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Power in the Phenotypic Extremes: A Simulation Study of Power
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Next-generation sequencing technologies are making it possible to study the role of rare variants in human disease. Many
studies balance statistical power with cost-effectiveness by (a) sampling from phenotypic extremes and (b) utilizing a two-stage
design. Two-stage designs include a broad-based discovery phase and selection of a subset of potential causal genes/variants to
be further examined in independent samples. We evaluate three parameters: first, the gain in statistical power due to extreme
sampling to discover causal variants; second, the informativeness of initial (Phase I) association statistics to select genes/variants
for follow-up; third, the impact of extreme and random sampling in (Phase 2) replication. We present a quantitative method to
select individuals from the phenotypic extremes of a binary trait, and simulate disease association studies under a variety of
sample sizes and sampling schemes. First, we find that while studies sampling from extremes have excellent power to discover
rare variants, they have limited power to associate them to phenotype—suggesting high false-negative rates for upcoming
studies. Second, consistent with previous studies, we find that the effect sizes estimated in these studies are expected to be
systematically larger compared with the overall population effect size; in a well-cited lipids study, we estimate the reported
effect to be twofold larger. Third, replication studies require large samples from the general population to have sufficient power;
extreme sampling could reduce the required sample size as much as fourfold. Our observations offer practical guidance for the
design and interpretation of studies that utilize extreme sampling. Genet. Epidemiol. 35:236–246, 2011. r 2011 Wiley-Liss, Inc.
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INTRODUCTION

Whole-genome association studies have identified hun-
dreds of common genetic variants associated with complex
human traits and diseases [Hindorff et al., 2009]. While
successful in identifying novel genetic loci contributing to
each disease, these findings have prompted three key
questions: (i) what is the full contribution of genetic

variation (common and rare) at each locus? (ii) what gene
or genes are responsible for the association signal in each
region? (iii) what risk genes have yet to be found, because
they carry neither rare Mendelian mutations detectable by
linkage, nor common variants detectable by genome-wide
association studies (GWAS) [Bodmer and Bonilla, 2008]?

Next-generation sequencing makes it increasingly prac-
tical to comprehensively assess low-frequency polymor-
phisms and rare mutations, both in candidate genes such
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as those found by GWAS (to answer the first two
questions) [Ahituv et al., 2007; Cohen et al., 2004, 2006; Ji
et al., 2008; Kathiresan et al., 2009; Nejentsev et al., 2009;
Romeo et al., 2007] and genome-wide (to answer all three)
[Ng et al., 2009, 2010]. The search for rare variants is
motivated both by the long history of Mendelian genetics
in families, and by population-based sequencing that has
implicated rare variants (in genes previous discovered via
Mendelian genetics) influencing blood pressure [Ji et al.,
2008] and high-density lipoprotein (HDL) cholesterol
levels [Cohen et al., 2004].

This paper addresses three features related to the design
of studies using DNA sequencing to study rare variants:
the samples used for variant discovery, selection of specific
genes and variants for follow-up, and replication of
putative genotype-phenotype relationships in indepen-
dent samples. We focus on one widely discussed design
feature: the ascertainment of samples from the extremes of
a population distribution [Ahituv et al., 2007; Bell et al.,
2007; Cohen et al., 2004; DeAngelis et al., 2004; Kryukov
et al., 2009; Mohammadi et al., 2009; Nebert 2000; Perez-
Gracia et al., 2002; Risch and Zhang, 1995, 1996; Romeo
et al., 2007] (previously referred to as ‘‘selective genotyp-
ing’’) [Lander and Botstein, 1989; Van Gestel et al., 2000].
Intuitively, ascertainment of samples from the extremes of
phenotype should enrich for the burden of alleles
influencing a trait, thus improving power to discover risk
variants and to detect their association to phenotype. One
such example is the extreme discordant sib-pair design,
which results in a substantial increase in statistical power
when compared to other sib-pair designs [Risch and
Zhang, 1995, 1996]. Similarly, ascertainment of extremes
of quantitative traits from large population cohorts has
also been shown to increase the power to identify
associated variants [Kryukov et al., 2009; Lander and
Botstein, 1989; Van Gestel et al., 2000].

