
Power Grid Vulnerability to
Geographically Correlated Failures –

Analysis and Control Implications

Andrey Bernstein†, Daniel Bienstock‡, David Hay§, Meric Uzunoglu∗, and Gil Zussman∗
†School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland

‡Dept. of Applied Physics and Applied Math, Columbia University, New York, NY 10027
§School of Engineering and Computer Science, Hebrew University, Jerusalem 91904, Israel

∗Dept. of Electrical Engineering, Columbia University, New York, NY 10027

andrey.bernstein@epfl.ch,{dano@, meu2107@, gil@ee.}columbia.edu, dhay@cs.huji.ac.il

Abstract—We consider line outages in the transmission net-
work of the power grid, and specifically those caused by natural
disasters or large-scale physical attacks. In such networks, an
outage of a line may lead to overload on other lines, thereby
leading to their outage. Such a cascade may have devastating
effects not only on the power grid but also on the interconnected
communication networks. We study a model of such failures and
show that it differs from other models used to analyze cascades
(e.g., epidemic/percolation-based models). Inspired by methods
developed for network-survivability analysis, we show how to
identify the most vulnerable locations in the network. We also
perform extensive numerical experiments with real grid data
to estimate the effects of geographically correlated outages and
briefly discuss mitigation methods. The developed techniques can
indicate potential locations for grid monitoring, and hence, will
have impact on the deployment of the smart-grid networking
infrastructure.
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Cascading Failures, Power Grid, Network Science.

I. INTRODUCTION

Recent outages of the power grid (such as the Aug. 2003
blackout in the Northeastern United States and Canada [33])
demonstrated that large-scale failures can have devastating
effects on almost every aspect in modern life, as well as on
interdependent systems such as telecommunications networks
[14]. The power grid is vulnerable to natural disasters, such
as earthquakes, hurricanes, floods, and solar flares as well as
to physical attacks, such as an Electromagnetic Pulse (EMP)
attack [17], [34]. Thus, we focus on the vulnerability of the
power grid to an outage of several lines in the same geographi-
cal area (i.e., to geographically-correlated failures which were
recently studied in the network survivability community, e.g.,
[1], [15], [25], [32], [35], [40]).

Recent works focused on identifying a few vulnerable
lines throughout the entire network [7], [8], [29] and on
designing line or node interdiction strategies [31]. On the
other hand, our objective is to identify the most vulnerable
areas in the power grid and to characterize the properties
of the cascade. Detection of the most vulnerable areas has
various practical applications, since the system in these areas

Fig. 1. The development of the Sept. 8, 2011 San Diego blackout according
to [11] (the color of each line represents the time in which it tripped). The
cascade development is not contiguous.

can be either shielded (e.g., against EMP attacks or solar
flares), strengthened (e.g., by increasing the capabilities of
some relevant lines), or monitored. Since within the framework
of the smart grid, significant effort is dedicated to identifying
locations in which monitoring and communication equipment
should be deployed (e.g., [39]), identifying potential monitor-
ing locations will affect the communication network topology.
Moreover, as indicated in [10], [17], [26], [28] there is a
strong interdependence between the communication networks
and the power grid (the grid supplies power to critical network
components and the networks are used in order to control the
grid). Hence, improving the grid’s resilience will have a direct
impact on the communication networks’ resilience.

Unlike graph-theoretical network flows, power flows are
governed by the laws of physics and there are no strict capacity
bounds on the lines [4]. On the other hand, there is a rating
threshold associated with each line – if the flow through a
line exceeds the threshold, the line will eventually experience
thermal failure (and will likely be turned off, or “tripped” for
protection). Such an outage alters network topology, giving rise
to a different flow pattern which, in turn, could cause other line
outages. The repetition of this process constitutes a cascading
failure. In this work we employ the (linearized) direct-current
(DC) power flow model, which is a tractable relaxation of the
exact alternating-current (AC) model, and an extension of the
cascading failure model in [13] (also see [7], [8]). We note
that cascading failures are difficult to control in real time [7],
[8] because of their inherent multi-stage nature, problem size,
and underlying noise.
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assumed that a line or bus (node) failure in a grid leads
with some probability to a failure of nearby nodes or lines.
Such epidemic-based modeling allows using percolation-based
tools to analyze the cascade’s effects. Yet, in real large scale
cascades, a failure of a specific line can affect a remote line
and the cascade does not necessarily develop in a contiguous
manner. For example, the evolution of the the cascade that took
place in the San Diego area on Sept. 8, 2011 appears in Fig. 1.
It can be seen that consecutive line outages took place a few
hops from each other. Motivated by this observation, we show
that using the DC power flow model along with the cascading
failure model leads to failure propagation characteristics that
are significantly different from the epidemic-based models. For
example, there exist graph topologies where failure of a line
can lead to failure of a non-adjacent line.

Then, we focus on contingency events that are initiated by
geographically correlated failures. We use a disk to represent
the area affected by a contingency. Since such a disk can
theoretically be placed in an infinite number of locations, we
briefly discuss an efficient computational geometric method
(which builds on results from [1]) that allows identifying a
finite set of locations that includes all possible failure events.

Next, we present extensive numerical results which are
based on the WECC (Western-Interconnect) real power grid
data taken from the Platts Geographic Information System
(GIS) [30]. The results are obtained by simulating the cas-
cading failures for each of the possible disk centers (i.e., for
each disk, our tool repeatedly and efficiently solved very large
systems of equations). For example, Fig. 2 illustrates the 5 first
rounds of a simulated cascade.

