corresponding indicator of the network after removing node i. di is the
average node degree of the network after removing node i. d0 is the average node degree
in the original network. ε1,ε2,ε3 are three adjustment coefficients.
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3.1.2. Grid Reliability

The reliability of complex networks is represented by their ability to remain healthy
and stable when they are subject to natural or synthetic disasters. Network reliability is
generally assessed by the distance from any node of the network to other nodes and the
closeness of the nodes. In this paper, the average node degree is chosen to evaluate the
grid reliability quantitatively. The average node degree L is an important metric to describe
the connectivity of the network. For most practical cases, if there is good connectivity,
the average number of search steps between any two nodes will be low. Therefore, the
average node degree L before and after the network is attacked can be compared to show
the strength and danger factors of this attack.

In this paper, l0 denotes the average node degree value of the network before being
attacked, and l1 denotes the value after being attacked; thus, L can be defined as follows:

L =
l1
l0

(8)

Formula (8) reflects the intensity of the attack. If the network is not disturbed by the
attack and L01 = 1 after an attack, it means that the network is stable. If L01 < 1 after
an attack, it indicates that the connectivity of the network is increased and has a strong
self-protection and repair capability; if L01 > 1 after an attack, it means that the connectivity
of the network is reduced and the reliability has also dropped down.

3.1.3. Grid Vulnerability

Vulnerability is a measure of the degree to which a system and its components are
affected and damaged. For an energy internet, vulnerability can be defined as the extreme
impact of individual disturbances on the system. A small perturbation may lead to catas-
trophic consequences. In this paper, we select the network average clustering coefficient
ratio to quantitatively analyze the grid vulnerability.

The network average clustering coefficient ratio C can be calculated with Formula (9).

C =
C1

C0
(9)

where N denotes the number of nodes in the network and C0 and C1 represent the average
clustering coefficients of the network before and after being attacked, respectively.

3.2. Objective Empowerment Method

Since there exist different scales and metrics between indicators, the anomalies of
the data will affect the results of the weight calculation. Data standardization needs to be
applied before the weight calculation, as defined in Equation (10).

xi
′ =

xi
xmax

(10)

After the data is pre-processed, the variables are assigned weights by applying the
entropy method based on the information content of the data. The entropy value method
calculates the weight according to the size of information carried by the data. The entropy
value is a measure of uncertainty; the smaller the amount of information, the greater the
uncertainty and corresponding entropy value of the system [25]. The calculation can be
processed with the model from Formula (11) to Formula (14).

pji =
1 + xji

z
∑

j=1
(1 + xji)

(11)
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ei = − 1
ln z

z

∑
j=1

pji ln(pji) (12)

gi = 1− ei (13)

wi =
gi

m
∑

i=1
gi

(14)

where j is the grid structure performance index data and z is the sample size. The analysis
step can be summarized as follows.

First, calculate the weight of the ith indicator for the jth data point with Equation (11);
then, calculate the entropy value of the ith indicator with Equation (12); finally, calculate
the coefficient of variation of the ith indicator and derive the weights with Equation (13),
where a larger gi represents a more important indicator, and the weight of each indicator
can be found with the normalization step per Formula (14).

3.3. Comprehensive Assessment Index of Grid Structure Performance

The objective weighting method is used to combine the network destructiveness Pi,
reliability L, and vulnerability C to obtain the comprehensive evaluation index of grid
structure performance, as shown in Equation (15).

Q = w1Pi + w2L + w3C (15)

where Q is the comprehensive assessment index of the grid structure performance.

4. Comprehensive Grid Structure Performance Assessment Process

The cascading failure process is selecting a node from the network and letting it fail,
evolving the system to another balanced status, and then repeating with selecting the next
node until all the nodes come to failure. When the cascading failure process is over, the grid
structure performance evaluation metrics constructed in the previous section are applied to
evaluate the comprehensive performance index of the network.

4.1. Grid Cascade Failure Process

At the very beginning, the network operates normally, and the initial load of any
node in the network is less than the node capacity. When a node failure occurs, its load is
allocated to the neighborhood nodes of the failed one in priority. When the load assigned to
a neighbor node exceeds its maximum capacity, it causes the neighbor node to fail, which
in turn leads to a new cycle of load dispatch. The load distribution process is carried out
until no new node fails or until all nodes fail. The flowchart of the grid cascade failure can
be described in Figure 1.
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4.2. Comprehensive Evaluation Process of Grid Structure Performance

This paper addresses the grid structure performance evaluation with the following steps.