Many quantitative and methodological issues remain
regarding extreme sampling. These include (a) selection of
extremes for dichotomous traits influenced by multiple
risk factors (such as type 2 diabetes (T2D) or myocardial
infarction), (b) impact on power to discover variants of
different sampling strategies, (c) how to select, from the
numerous variants discovered via sequencing, a set of
variants to be followed-up in independent cohorts (i.e.
replication), and (d) design of studies for replication in
extended samples.

In this report, we first propose a model in which
samples from the phenotypic extremes of a dichotomous
trait in the presence of multiple clinically relevant risk
factors. We apply this model to quantify the impact of
different sampling procedures on the power to discover
casual variants. We evaluate strategies for the selection of
variants for follow-up, and of design for replication
studies. The results provide practical guidance for design
of next-generation sequencing studies and their follow-up
to confirm valid and reproducible discoveries.

METHODS

SIMULATED POPULATION

Our primary simulated population consisted of 27,500
individuals whose simulated characteristics were based on
empirical summary statistics obtained from the combina-
tion of three prospective cohorts: the Malmö Preventive

Project, the Scania Diabetes Registry, and the Botnia Study
(details of these populations are described elsewhere)
[Bakhtadze et al., 2008; Cervin et al., 2008; Lyssenko et al.,
2008]. We additionally simulated smaller (n 5 5,000) and
larger (n 5 100,000) cohort sizes. The populations were
simulated with a logistic regression model in which T2D
status (37% affected and 63% unaffected) was predicted
from three known risk factors—age, body mass index
(BMI), and gender—and a di-allelic low-frequency variant.
This genetic effect could represent a single polymorphic
DNA variant, or a collection of rare variants that sum to a
given frequency and pooled effect size. Age and BMI were
assumed to follow normal distributions with mean and
standard deviations estimated from empirical data; gender
was dichotomized in simulations. Age, BMI, and gender
were transformed to be correlated using the Cholesky
decomposition of the covariance matrix. Effect sizes and
inter-correlations used in the simulations are presented in
Supplementary Table 1. We varied the frequency and
effect size of the genetic effect across a grid of parameter
values. Specifically, the allele frequency and effect size
(odds ratio (OR)) of the genetic variant were allowed to
vary from 0.001–0.01 and 1.0–6.0, respectively. Protective
variants were also simulated (OR range: 0.16–0.67); results
for protective variants are symmetrical (data not shown).
This ‘‘spiked-in’’ genetic perturbation contributes little to
the population variability of the trait overall and is not
included in the liability model. In an attempt to map a
portion of parameter space that is expected to be revealed
by next-generation sequencing studies, we focused on
low-frequency variation and moderate effect sizes. We
avoided scenarios of higher allele frequencies (�1%) and
larger odds ratios (�6) as they would have been likely to
be uncovered by previous linkage studies or existing
genome-wide approaches in appropriately sized samples
(�2,000 affected sib pairs for linkage or 2,000 cases/2,000
controls for association studies), even assuming imperfect
single-nucleotide polymorphism (SNP) tagging in the case
of association [Purcell et al., 2003; Risch and Merikangas,
1996]. We performed 5,000 replications for each MAF/OR
combination.

DEFINITION OF LIABILITY SCORES

We simulated a two-stage design, in which the first stage
consists of sequencing a subset of individuals to discover
and prioritize variants and the second stage attempts to
follow-up a subset of variants in an independent sample.
The discovery sequencing cohorts and follow-up replication
cohorts were selected according to two different ascertain-
ment strategies: (i) a liability ascertainment method
described below, which selects individuals with the most
extreme liability scores (Fig. 1) and (ii) a random ascertain-
ment of affected and unaffected individuals. We varied the
size of the discovery sequencing cohort and follow-up
cohort. Liability scores can be defined using clinical risk
scores [Lindstrom and Tuomilehto, 2003; Lloyd-Jones et al.,
2004] or more quantitatively with generalized linear
models. We fit the following logistic regression model to
the simulated data to obtain liability scores:

log
PðY ¼ 1Þ

PðY ¼ 0Þ

� �
¼ a1b0 age1b1 BMI1b2 sex:

From this model, each individual was assigned a
predicted risk, which when contrasted with their observed

237Phenotypic Extremes and Rare Alleles

Genet. Epidemiol.



disease status, resulted in model residuals. Thus, model
residuals can be used to identify those individuals that the
model cannot ‘‘explain.’’ This is unlike the traditional
use of model residuals, which typically evaluate model
assumptions and the adequacy of fitted regression
models. We define liability scores as Pearson residuals
[Agresti and Wiley InterScience (Online service), 2002],
which are estimated as follows:

yi � p̂iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ið1� p̂iÞ

p ;

where yi is the observed disease status (affected 5 1,
unaffected 5 0) and p̂i is the predicted model probability
for individual i. For large sample, Pearson residuals can
approximate a standard normal distribution [Agresti and
Wiley InterScience (Online service), 2002]. Positive resi-
duals indicate model deviations exclusively for affected
individuals while negative residuals indicate deviations
exclusively for unaffected individuals. Simulated pheno-
typic extremes were selected at the tails of the liability
score, where the highest liability scores correspond to the
largest model deviations for affected individuals and the
lowest liability scores correspond to the largest model
deviations for unaffected individuals. We note that,
although we have defined liability scores from a logistic
regression model in our study, our framework could be
easily generalized to time-to-event data by using the Cox
proportional hazards model by selecting the tails of model
residuals.

Recently, an approach was described that estimates
the proportion of genetic and environmental variance

contributing to an outcome variable, per individual, using
Monte Carlo simulation with Gibbs or Rejection Sampling
within pedigree data [Campbell et al., 2010]. The informa-
tion of focus in our work (identifying phenotypic extremes
given a set of risk factors) and the information estimated
broadly in that work are similar in spirit. While not
explicitly described, their model could be used to identify
individuals with large residual genetic contributions
that have unexpected outcomes given estimates of
environmental effects. However, there are still differences
between both approaches in their implementation. First,
the model is conceptualized for pedigrees and uses
information from families to estimate parameters for their
model, and a description for application to unrelated
population-based collections was not described. Second,
our approach does not require a specific assumption about
the model for environmental or genetic contributions to
the outcome; rather, we empirically measure departures
from the predicted effect of risk factors included in the
model. Third, in our model, we treat age of onset as a
predictor for disease rather than a latent variable which
‘‘reveals’’ disease status over time. Finally, Campbell et al.
requires a specific assumption about the heritability for the
outcome variable; our assumption is that the heritability
for the outcome variable is nonzero.

Variants were prioritized and examined for association
to disease status using a two-tailed Fisher’s exact test.
A stringent significance level of 0.001 was used, as it is
often the case that researchers will sequence thousands of
variants simultaneously. The power to detect a genetic
association presented throughout the text was estimated
using two-tailed Fisher’s exact test; specifically, it was

Fig. 1. Graphical representation of the ascertainment of individuals with extreme liability scores. Individuals are ranked according to

their liability scores in a multivariable risk model. Squares and circles represent males and females, respectively. The size of each shape

is proportional to the individual’s predicted disease risk. The red circles represent a low-frequency genetic mutation present in the
general population. Individuals at the extremes of the liability distribution are then selected for the sequencing study.
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computed as the proportion of simulations the null hypo-
thesis was rejected given a specified significance level.

DETAILS OF THE LIABILITY MODEL FOR
EXAMINED COHORTS

A liability score was generated which measured risk to
T2D in the context of three known risk factors (age, BMI, and
gender) in 27,500 individuals drawn from three prospective
cohorts: the Malmö Preventive Project (MPP), the Scania
Diabetes Registry, and the Botnia Study [Bakhtadze et al.,
2008; Cervin et al., 2008; Lyssenko et al., 2008]. Risk model
estimates are shown in Supplementary Table 1, distribution
of liability scores are shown in Supplementary Figure 1.