We illustrate the effects of the most (and the least) dev-
astating failures and show the yield (the overall reduction
in power generation) for all different failure locations in the
Western US. Our simulations identify vulnerable locations
which are not “the usual suspects” (namely, highly-populated
areas or power plants locations). We note that the San Diego
blackout illustrated in Fig. 1 was caused by a single failure in
such seemingly-negligible location (Yuma, AZ). Moreover, we
identify various relations between parameters and performance
metrics (such as yield, number of components into which
the network partitions, and number of faulted lines which
corresponds to the length of the repair process). We study the
sensitivity of the results to different failure models (namely,
stochastic vs. deterministic) and to different attack radii (nat-
urally, the smaller the radius required to cause devestating
effect, the more vulnerable the location). We also observe
that while cascading failures usually start slowly and intensify
over time when only few lines initially fault [7], [8], this
slow start phenomenon often does not exist if the failures are
geographically correlated.

Finally, we briefly consider control actions to be taken
following a geographically correlated failure. We show, ex-
perimentally, that appropriate action taken at the appropriate
time (not necessarily at the start of the cascade) can rapidly
stop the cascade, while losing minimum demand.

The main contributions of this paper are twofold. First, we
combine techniques from network survivability, optimization,
and computational geometry to develop a method that allows
obtaining extensive numerical results regarding the effects of
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Fig. 2. Simulation of a geographically correlated failure in the San Diego
area. All power lines, power plants, and substations within the marked 50 km
radius disk were removed at round 1. The colors represent the rounds in which
additional lines faulted. The final yield (the fraction of the original demand
that was satisfied at the end of the cascade) is 0.326.

geographically correlated failures on a real grid. To the best of
our knowledge, this is the first attempt to obtain such results
using real geographical data. The numerical results provide
insights into the various effects of a geographically correlated
failure. Second, we obtain analytical results regarding the
cascade propagation under the power flow model which sig-
nificantly differ from the epidemic/percolation-based results.
We note that several network science tools were recently
successfully used to analyze power networks (e.g., [3], [18],
[20]–[23], [26], [28], [39] and references therein). This paper
continues this line of work and is mostly inspired by the area
of network survivability.

The rest of the paper is organized as follows. Section II
reviews related work and Section III describes the power flow
and cascade models. Section IV provides analytical results
regarding the cascade propagation. Section V presents the
algorithm used to identify the most vulnerable locations.
Section VI describes the power grid data. In Section VII we
present our numerical findings. Section VIII describes optimal
control methods and demonstrates their impact. Section IX
provides concluding remarks and directions for future work.

II. RELATED WORK

Geographically correlated failures have been recently stud-
ied in the context of communication networks [1], [15], [24],
[25], [32], [35], [40] but to the best of our knowledge, they
have not been extensively studied in the context of power
networks. On the other hand, analysis of the power grid and
its robustness have drawn a lot of recent attention, as part of
efforts to develop smarter and more sustainable power infras-
tructure. The power grid is traditionally modeled as a complex
system, made up of many components, whose interactions are
not effectively computable (e.g., [4] and references therein).

Cascading failures are of high interest in the context of
robustness of the grid [13]. Much work has focused on com-
mon topological properties of power grids and probabilistic
failure propagation models, with the goal of evaluating the
behavior of a generic grid as a self-organized critical system
using, for example, percolation theory (see [12], [19], [36],
[38], and references therein). These works are closely related
to a long line of research in the power community which uses
Monte Carlo methods to analyze system reliability (e.g., [9]).
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Another major line of research focused on specific power flow
models and used them to identify small sets of lines or stations
whose simultaneous faults would create a severe contingency
[7], [8], [22], [29], [31]. Since the problem is computationally
intractable, most of these works used the DC model.

In our studies we use the real topology of the western
U.S. power grid, or “interconnect” (WECC). While relying on
the linearized model, we obtain numerical results for a very
large scale real networks. In the past, results for large networks
have been derived using mostly probabilistic models [12], [19].
Control mechanisms were also considered in [2].

The interdependence between the power and the com-
munication networks upon failures in either network was
investigated in [10], [26], [28]. Specifically, Parandehgheibi
and Modiano [28] recently introduced a model that captures
this interdependence and shows how failures cascade alter-
nately between the networks. Our work complements [28]
by studying cascades in the power grid network, implying a
greater effect on the two interconnected networks.

III. MODELS

We adopt the linearized (or DC) power flow model that is
widely used as an approximation for the non-linear AC power
model (see [4] for a survey on the power flow models). In
particular, we represent the power grid by a directed graph G,
whose set of nodes is N , some of which are supply nodes
(“generators”), or demand nodes (“loads”). Let D ⊆ N be
the set of the demand nodes, and for each node i ∈ D,
let Di be its demand. Also, C ⊆ N denotes the set of the
supply nodes and for each node i ∈ C, Pi is the active power
generated at i. The edges of the graph G represent transmission
lines. The orientation of the lines is arbitrarily and is used for
notational convenience. We also assume pure reactive lines,
characterizing each line (i, j) by its reactance xij .

Given supply and demand vectors (P,D), a power flow is
a solution (f, θ) of the following system of equations:

∑

(i,j)∈δ+(i)

fij −
∑

(j,i)∈δ−(i)

fji =







Pi, i ∈ C

−Di, i ∈ D

0, otherwise

(1)

θi − θj − xijfij = 0, ∀(i, j) (2)

where δ+(i) (δ−(i)) is the set of lines oriented out of (into)
node i, fij is the (real) power flow along line (i, j), and θi is
the phase angle of node i. These equations guarantee power
flow balance, and take into account the reactance of each line.
In addition, since the orientation of lines is arbitrary, a negative
flow value simply means a flow in the opposite direction.

It is known that when G is connected and
∑

i∈C
Pi =

∑

i∈D
Di, (1)–(2) has a unique solution. As a result, this holds

even when G is not connected but the total supply and demand
within each of its connected components are equal.