1. Calculate the grid characteristics indicators. Construct the weighted network of grid
functional attributes according to Formulas (1)–(3), and then calculate the weighted
network measures before and after node failure happened, respectively, according to
Formulas (4)–(6) and the cascade failure model;

2. Calculate the network structure performance indicators. Calculate the network invul-
nerability according to Formula (7), the network reliability according to Formula (8),
and the network vulnerability according to Formula (9);

3. Combine performance indicators by the entropy method to obtain the comprehensive
indicators. Combine the calculated invulnerability, reliability, and vulnerability by
the entropy method into the comprehensive evaluation index of grid performance;

4. Apply the comprehensive index to analyze the current network’s structure perfor-
mance, and provide reference suggestions for future grid-expanding planning. The
process is shown in Figure 2.
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5. Case Study

In this paper, an IEEE-30 bus system is adopted for a cascade failure case study to verify
the validity of the weighted grid complex network structure performance evaluation method.

5.1. Problem Description

This paper adopts an IEEE-30 bus system for the numerical experiment, and the data
come from the MATPOWER package in MATLAB, which is dedicated to providing an
updateable and convenient simulation tool for academic research. The IEEE-30 bus system
is employed for case studies in many recent studies [26,27].

The electrical wiring diagram and network structure of the IEEE-30 bus system are
shown in Figures 3 and 4, respectively. Six generators are included as 1, 2, 5, 8, 11, and
13, and the nodes where the generators are located are generator nodes, referred to as PV
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nodes. Nine reactive power compensation devices are located at 10, 12, 15, 17, 20, 21, 23, 24,
and 29. Four transformers are located at 6-9, 6-10, 4-12, and 28-27.
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5.2. Experimental Schemes

Firstly, the IEEE-30 bus system power-weightless network model is constructed based
on the network adjacency matrix, and the cascading failure matrix is constructed by
sequentially failing all nodes in the network. Secondly, the power-weighted and cascading
failure matrix is adopted to measure the grid’s complex network characteristics. Finally,
the characteristics are substituted into the reliability, destructiveness, and vulnerability
measurement model, and the network structure performance changes of the IEEE-30 bus
system due to the different deleted nodes can be obtained by the model.
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To verify the validity of the comprehensive index of power-weighted grid network
structure performance, two comparison experiments are set up in this paper:

Experiment 1: In order to verify that the integrated metrics are more comprehensive
than the individual metric, the IEEE-30 bus system network model is employed as the
unweighted adjacency matrix. The cascade failure simulations are performed by nodes
1–30, one by one. The results are recorded for each simulation step so that the average
degree, average betweenness, and average clustering coefficient of the network can be
recorded directly and separately. Thirty sets of data for the above three categories of metrics
are recorded. The data of the above three indicators are then used to calculate the integrated
assessment index of the network. The results of the integrated assessment are also recorded
and then compared to verify the effectiveness of the method.

Experiment 2: In order to verify the privilege of the power-weighted comprehensive
evaluation index on assessing the actual power grid status, the IEEE-30 bus system network
model is constructed with the unweighted adjacency matrix and then applied to the cascad-
ing failure simulation from nodes 1–30, one by one. The comprehensive evaluation index
of the performance of the unweighted network structure can be obtained with the average
degree, average betweenness, and average clustering coefficient of the unweighted network
after 30 simulations. With the network cascade failure extending, the power-weighted
degree, weighted betweenness, and weighted clustering coefficient can be calculated at
the same time. Then, the power-weighted composite evaluation index is measured and
analyzed. Finally, the results of the two methods are compared to draw a conclusion.

5.3. Results Analysis

By cascading the network to failure, the node serial numbers corresponding to the
number of cascading failed nodes are shown in Figure 5.
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Figure 5. The number of cascade failure nodes caused by each node.

Figure 5 shows that the failure of nodes 10, 12, 14, 15, and 18 causes network cascade
failure, and node 15 especially has a crucial role in the network topology.

The simulation results of the network weighted degree, weighted betweenness cen-
trality, and weighted clustering coefficient calculated using the cascade failure matrix are
shown in Table 2.

Table 2. Data characteristics of network weighted degree, weighted betweenness centrality, and
weighted clustering coefficient.