GENOTYPING OF THE TCF7L2 VARIANT
(RS7903146)

Genotyping of rs7903146 in TCF7L2 has been described
previously [Bakhtadze et al., 2008; Cervin et al., 2008; Lyssenko
et al., 2008]. Briefly, in the MPP, genotyping was performed
with the use of matrix-assisted laser desorption-ionization
time-of-flight (MALDI-tof) mass spectrometry on the Mas-
sARRAY platform (Sequenom, San Diego, CA). The genotype
call rate was 495% and the genotyping accuracy was 499%,
which was estimated by re-genotyping 11% of the samples
using the Sequenom platform. In Botnia and Scania Diabetes
Registry, the variant was genotyped with an allelic discrimi-
nation assay-by-design method on the ABI 7900 platform
(Applied Biosystems, Carlsbad, CA).

RESULTS

A MODEL TO DEFINE EXTREMES FOR
A DICHOTOMOUS OUTCOME USING
MULTIPLE RISK FACTORS

A simple approach to ascertain phenotypic extremes of a
dichotomous trait is to apply a threshold to a given risk
factor, and to select individuals exceeding that threshold.
Such an approach by design does not weight individuals by
the extremity of phenotype, nor does it model the contribu-
tions to risk of multiple factors. We propose a liability score
for each individual, derived from the Pearson residuals
estimated in a risk model for a set of known epidemiological

risk factors (such as BMI and age). The details of the model
are presented in the Methods. The liability score is defined
as a continuous distribution, from which phenotypic
extremes can be selected at the tails of the distribution,
similar to the selection of extremes from a quantitative trait
[Kryukov et al., 2009; Lander and Botstein, 1989; Risch and
Zhang, 1995, 1996; Van Gestel et al., 2000]. Specifically, the
liability score is a quantitative measure of the discordance
between an individual’s observed disease status (e.g.
affected 5 1/unaffected 5 0) and predicted risk score (va-
lues ranging from 0 to 1). Thus, the highest liability scores
correspond to individuals who are affected, despite low
predicted risk; conversely the lowest liability scores corre-
spond to unaffected individuals with the largest predicted
risk (Fig. 1). Indeed such liability scores estimated from
disease status, risk factors, and residual heritability have
already been proposed for pedigrees [Campbell et al., 2010;
Falconer, 1965].

To evaluate empirically whether this approach resulted
in the expected increase in power, we implemented the
model in a large cohort (n 5 27,500, see Methods)
[Bakhtadze et al., 2008; Cervin et al., 2008; Lyssenko
et al., 2008], in which T2D status was known, along with
multiple quantitative measures. Liability scores were
calculated for T2D according to disease status and three
conventional T2D risk factors: age, BMI, and gender. We
evaluated the allele frequency of an intronic SNP near
the transcription factor 7-like 2 gene (TCF7L2: Entrez
GeneID 5 6934, rs7903146), which has been previously
shown to contribute susceptibility to T2D [Florez et al.,
2006; Frayling, 2007].

The frequency of the TCF7L2 SNP minor allele is higher
in cases (32%) than in controls (24%) as previously
reported (Table I) [Florez et al., 2006; Frayling, 2007]. The
risk allele frequency rose with increasing liability score,
from 32% in all cases to 44% in cases drawn from the
highest 90th percentile of liability scores. This translated
into inflation of the allelic OR from 1.44 in the total
population to 2.47. Conversely, the MAF of the TCF7L2
SNP decreased in controls selected based on the liability
score (Table I). Furthermore, our simulated data yielded
similar effect sizes, albeit slightly attenuated, in pheno-
typic extremes as the observed data.

With a model in place, we investigated the power of
extreme phenotypic sampling for rare variant discovery.

TABLE I. Application of liability model for a known common risk variant (rs7903146) at TCF7L2

Ascertainment CC CT TT N

Risk
allele

frequency

Nonrisk
allele

frequency
Comparison

group OR (95% CI)
Simulated

OR (95% CI)

All controls [No ascertainment] 5,081 3,104 576 8,761 0.243 0.757 All cases – –
All cases [No ascertainment] 483 417 112 1,012 0.317 0.683 All controls 1.44 (1.31–1.60) 1.44 (1.33–1.58)
Highest 50-percentile cases 378 358 96 832 0.331 0.669 All controls 1.54 (1.38–1.71) 1.50 (1.35–1.64)
Highest 75-percentile cases 177 189 62 428 0.366 0.634 All controls 1.80 (1.56–2.07) 1.75 (1.53–2.00)
Highest 90-percentile cases 29 48 18 95 0.442 0.558 All controls 2.47 (1.85–3.30) 1.98 (1.62–2.39)
Lowest 50-percentile controls 275 147 16 438 0.204 0.796 All cases 1.80 (1.49–2.18) 1.52 (1.28–1.78)