Next we describe the Cascading Failure Model (as appears
above). which is an extension of the model in [13] (also see
[7], [8]). We assume that each line (i, j) has a predetermined
capacity uij , which bounds its power flow in a normal opera-
tion of the system (that is, |fij | ≤ uij). We assume that before
a failure event, G is connected, the total supply and demand

Cascading Failure Model (Deterministic Case)

Input: Connected network graph G.
Initialization: Before time step t = 0, we have that

∑
i∈C

Pi =∑
i∈D

Di (i.e., the power is balanced), (1)–(2) are satisfied for G, and
all flows along all lines are within the corresponding power capacity.
Failure event: At time step t = 0, a failure of some subset of links
of G occurs. Let G.isStable = false.
While G.isStable is false do:

1) Adjust the total demand to the total supply within each
component of G.

2) Use the system (1)–(2) to recalculate the power flow in G.
3) For all lines compute a moving average

f̃
t
ij = α|fij |+ (1− α)f̃ t−1

ij

4) Remove from G all lines with flow moving average above
power capacity (f̃ t

ij > uij). If no line was removed at this
step and the actual flow in all lines is below the capacity
(|fij | ≤ uij , ∀(i, j)), let G.isStable = true.

are equal, the power flows satisfy (1)–(2), and the power flow
of each line is at most its power capacity. Upon a failure, some
lines are removed from the graph, implying that it may become
disconnected. Then, within each component, we adjust the total
demand to equal the total supply, by decreasing the demand
(supply) by the same factor at all loads (generators). Then, we
use (1)–(2) to recalculate the power flows in the new graph.
The new flows may exceed the capacity and as a result, the
corresponding lines will become overheated. Thermal effects
cause overloaded lines to become more sensitive to a large
number of effects each of which could cause failure. We
model outages using a moving average of the power flow,
denoted by f̃ t

ij , where f̃ t
ij = α|fij | + (1 − α)f̃ t−1

ij (in this
paper, we mostly use α = 0.5). To first order, the moving
average approximates thermal effects, including heating and
cooling from prior states. A similar moving average model
was considered in [2], [8]. A general outage rule gives the
fault probability of line (i, j), given its moving average f̃ t

ij . In
this paper, we consider the following rule:

P {Line (i, j) faults at round t} =







1, f̃ t
ij > (1 + ε)uij

0, f̃ t
ij ≤ (1− ε)uij

p, otherwise.
(3)

where 0 ≤ ε < 1 and 0 ≤ p ≤ 1 are parameters. When
ε = 0, we obtain a deterministic version of this rule. In this
case, lines (i, j) whose f̃ t

ij is above the power capacity uij are
removed from the graph. We also consider the specific case of
the stochastic rule, where ε > 0 and p = 0.5.

The process is repeated in rounds until the system reaches
stability, namely until there is an iteration in which no lines are
removed and there are no overloads. We note that our model
does not have a notion of exact time. However, the relation
between the elapsed time and the corresponding time can be
adjusted by using different values of α: smaller value of α
implies that we take a more microscopic look at the cascade.

Our major metric to assess the severity of a cascading
failure is the system post-failure yield which is defined as
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follows:

Y ,
The actual demand at stability

The original demand
. (4)

In addition to yield, other performance metrics will be
considered, such as the number of faulted lines, the number
of connected components, and the maximum line overload.
While the yield naturally gives an assessment of the severity
of the cascade after the process has already finished, the other
metrics may also shed light on the cascade properties after a
fixed (given) number of rounds.

We next discuss geographically-correlated initial failures.
For simplicity, we assume that the initial failures are repre-
sented by disks with radius r. Namely, given a failure epicenter
p, all lines within distance r from p initially fail1. Let Y (r, p)
be the post-cascade yield of an initial failure of radius r whose
epicenter is p. To capture the effect of different failure radii, we
define the the critical failure radius r(YT , p) with respect to a
yield threshold YT such that r(YT , p) = minr Y (r, p) < YT .

As will be shown later (Property 4.3), in some cases, fail-
ures do not have a monotonic impact, implying that Y (r, p) >
Y (r′, p) even though r > r′. Thus, it is useful to classify
epicenter points by their monotonicity. A point p is referred
to as monotone, if for every r > r′, Y (r, p) ≤ Y (r′, p). A
point p is referred to as pseudo-monotone, if for every r > r′,
Y (r, p) ≤ Y (r′, p)+ δ (namely, allowing fluctuations of up to
δ in the yield; typically we set δ = 0.05). Otherwise, a point
is non-monotone.

Note that our model contains a very simple control mech-
anism, namely, round-by-round demand shedding. In Sec-
tion VIII, we consider a more elaborate control mechanism.

IV. CASCADING FAILURE PROPERTIES

In this section we describe important properties of the
power flow and cascading failure models. Our goal is to high-
light the differences between prior models used to characterize
cascades in the power grid and the models we use. Note that
these prior models did not compute power flows directly and
assume some kind of contiguity in link failures. The proofs of
these properties are based on constructing succinct examples
of power grids and corresponding failures. They are omitted
due to space constraints and can be found in [5].

Property 4.1: Consecutive failures in a cascade may hap-
pen within an arbitrarily long distance from each other.

Property 4.1 captures an important difference between our
model and previously-suggested models, which assume that
power grid failures propagate in an epidemic-like manner.
While, under these models, a line failure causes only adjacent
node/line (or a line within a small distance) to fault, our
model captures situations in which the cascade “skips” large
distances within a single iteration. This situation can actually
be observed in practice, such as in the recent major blackout
in the San Diego area [11] shown in Fig. 1.

The following property shows that a devastating effect can
be caused by an outage of a small fraction of lines.

1Our results can be easily extended to other attack shapes.