Characteristic Indicators Maximum Value Minimum Value Average Value 0.25 Quantile

Degree 17.7724 14.5172 16.5719 16.0308
Betweenness 0.1199 0.0549 0.0893 0.0707

Clustering coefficient 1.4657 0.6856 1.1956 1.0663
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The data in Table 2 are substituted into models (7) to (9) to obtain the changes in
network invulnerability, reliability, and vulnerability, as shown in Table 3 and Figure 6.

Table 3. Data characteristics of network invulnerability, reliability, and vulnerability.

Indicators Maximum Value Minimum Value Average Value 0.25 Quantile

Invulnerability 1.0239 0.8669 0.9761 0.9489
Reliability 1.0491 0.8569 0.9782 0.9462

Vulnerability 1.0835 0.5068 0.8838 0.7882
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Figure 6. Grid performance metrics changing with sequential deletion of nodes.

As shown in Figure 6, the network has high invulnerability and reliability. The failure
of nodes 6, 7, and 28 has a high impact on the network vulnerability.

Substituting results of the above indices into Formula (15) yields a comprehensive
network performance index change with a sequential deletion of nodes, as shown in
Figure 7.
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Figure 7. Sequential deletion of node grid performance composite index changes.

Figure 7 shows that the IEEE-30 bus system network has good comprehensive perfor-
mance, and it is relatively stable as nodes 1 to 30 fail in cascade, one by one. It was also
found that the failure of nodes such as 6, 8, 10, 21, 22, and 28 in the network produced a
large loss in the overall performance of the network. This indicates the presence of critical
nodes in the network, which play a crucial role in maintaining the network performance.

Comparing Figures 5 and 7, it can be seen that the number of failed nodes is not
directly related to the performance loss of the network structure. In Figure 5, the failure
of nodes 12, 14, and 15 causes cascading failure with multiple nodes. However, these
nodes are not included in the key nodes in Figure 7, which have an impact on global
performance. This means that power-weighted networks reflect the vulnerable nodes of
the network better than topological networks; in other words, power-weighted networks
reflect real-world grid functional characteristics and state information better than simple
complex network topological models on comprehensive performance evaluation.
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5.3.1. Experiment 1: Comparing Topological Eigenvalues with Unweighted Composite
Evaluation Metrics

The adjacency matrix is applied to construct the unweighted network model and
calculate the network topological eigenvalues, as shown in Table 4. The comprehensive
network evaluation metrics are calculated by substituting the unweighted eigenvalues to
the model, as shown in Table 5. The topological characteristic values and the comprehensive
evaluation indices vary with the serial number of failed nodes, as shown in Figure 8.

Table 4. Data characteristics of network’s unweighted degree, unweighted betweenness, and un-
weighted clustering coefficient.

Characteristic Indicators Maximum Value Minimum Value Average Value 0.25 Quantile

Degree 2.7586 2.3448 2.6325 2.5600
Betweenness 0.0220 0.0109 0.0174 0.0138

Clustering
coefficient 0.1437 0.0839 0.1156 0.0983

Table 5. Data characteristics of comprehensive network evaluation metrics.

Indicators Maximum Value Minimum Value Average Value 0.25 Quantile

Comprehensive network evaluation metrics 0.9705 0.6297 0.8335 0.7458

Energies 2022, 15, x FOR PEER REVIEW 13 of 16 
 

 

5.3.1. Experiment 1: Comparing Topological Eigenvalues with Unweighted Composite 

Evaluation Metrics. 

The adjacency matrix is applied to construct the unweighted network model and cal-

culate the network topological eigenvalues, as shown in Table 4. The comprehensive net-

work evaluation metrics are calculated by substituting the unweighted eigenvalues to the 

model, as shown in Table 5. The topological characteristic values and the comprehensive 

evaluation indices vary with the serial number of failed nodes, as shown in Figure 8. 

Table 4. Data characteristics of network’s unweighted degree, unweighted betweenness, and un-

weighted clustering coefficient. 

Characteristic In-

dicators 
Maximum Value Minimum Value Average Value 0.25 Quantile 

Degree 2.7586 2.3448 2.6325 2.5600 

Betweenness 0.0220 0.0109 0.0174 0.0138 

Clustering 

coefficient 
0.1437 0.0839 0.1156 0.0983 

Table 5. Data characteristics of comprehensive network evaluation metrics. 