The allelic ORs are calculated from the subset of the n 5 27,500 prospective cohort data (obtained from the Malmö Preventive Project, the
Scania Diabetes Registry, and the Botnia Study) where genetic data for rs7903146 were available. We applied the proposed liability model to
the data for increasing extremes in cases (50-percentile, 75-percentile, and 90-percentile) and controls (the top 50-percentile). As expected,
we note that the frequency of the risk allele increases as a function of ascertainment of cases from extreme liabilities, which results in an
increasingly higher OR when compared to control frequencies. Furthermore, our simulated data yield similar effect sizes to the observed
data. OR, odds ratio.
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POWER TO DISCOVER VARIANTS USING
PHENOTYPIC EXTREME SAMPLING

Simulations show that higher liability thresholds syste-
matically increased the frequency of the genetic effect
in affected individuals and decreased the frequency in
unaffected individuals (Table II). Alleles with larger effects
are more likely to be enriched in the tails of the liability
distribution, similar to behavior observed in quantitative
traits [Van Gestel et al., 2000]. For example, a variant with a
1% MAF with a twofold effect in the general population
(similar to the cumulative frequency and effect size for
hypertension of rare variants in Mendelian blood pressure
genes) [Ji et al., 2008] has only a 2.7-fold enrichment in the
5% tails of the liability distribution. In comparison, a
variant with a 1% MAF with a fivefold effect in the general
population is enriched 68% to 8.4-fold in the 5% most
extreme individuals for liability score. This enrichment
was not observed for a simulated set of null alleles, and is
independent of the size of the cohort (data not shown).

Relative to a random sample, the enrichment of variant
alleles in extreme samples translates into higher power
to discover genetic variation contributing to the trait
(Table III). For example, consider the case in which 900
individuals (450 cases/450 controls) are ascertained from a
total of 27,500 individuals. Consider furthermore a true
causal mutation with frequency 0.1% in the general
population. If the individuals were sampled at random,
the OR of that risk mutation would have to be sixfold or
greater before the power to discover the mutation by
sequencing is 95%. In contrast, if the 900 samples were
selected from the extremes of the liability score, one has
the same power (95%) to discover a risk variant with an
effect less than half as large (OR 5 2.9).

The size of the cohort from which a sample is drawn
influences the degree of ‘‘extremeness’’ of a fixed number
of individuals (Table IV). The degree of ‘‘extremeness,’’
consequently, directly influences the power to discover a
variant as well as the power to detect a genetic association.
Intuitively, a given number of samples selected from the
extreme of a small cohorts have less power to discover
variants than one sampled from a larger cohort.

IMPLICATIONS OF EXTREME PHENOTYPIC
SAMPLING ON VARIANT PRIORITIZATION
FOR FOLLOW-UP EFFORTS

To determine which variants robustly associate to the
phenotype of interest, a two-stage design (discovery of
associated genes/variants followed by replication sequen-
cing/genotyping in independent samples) will often be
necessary [Nejentsev et al., 2009]. Often the number of
discovered variants will, in general, be large (and will
continue to increase with the number of sequenced
individuals); therefore, it will be important to prioritize
genes and variants for follow-up. Three questions include:
(a) how to estimate power not only to discover a risk
variant via sequencing but also to observe a distortion in
frequency between cases and controls, (b) how to interpret
associations in an initial sequencing experiment based on

TABLE II. Ascertainment in extremes of liability enriches risk allele

Phenotypic extremeness (based on Liability)a

MAF OR
Population

average
Top/bottom

10%
Top/bottom

5%
Top/bottom

2.5%
Top/bottom

1%
Top/bottom

0.1%
Top/bottom

0.01%

0.001 1 1.001 0.969 1.063 1.018 0.975 0.972 0.994
2 1.997 2.217 2.516 3.071 2.860 2.951 3.468
5 4.979 6.178 10.457 10.176 13.258 17.134 22.493