Fig. 3. Classification of 1,870 potential failure locations of the WECC
power grid by their monotonicity (see Section VI for details on this power
grid and its parameters). For each location, the yield values resulting from
failures of radii 10 km, 20 km, 30 km, 40 km, and 50 km are obtained.
A location is monotone (and marked in blue) if the yield never increases,
when the attack radius increases. Pseudo-monotonicity (marked in light blue)
allows fluctuations of up to δ = 5% in the yield. All other locations are
non-monotone and marked in red.

Property 4.2: A failure of o(1) of the lines may cause an
outage of a constant fraction of the lines, within one iteration.

The following two properties show that the failures do not
always behave monotonically.

Property 4.3: An initial failure of some set of lines A may
result in a lower yield than a failure, whose initial set of faulted
lines is a superset of A.

Property 4.4: For the same initial failure event, a network
G1, whose topology is a subgraph of the topology of another
network G2, may obtain a higher yield.

In practice, if the failures are geographically correlated,
such non-monotone behavior rarely occurs. Fig. 3 shows the
monotonicity of different failure locations (recall Section III
for the exact definitions) in the WECC power grid. Out of the
1,870 considered locations, only 14.65% were non-monotone.
As expected, non-monotonicity usually occurs in dense parts
of the graph. Thus, in Section V-B, we assume a monotone
behavior of the failures and, additionally, make sure that dense
areas are examined thoroughly.

Finally, the next property shows that cascades can be made
arbitrarily long (in time).

Property 4.5: The length of the cascade (the number of
rounds until stability) can be arbitrarily large.

V. POWER GRID RESILIENCE

A. Parameters Set-up

In the cascading failure model, the power capacities uij

of the lines are given a-priori. In practice, these capacities are
hard to obtain and are usually estimated based on the actual
operation of the power grid. In this paper, we take the N −
k contingency analysis approach [8] in order to estimate the
power capacities. Namely, we set the capacities so that the
network is resilient to failure of any set of k out of the N lines.
In addition, we consider over-provisioning of lines capacity by
a constant fraction of the required capacity of each line. This
over-provisioning parameter, denoted by K, is often referred
to as the Factor of Safety (FoS) of the grid.

Specifically, we consider the following two cases.
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• N -resilient grids (that is, k = 0). In this case,
we solve (1)–(2) for the original grid graph (without
failures) and set the power capacity to uij = K · fij ,
where K ≥ 1.

• (N − 1)-resilient grids (that is, k = 1). In this case,
we solve (1)–(2) for N graphs, each resulting from a
single line failure event. The power capacity is set to
uij = K ·maxr f

r
ij , where fr

ij is the flow assigned to

line (i, j) when considering the rth failure event.

It is worth mentioning that the real power grid is usually
assumed to have FoS of at least K ≈ 1.2 [16]. On the
other hand, some data shows that certain lines (or, more
generally, paths) are more resilient than others. For example,
[37] shows that some transmission paths have power capacities
which are 1.1 times their normal flow, while others have
an FoS larger than 2. In addition, utility companies usually
guarantee that their grid is at least (N−1)-resilient [8]. Our
experiments showed that an (N−1)-resilient grid with an FoS
K is essentially equivalent to an N -resilient grid with a higher
FoS. Therefore, due to space constraints, we present numerical
results for N -resilient grids with FoS K = 1.2. For extensive
sensitivity analysis and results using (N−1)-resilient grids and
different FoS values K, see [6].

B. Identification of Vulnerable Locations

We consider a circular and deterministic failure model,
where all lines and nodes within a radius r of the failure’s
epicenter are removed from the graph (this includes lines that
pass through the affected area).

To identify the candidates for the most vulnerable locations,
we use computational geometric methods developed in [1] for
identifying the vulnerable locations in fiber-optic networks.
For each line, we define an r-hippodrome, which captures
all points in the plane R

2 whose distance from the line is
at most the failure radius r. We focus on the arrangement
of hippodromes, which is the subdivision of the plane into
vertices, arcs, and faces. The vertices are the intersection points
of the hippodromes, the arcs are either maximally connected
circular arcs or straight line segments of the boundaries of
hippodromes that occur between the vertices, and faces are
maximally connected regions bounded by arcs. (see Fig. 4).

Once the vertices of the arrangements are identified, we
treat each vertex v as a candidate for a failure epicenter and
denote by L(v) the set of lines within radius r of v. We then
use the Cascading Failure Model, described in Section III, with
L(v) as the set of lines that initially fault. Naturally, the process
of checking all candidates (each with a different initial failure
event) can be easily parallelized.

It was shown in [1] that in order to find the vulnerable
locations, it is sufficient to consider only the vertices of the
arrangements. In particular, for any point p ∈ R

2, there is
a vertex v such that L(p) ⊆ L(v). Notice that computing
arrangements is quadratic in the number of lines. Thus, we
parallelized this computation as well by partitioning the graph
into several sections (with small number of lines) and finding
vertices of the arrangements in each section. To ensure that
no vertices are lost in the border between two sections, the
sections have a 2r overlap.

r

r

Fig. 4. The arrangement of hippodromes for two lines. The dots are the
vertices and the dashed lines are the arcs.

We note that the method implicitly assumes monotonicity
of failures, which as we showed does not always hold (see
Property 4.3). However, Fig. 3 evidently shows that non-
monotone locations are relatively rare, and that they usually
appear only in dense areas. On the other hand, dense areas
induce many vertices in the arrangement (as they contain
many hippodromes’ intersections), guaranteeing that they are
checked thoroughly.