Indicators Maximum Value Minimum Value Average Value 0.25 Quantile 

Comprehensive 

network evalua-

tion metrics 

0.9705 0.6297 0.8335 0.7458 

 

Figure 8. Variation of topological characteristic values and comprehensive evaluation indices with 

the serial number of failed nodes. 

Figure 8 shows that, compared with the individual feature indices that focus on one 

aspect of the properties and ignore the other structural properties, the comprehensive in-

dices constructed in this paper can better characterize the overall network performance. 

The integrated index curve in Figure 8 is similar to the clustering coefficient curve. The 

reason for this phenomenon mainly lies in that the entropy method assigns weights ac-

cording to the data characteristics and the weights in Formula (15) can be adjusted accord-

ing to the problem in practical applications. 

5.3.2. Experiment 2: Comparison Study of Unweighted Composite Assessment Metrics 

with Power-Weighted Composite Assessment Metrics 

The data characteristics of the unweighted comprehensive network evaluation met-

rics are shown in Table 5, and the data characteristics of the weighted comprehensive net-

work evaluation metrics are shown in Table 6. The two comprehensive network evalua-

tion metrics vary with the failed node serial number, shown in Figure 9. 

  

Figure 8. Variation of topological characteristic values and comprehensive evaluation indices with
the serial number of failed nodes.

Figure 8 shows that, compared with the individual feature indices that focus on one as-
pect of the properties and ignore the other structural properties, the comprehensive indices
constructed in this paper can better characterize the overall network performance. The
integrated index curve in Figure 8 is similar to the clustering coefficient curve. The reason
for this phenomenon mainly lies in that the entropy method assigns weights according to
the data characteristics and the weights in Formula (15) can be adjusted according to the
problem in practical applications.

5.3.2. Experiment 2: Comparison Study of Unweighted Composite Assessment Metrics
with Power-Weighted Composite Assessment Metrics

The data characteristics of the unweighted comprehensive network evaluation metrics
are shown in Table 5, and the data characteristics of the weighted comprehensive network
evaluation metrics are shown in Table 6. The two comprehensive network evaluation
metrics vary with the failed node serial number, shown in Figure 9.

Table 6. Data characteristics of weighted comprehensive network evaluation metrics.

Indicators Maximum Value Minimum Value Average Value 0.25 Quantile

Comprehensive network evaluation metrics 0.9773 0.5244 0.8348 0.7635
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As can be seen from Figure 9, although the two comprehensive indices have the
same trend, the actual values of each node are different, which indicates that the topol-
ogy network cannot provide a good explanation of the actual losses caused by cascade
failures on the network structure performance. That is, the power-weighted grid complex
network structure performance integrated assessment index can reflect the actual state of
the grid better.

From the above two comparison experiments, it can be seen that the power-weighted
grid complex network structure performance comprehensive evaluation index proposed in
this paper can reflect the network structure performance comprehensively and realistically.

For the grid cascade failure phenomenon, this paper performs some research on the
grid complex network model and grid structure performance analysis. However, there are
still some shortcomings that need to be further improved:

1. The cascade failure model in this paper only considers the mode of node overload
failure removal; the actual grid may be a mixture of node and line failure modes
simultaneously, which should be taken into consideration in the system attack strat-
egy analysis;

2. The model in this paper is not pilot-run in the real grid, and the results obtained in
the real grid may vary from the simulation results. Further real application studies
need to be carried out to make the model better for application;

3. The entropy method applied in this paper assigns weights according to the data char-
acteristics, and the weights obtained by this indicator become larger when there are
large fluctuations in the data types of individual indicators, which makes the influence
of the indicator on the comprehensive performance assessment of the network larger,
and the limitations of this assignment method can be improved in the future study.

6. Conclusions

This paper combines power grid structure performance assessment, complex net-
works, cascading failures, and grid power characteristics to propose a power-weighted
grid complex network structure performance assessment index. By analyzing the standard
nodes, we can have the conclusion as follows:

1. The cascading failure of the grid to individual nodes has a good overall performance,
but there are still individual weak nodes that exist;

2. The number of failed nodes in the network does not have a direct effect on the
comprehensive performance loss of the network. Topology is not a direct factor
affecting the network performance

The power-weighted grid complex network structure performance evaluation index
proposed in this paper reflects the real-world grid functional characteristics and state
information more realistically. With the increasing complexity of power systems and the
expansion of renewable energy penetration, this evaluation index proposed in this paper
will have more applicable scenarios in the future.
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