0.002 1 1.000 0.966 0.970 0.978 0.976 0.973 0.951
2 1.999 2.298 2.675 2.849 2.869 3.399 3.562
5 4.974 6.556 9.378 12.155 13.280 15.859 19.848

0.005 1 1.000 1.039 1.058 0.928 0.992 1.039 1.013
2 1.991 2.308 2.568 3.065 3.140 3.313 3.339
5 4.947 7.335 9.118 11.384 13.242 15.572 18.286

0.010 1 1.000 0.993 1.012 0.990 0.968 0.973 1.014
2 1.984 2.376 2.740 2.918 3.117 3.357 3.484
5 4.989 6.801 8.396 10.928 13.391 15.840 18.650

The ratio of allele frequency in affected and unaffected individuals is shown for individuals across a range of liability scores and in the
entire population. These ratios approximate ORs due to the low allele frequencies considered. OR, odds ratio.
aData are presented as ratio of affected allele frequency to unaffected allele frequency.

TABLE III. Minimum genetic model parameters to
discover lower frequency alleles of modest effect

Fixed MAF
Random
sampling

Phenotypic
extremes

Lowest OR where power 5 95% to discover
0.010 o1.5 o1.5
0.005 o1.5 o1.5
0.001 46 �2.9

Fixed OR
Random
sampling

Phenotypic
extremes

Lowest MAF where power 5 95% to discover
6 0.0013 0.00075
4 0.0014 0.00100
2 0.0015 0.00135

The lowest MAFs and ORs for fixed genetic model parameters in
which the power to discover a low-frequency variation is at least
95% are presented for a sequencing cohort of 450 cases and 450
controls ascertained from a larger population of 27,500. Results are
shown for both a phenotypically extreme sample and a randomly
selected sample. OR, odds ratio.
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extreme sampling, and (c) how to design replication
samples that follow-up extreme sampling.

First, we observe that the power to discover a variant is
much greater than the power to observe a significant
association in cases vs. controls (Table IV). This is true
even for alleles of strong effect. For example, consider the
case of 100 affected and 100 unaffected samples drawn
from the extremes of a cohort of 5,000 individuals (this is
similar to the studies for lipid traits in the Dallas Heart
Study) [Cohen et al., 2004; Kotowski et al., 2006]. For
variants with 1% frequency and a fivefold effect, the
power is 499% to discover the variant, but only 5% to
detect a significant difference in frequency between cases
and controls. Thus, false negatives of association will be a
major problem in small discovery samples, even if the
effects are large. Similar results hold across various genetic
model parameters (Table IV).

Conversely, effect sizes will be systematically over-
estimated in samples drawn from phenotypic extremes
relative to the true effect size in the general population
[Lander and Botstein, 1989; Van Gestel et al., 2000],
even when the association is real (Table V). For example,
rare variants in multiple genes were collectively shown to
be more frequent (16 vs. 2%) in individuals with low
HDL (o5th percentile) compared to individuals with high
HDL cholesterol (495th percentile) [Cohen et al., 2004].

Although the estimated effect size in this phenotypically
extreme sample is eightfold, this is over-estimated
due to the extreme sampling design. Numerically, we
estimate the true effect size in the total population to be
closer to 4.5. Similar results hold for other rare variant
distributions (Table V). The inflation of estimated effect
size will be even greater in genome-wide exome sequen-
cing, where studies with smaller sample sizes, under-
powered to detect even strong effect will be subjected to
winner’s curse and will also contribute to over-estimation
of effect sizes relative to the true effect in the general
population.