VI. POWER GRID DATA

We use real power grid data of the western US taken from
the Platts Geographic Information System (GIS) [30]. This
includes the information about the transmission lines, power
substations, power plants, and population at each location.
Since in GIS each transmission line is defined as a link
between two power substation, substations are used as nodes
in our graph. In order not to expose the vulnerability of the
real grid, we used a part of the Western Interconnect system
which does not include the Canada and Mexico sections.
Moreover, we attached to the grid the Texas, Oklahoma,
Kansas, Nebraska, and the Dakotas’ grids, which are not part
of the Western Interconnect. The resulting graph has 14,968
nodes (substations) and 19,513 lines. Moreover, it has 1,920
power stations, each of which was merged with the nearest
substation. Notice that there is a small number of very dense
areas (e.g., the Los Angeles area), while the rest of the grid is
very sparse. This structure can be seen in many typical power
grids, such as the US Eastern Interconnect as well as European
systems. Furthermore, recent research on topological models
for power grid systems show similar results [19]. Thus, our
results will probably carry over to other grids.

In order to obtain a connected graph of the grid that can
be used in the simulation of the cascading failure model, we
performed different processing steps of the raw data, including
longitude-latitude to planar coordinate transformation, con-
nectivity check and nodes merging/elimination, and identifying
demands and supplies. As a result, we obtained a fully-
connected graph (that is, a single connected component) with
13,992 nodes and 18,681 lines. Overall, 1,117 nodes were
classified as generators (supplies), 5,591 as loads (demands),
and 7,284 as neutral. Most of the neutral nodes are closely
connected to each other and to one of the non-neutral nodes,
thus drawing the power/demand from them. The details of
these processing steps can be found in [5].

In addition, the GIS does not provide the power capac-
ities of most of the transmission lines2, nor their reactance.
However, these parameters are needed for the power flow and
Cascading Failure models. The reactance of a line depends
on its physical properties (such as its material) and there is
a linear relation between its length and reactance: the longer

2The capacities are given in the GIS only for some congested lines.
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the line is, the larger its reactance. Thus, we assumed that all
lines have the same physical properties (other than length) and
used the length to determine the reactance. It is important to
notice that the flow part of the solution of (1)–(2) is scale
invariant to the reactance (that is, multiplying the reactance
of all lines by the same factor does not change the values
of the flows). Hence, we simply use the length of the line
as its reactance. Regarding the power capacities, we take the
approach described in Section V-A.

VII. NUMERICAL RESULTS

First, we note that as part of our experimental work, we
performed a simulation of a recent major blackout event that

occurred on Sept. 8th, 2011, in the San-Diego area. The results,
reported in [6], suggest that our model follows closely the
development of the actual event.

We identified the potential failure locations using the
algorithm described in Section V-B implemented in MATLAB.
We present results for failures with radius r = 50 km, which
captures realistic scenarios such as an EMP attack [17], [34]
and is large enough to generate a cascading failure in most
cases. Due to space constraints, most of the results for other
values of r are omitted, but we briefly discuss the critical
failure radius below. For r = 50 km, the algorithm identified
61,327 potential failure locations. The identification of these
locations was done within 24 hours on an eight-core server.

For each failure location v, we performed the simulation of
the Cascading Failure Model, presented in Section III, assum-
ing that all lines in L(v) fail. The simulation was performed
using a program that efficiently solves very large systems of
linear equations, using CPLEX and Gurobi optimization tools.
We present the results of simulation experiments for the N -
resilient grid with FoS K = 1.2. In [6] we present results for
an (N−1)-resilient grid. The comparison between the results
of N - and (N−1)-resilience with the same FoS (K = 1.2)
suggests that (N−1)-resilience helps when the initial event
is insignificant. However, it makes little difference when the
initial event is significant.

To assess the severity of a cascading failure, we use the
following four metrics, which are measured in the end of the
cascade: The yield, as defined in (4); the total number of
outaged lines, which indicates the time it takes to recover the
grid after the cascade: the larger the number of outaged lines,
the longer is the actual time of the corresponding blackout;
the number of connected components; and the number of
rounds until stability. While the results do not point to a
specific vulnerability of the power grid (due to the use of the
modified grid map), they provide insights into the possible
values of these metrics and the relations between them.

A. Deterministic Outage Rule

We first examined the deterministic outage rule, i.e. the rule
defined in (3) with ε = 0. We plot specific failures to show how
they evolved during the first five rounds of the cascade. Figs. 2
and 5 show two failure events: One in California, leading to a
severe blackout, and another one around the Idaho-Montana-
Wyoming border, which had a less severe effect. In general,
higher FoS usually leads to less severe blackout effect (see [6]
for details). Interestingly, the Idaho-Montana-Wyoming border

0.39

Fig. 5. Illustration of cascading failures over 5 rounds, where the initial failure
location is in the Idaho-Montana-Wyoming border. The final yield values is
0.39. The colors represent the rounds in which the lines faulted. See also
Fig. 2.
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Fig. 6. The effects of the number of initially faulted lines on the total number
of faulted lines (left) and the number of components (right), after 5 rounds of
cascade (FoS K = 1.2).

failure leads to low yield (0.39), although the development of
the failure is very slow—after 5 rounds only few lines were
faulted. However, the same event with K = 2 leads to near-
unity yield.

Scatter graphs for different metrics after 5 rounds are
shown in Fig. 6. It can be seen that an increase in the initial
number of faulted lines leads to an increase in the total number
of faulted lines at the end of the fifth round: if 400, 800, and
1,200 lines initially faulted, at least 2,847, 3,600, and 4,669
are faulted at the end, respectively. Furthermore, an increase in
the initial number of faulted lines leads also to an increase in
the number of connected components: if 400, 800, and 1,200
lines initially faulted, the number of components is at least
696, 1,382, and 1,973, respectively.

Next, we analyze the severity of cascading failures once
stability is reached. The results are shown in Figs. 7 and 8.
In this case, the vast majority of failures resulted in yield in
the range of 0.2–0.46. Fig. 7 also shows that, as expected,
there is an inverse correlation between the yield and the total
number of faulted lines. The relation between the number of
rounds and the number of initially faulted lines suggests that
when the number of initially faulted lines is small, the time
until stability can be either large or small. However, as the
number of initially faulted lines gets larger, the distribution of
the time until stability becomes more concentrated. Also, our
experiments indicate that there is no clear correlation between
the final yield and the number of initially faulted lines as well
as the final yield and the number of rounds until stability.
Finally, Fig. 8 illustrates the yield and the number of rounds
until stability by failure location. It can be seen that there is a
high variability in the effects of the attacks in nearby locations
and that a location that leads to low yield does not necessarily
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Fig. 7. The number of rounds as a function of the number of initially faulted
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(a) The yield values at stability.

(b) The number of rounds until stability.

Fig. 8. Vulnerability analysis (at stability) of failure locations. The color
of each point (which is a vertex of the arrangement) represents the value
corresponding to a cascade whose epicenter is at that point (points that do not
appear on the map cause outages that are a subset of the outages caused by
a nearby vertex).

lead to high number of rounds (and vice versa).

B. Stochastic Outage Rule

In order to demonstrate the sensitivity to the assumptions
regarding the outage rule, we also present two types of
experiments using a stochastic outage rule, as defined in (3)
with ε > 0 and p = 0.5. First, for the same failure epicenter,
we compared the yield of different values of ε: Fig. 9(a) shows
the average yield and its standard deviation for a representative
failure epicenter (the results are based on 100 independent
runs for each value of ε). Observe that ε ∈ (0, 0.15) leads to
a bit higher average yield than that of the deterministic rule.
However, for ε ≥ 0.15, the average yield obtained when using
the stochastic rule is significantly lower.

In the second type of experiments, we fixed ε = 0.04 and
compared the results of selected failure epicenters with the
results obtained for the deterministic outage rule. The failure

0.04

0.01

0.02

0.03

0.6

0.2

0.4

0.1 0.2 0.3 0.4 0.50
ǫ

Average StdDev

Average Yield

Yield Standard Deviation

(a)

Yield

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

Failure ID

deterministic

stochastic

(b)

Fig. 9. Results for the stochastic outage rule with p = 0.5. (a) the average
yield and standard deviation of a representative failure epicenter, based on
100 independent runs. (b) a comparison of the deterministic and stochastic
outage rules for selected failure events

epicenters were chosen such that the yield using deterministic
rule grows approximately linearly with the failure index. The
results, depicted in Fig. 9(b), show that there is a certain
yield range where the stochastic outage rule coincides with
the deterministic outage rule. However, outside this range, the
stochastic outage rule results in yield values below 0.3, which
are smaller than the yield obtained by a deterministic outage
rule (even when this deterministic yield is almost 1).

C. Critical Failure Radius

We now demonstrate the relation between the initial failure
radius and the resulting yield. In particular, we identify the
failure radius that is required in order to obtain yield value
below a certain yield threshold. The results demonstrate that
for some attack epicenters, a failure of radius 10 km is
sufficient for a devastating effect, while for some epicenters
even a failure of radius 50 km has only a mild effect.

For example, we considered 1,870 equally spaced apart
points. For each point, we considered 5 initial failure radii:
10 km, 20 km, 30 km, 40 km, and 50 km. Fig 10 depicts
for each such point p, the value of r(0.3, p) and r(0.9, p): the
minimal radius (out of the five radii checked) that leads to a
post-cascade yield below 0.3 and 0.9, respectively.

VIII. CONTROL

This section describes experiments with control algorithms
in the specific case of the San Diego event, illustrated in
Fig. 2. The general goal of such algorithms is to stop the
cascade without losing much demand (if possible, in a short
time frame). It is well known that the exact optimal control
of cascading failures becomes infeasible for large practical
networks, due to various reasons (see, e.g., [7]). The main
challenge is that any formulation has to deal with the combi-
nation of combinatorics in the network dynamics, multistage
behavior, stochastic behavior, and very large size. It seems that
this combination places the problem outside the capabilities of
current optimization methodology. Therefore, some approxi-
mate or heuristic algorithms should be considered.

Particularly, we are interested in algorithms that will shed
a minimum amount of demand and lead to a stable grid – the
cascade has been stopped. Specifically, in this paper (for lack
of space), we focus on an algorithm that operates within a
single round of the cascade. The question is, then, at which
round control should be applied. Assuming that a given round
t is under consideration, our control is constrained as follows:
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(a) Yield threshold YT = 0.3

(b) Yield threshold YT = 0.9

Fig. 10. The critical failure radius r(YT , p) of 1,870 equally spaced apart
points on the grid.

(a) At each demand point i ∈ D, we reduce the demand
by a certain quantity, si.

(b) We adjust generator output, within each component
so as to maintain overall balance between supply and
demand.

(c) However, generators are furthermore constrained in
that the amount of change in a generator must be
proportional to its current output.

(d) After the demand shedding and generator adjustments,
the power flow on each operating line (i, j), and its
moving-average, cannot exceed its capacity uij .

Rule (c) approximates generator “ramp-up” and “ramp-down”
constraints (broadly speaking, generators cannot modify their
output arbitrarily fast). Rule (d) states that, according to the
cascading failure model, the cascade will stop. Rules (a)-(d)
describe the constraints; the goal is to pick the round t and
quantities si so as to maximize the remaining demand. At a
given round t, this optimization problem can be written as a
linear program. Denote by f̃ t

ij , D̃
t
i , P̃

t
i the value, just before

round t, of the flow moving average on line (i, j), the demand
at demand point i ∈ D, and the generation at supply point i ∈
C, respectively. Moreover, denote by C1, . . . Cn the connected
components in the grid graph before round t, and let comp(i)
denote the connected component that contains node i. The

TABLE I. OPTIMAL CONTROL OUTCOME. “ROUND” REFERS TO THE

ROUND ON WHICH THE CONTROL IS APPLIED, WHILE “YIELD” IS THE

OUTCOME.

Round 1 5 10 20 30 40 50 74

Yield 0.22 0.55 0.49 0.41 0.39 0.38 0.36 0.34

linear program is as follows:

minimize
∑

i∈D
si subject to

0 ≤ si ≤ D̃t
i ∀i ∈ D

α|fij | + (1− α)f̃ t
ij ≤ (1− ε)uij ∀ line (i, j)

|fij | ≤ (1− ε)uij ∀ line (i, j)∑
(i,j)∈δ+(i) fij−

∑
(j,i)∈δ−(i) fji=Pi, ∀i ∈ C

∑
(i,j)∈δ+(i) fij−

∑
(j,i)∈δ−(i) fji=−(D̃t

i−si) ∀i ∈ D∑
(i,j)∈δ+(i) fij−

∑
(j,i)∈δ−(i) fji=0, ∀i ∈ N\(C∪D)

θi − θj − xijfij = 0 ∀ line (i, j)
0 ≤ λCm ≤ 1 ∀ component Cm

Pi = P̃ t
i (1− λcomp(i)) ∀i ∈ C

∑
i∈Cm∩C

Pi =
∑

i∈Cm∩D
(D̃t

i−si) ∀ component Cm

where, as in Section III, δ+(i) (δ−(i)) is the set of lines
oriented out of (into) node i. Notice that 3rd −6th equations in
the linear program above are identical to (1)-(2) in Section III.

We demonstrate the operation of the control mechanism
by considering a failure event in San Diego area (i.e., in the
location illustrated in Fig. 2) under the stochastic outage rule
with ε = 0.05, p = 0.5, and α = 0.1.

Table I outlines the performance of the control mechanism
and shows that neither applying control at the outset of the
cascade is optimal (this is typical, in our experience), nor
waiting too long. Rather, there is a critical frame of time
where effective control is possible; the precise time frame
can be discovered by running our simulation upon the failure
event, and applying the control only when we reach the round
with optimal outcome. We also note that without control, the
cascade stops at the 74th round with yield value of 0.34. Cur-
rently, we are developing robust versions of this algorithm with
respect to errors in data, timing, and delays in implementation.

IX. CONCLUSION AND FUTURE WORK

In this paper, we considered a DC power flow and an
accompanied cascading failure model. We showed analytically
that these models differ from previously-studied models based
on epidemic-like failures. Then, we used techniques from
network survivability analysis along with detailed GIS data to
develop a method for analyzing the vulnerability of different
grid locations to geographically correlated failures. We per-
formed extensive numerical experiments to obtain insight into
the relations between the various parameters and performance
metrics. Finally, we demonstrated that the use of control at the
right point can mitigate the effects of a large scale failure.

This is one of the first steps towards an understanding of
the grid resilience to large scale failures. Hence, there are still
many open problems. In particular, we plan to extend this work
to study the effect of geographically correlated failures on the
interdependent grid and communication networks (see e.g.,
[10], [26], [28]). Moreover, we will extend the cascade model
to incorporate effects such as frequency collapse and generator
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tripping. In addition, while due to its relative simplicity, most
previous work in the area of grid vulnerability is based on
the DC model, this model does not capture effects such as
voltage collapse that may occur during a cascade. Hence, we
plan to develop methods to analyze the effect of an attack
using the more realistic AC model. Finally, we plan to study
the effectiveness of some of the existing control algorithms in
coping with geographically correlated failures.

ACKNOWLEDGEMENTS

This work was supported by NSF grant CNS-1018379,
NSF CIAN ERC under grant EEC-0812072, DTRA grants
HDTRA1-09-1-0057 and HDTRA1-13-1-0021, DOE award
DE-SC0002676, a grant from the U.S.-Israel Binational Sci-
ence Foundation, the Legacy Heritage Fund program of the
Israel Science Foundation under Grant No. 1816/10, the Israeli
Centers of Research Excellence (I-CORE) program (Center
No. 4/11), and the Israeli Smart Grid (ISG) Consortium,
administered by the Office of the Chief Scientist of the Israeli
ministry of Industry and Trade and Labor.

REFERENCES

[1] P. Agarwal, A. Efrat, A. Ganjugunte, D. Hay, S. Sankararaman, and
G. Zussman, “The resilience of WDM networks to probabilistic geo-
graphical failures,” IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1525–
1538, 2013.

[2] M. Anghel, K. A. Werley, and A. E. Motter, “Stochastic model for
power grid dynamics,” in Proc. HICSS’07, Jan. 2007.

[3] O. Ardakanian, C. Rosenberg, and S. Keshav, “On the use of teletraffic
theory in power distribution systems,” in Proc. e-Energy’12, May 2012.

[4] A. R. Bergen and V. Vittal, Power Systems Analysis. Prentice-Hall,
1999.

[5] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman,
“Power grid vulnerability to geographically correlated failures – analy-
sis and control implications,” ArXiv e-prints, 2012, available at
http://arxiv.org/abs/1206.1099v1.

[6] ——, “Sensitivity analysis of the power grid vulnerability to large-scale
cascading failures,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 3,
pp. 33–37, Dec 2012.

[7] D. Bienstock, “Optimal control of cascading power grid failures,” in
IEEE PES General Meeting, July 2011.

[8] D. Bienstock and A. Verma, “The N−k problem in power grids: New
models, formulations, and numerical experiments,” SIAM J. Optim.,
vol. 20, no. 5, pp. 2352–2380, 2010.

[9] R. Billinton and W. Li, Reliability Assessment of Electrical Power

Systems Using Monte Carlo Methods. Plenum Press, 1994.

[10] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
“Catastrophic cascade of failures in interdependent networks,” Nature,
vol. 464, pp. 1025–1028, 2010.

[11] California Public Utilities Commission (CPUC), “CPUC brief-
ing on San Diego blackout,” http://media.signonsandiego.com/news/
documents/2011/09/23/CPUC briefing on San Diego blackout.pdf.

[12] D. P. Chassin and C. Posse, “Evaluating north american electric grid
reliability using the Barabsi–Albert network model,” Physica A, vol.
355, no. 2-4, pp. 667 – 677, 2005.

[13] J. Chen, J. S. Thorp, and I. Dobson, “Cascading dynamics and mit-
igation assessment in power system disturbances via a hidden failure
model,” Int. J. Elec. Power and Ener. Sys., vol. 27, no. 4, pp. 318 –
326, 2005.

[14] J. Cowie, A. Ogielski, B. Premore, E. Smith, and T. Underwood, “Im-
pact of the 2003 blackouts on Internet communications,” Preliminary

Report, Renesys Corporation, 2004.

[15] T. N. Dinh, Y. Xuan, M. T. Thai, E. K. Park, and T. Znati, “On
approximation of new optimization methods for assessing network
vulnerability,” in Proc. IEEE INFOCOM’10, Mar. 2010.

[16] I. Dobson, “personal communication,” 2012.

[17] J. S. Foster, E. Gjelde, W. R. Graham, R. J. Hermann, H. M. Kluepfel,
R. L. Lawson, G. K. Soper, L. L. Wood, and J. B. Woodard, “Report
of the commission to assess the threat to the United States from
electromagnetic pulse (EMP) attack, critical national infrastructures,”
Apr. 2008.

[18] L. Gan, A. Wierman, U. Topcu, N. Chen, and S. H. Low, “Real-
time deferrable load control: Handling the uncertainties of renewable
generation,” in Proc. e-Energy’13, 2013.

[19] P. Hines, E. Cotilla-Sanchez, and S. Blumsack, “Do topological models
provide good information about electricity infrastructure vulenrablity?”
Chaos, vol. 20, no. 3, p. 033122, Sept. 2010.

[20] Y. Huang, S. Mao, and R. M. Nelms, “Adaptive electricity scheduling
in microgrids,” in Proc. IEEE INFOCOM’13, 2013.

[21] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on
utility maximization in power networks,” in IEEE PES General Meeting,
July 2011.

[22] X. Liu, K. Ren, Y. Yuan, Z. Li, and Q. Wang, “Optimal budget
deployment strategy against power grid interdiction,” in Proc. IEEE

INFOCOM’13, 2013.

[23] L. Lu, J. Tu, C.-K. Chau, M. Chen, and X. Lin, “Online energy
generation scheduling for microgrids with intermittent energy sources
and co-generation,” in Proc. ACM SIGMETRICS’13, 2013.

[24] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
vulnerability of the fiber infrastructure to disasters,” IEEE/ACM Trans.

Netw., vol. 19, no. 6, pp. 1610–1623, 2011.

[25] S. Neumayer and E. Modiano, “Network reliability with geographically
correlated failures,” in Proc. IEEE INFOCOM’10, Mar. 2010.

[26] ——, “Assessing the effects of a randomly located circular disaster on
the power grid and dependent networks,” in Proc. IEEE SmartGrid-

Comm’13, Oct. 2013.

[27] G. A. Pagani and M. Aiello, “The power grid as a complex network:
a survey,” Physica A: Statistical Mechanics and its Applications, vol.
392, no. 11, pp. 2688 – 2700, 2013.

[28] M. Parandehgheibi and E. Modiano, “Robustness of interdependent
networks: The case of communication networks and the power grid,”
in Proc. IEEE GLOBECOM’13, Dec. 2013.

[29] A. Pinar, J. Meza, V. Donde, and B. Lesieutre, “Optimization strategies
for the vulnerability analysis of the electric power grid,” SIAM J. Optim.,
vol. 20, no. 4, pp. 1786–1810, Feb. 2010.

[30] Platts, “GIS Data,” http://www.platts.com/Products/gisdata.

[31] J. Salmeron, K. Wood, and R. Baldick, “Worst-case interdiction analysis
of large-scale electric power grids,” IEEE Trans. Power Syst., vol. 24,
no. 1, pp. 96 –104, Feb. 2009.

[32] A. Sen, B. Shen, L. Zhou, and B. Hao, “Fault-tolerance in sensor
networks: a new evaluation metric,” in Proc. IEEE INFOCOM’06, 2006.

[33] U.S.-Canada Power System Outage Task Force, “Final report on the
August 14, 2003 blackout in the United States and Canada: Causes and
recommendations,” Apr. 2004, https://reports.energy.gov.

[34] U.S. Federal Energy Regulatory Commission, Dept. of Homeland
Security, and Dept. of Energy, “Detailed technical report on EMP
and severe solar flare threats to the U.S. power grid,” Oct. 2010,
http://www.ornl.gov/sci/ees/etsd/pes/.

[35] J. Wang, C. Qiao, and H. Yu, “On progressive network recovery after
a major disruption,” in Proc. IEEE INFOCOM’11, 2011.

[36] Z. Wang, A. Scaglione, and R. Thomas, “Generating statistically correct
random topologies for testing smart grid communication and control
networks,” IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 28 –39, June
2010.

[37] Western Electricity Coordinating Council (WECC), “Historical trans-
mission paths database,” http://www.wecc.biz.

[38] H. Xiao and E. M. Yeh, “Cascading link failure in the power grid: A
percolation-based analysis,” in Proc. IEEE Int. Work. on Smart Grid

Commun., June 2011.

[39] Y. Zhao, A. Goldsmith, and V. Poor, “On PMU location selection for
line outage detection in wide-area transmission networks,” in IEEE PES

General Meeting, July 2012.

[40] Q. Zheng, G. Cao, T. L. Porta, and A. Swami, “Optimal recovery from
large-scale failures in IP networks,” in Proc. IEEE ICDCS’12, 2012.

9