As expected, the systematic inflation in effect size due to
extreme sampling results in increased power to detect
genetic associations (Fig. 2) [Kryukov et al., 2009; Lander
and Botstein, 1989; Risch and Zhang, 1995, 1996; Van
Gestel et al., 2000]. Power increases dramatically for
low-frequency polymorphisms with population frequency
0.1–1% and effect sizes two- to sixfold, given a significance
level of 0.05 (Fig. 2, Supplementary Figure 2), for a sample
of 450 cases and 450 controls drawn from the liability
extremes of 27,500 individuals compared to a random
sampling of the same size. The distribution of variant
effect sizes and frequencies is exactly those that might
have been missed by Mendelian genetics (because the
effect sizes were too modest) and by GWAS (because

TABLE IV. Power to discover and associate a low-frequency variant in a phenotypically extreme sequencing cohort
across variable cohort sizes

n 5 5,000 n 5 27,500 n 5 100,000

Ascertainment
sample size MAF OR

Minimum
liability

Power to
discover

Power to
associate

Minimum
liability

Power to
discover

Power to
associate

Minimum
liability

Power to
discover

Power to
associate

50 0.001 2 3.06 (0.016) 0.215 0.000 5.03 (0.23) 0.219 0.000 6.99 (0.33) 0.209 0.000
50 0.005 2 0.697 0.000 0.715 0.000 0.711 0.000
50 0.010 2 0.917 0.000 0.913 0.000 0.912 0.000
50 0.001 5 0.352 0.000 0.389 0.000 0.415 0.000
50 0.005 5 0.888 0.000 0.906 0.000 0.918 0.000
50 0.010 5 0.986 0.002 0.988 0.003 0.995 0.004
100 0.001 2 2.41 (0.086) 0.371 0.000 4.15 (0.143) 0.392 0.000 5.88 (0.206) 0.401 0.000
100 0.005 2 0.911 0.000 0.908 0.000 0.929 0.000
100 0.010 2 0.992 0.001 0.995 0.000 0.992 0.000
100 0.001 5 0.551 0.000 0.607 0.000 0.625 0.000
100 0.005 5 0.978 0.001 0.991 0.004 0.997 0.004
100 0.010 5 0.999 0.053 1.000 0.157 0.999 0.198
450 0.001 2 1.26 (0.032) 0.883 0.000 2.59 (0.046) 0.852 0.000 3.90 (0.067) 0.894 0.000
450 0.005 2 1.000 0.010 1.000 0.029 1.000 0.033
450 0.010 2 1.000 0.063 1.000 0.173 1.000 0.220
450 0.001 5 0.928 0.000 0.968 0.001 0.975 0.001
450 0.005 5 1.000 0.314 1.000 0.747 1.000 0.871
450 0.010 5 1.000 0.877 1.000 1.000 1.000 0.999
1,000 0.001 2 0.73 (0.026) 0.986 0.000 1.92 (0.021) 0.996 0.000 3.05 (0.037) 0.987 0.000
1,000 0.005 2 1.000 0.039 1.000 0.179 1.000 0.250
1,000 0.010 2 1.000 0.120 1.000 0.524 1.000 0.721
1,000 0.001 5 0.993 0.002 1.000 0.047 0.999 0.143
1,000 0.005 5 1.000 0.641 1.000 0.994 1.000 1.000
1,000 0.010 5 1.000 0.978 1.000 1.000 1.000 1.000

The minimum liability scores are presented as median (median absolute deviation). For a fixed sequencing cohort size, the minimum
liability score increases as a function of the total population size, indicating that the sequencing cohort is more ‘‘extreme’’ when ascertained
from a larger population as expected. The ‘‘power to discover’’ columns show the probability of observing at least a singleton in a given
sequencing cohort size ascertained from a given total population size. The ‘‘power to associate’’ columns show the power to detect a genetic
association given a significance level of 0.001 across variable cohort sizes. OR, odds ratio.
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they were too rare for the first generation of GWAS arrays)
[Purcell et al., 2003; Risch and Merikangas, 1996].

Similarly, the power to detect a genetic association is
substantially enriched for other risk models with varying
degrees of variance explained (Table VI). The amount of
variance explained is presented here by Nagelkerke’s R2

[Nagelkerke, 1991], a generalized form of the coefficient of
determination which scales its range to be from 0 to 1.
Power is enriched substantially even for risk models with
5% of the variability explained, suggesting that our
method would be useful for most significant covariates
that explain a fraction of the variability. The enrichment in
power becomes greater as the amount of variance
explained increases. Thus, the addition of meaningful and
clinically relevant covariates into the risk model could
provide additional increases in power. However, we
caution against over-saturation of risk models with
irrelevant covariates.

Finally, even where a modest enrichment is seem
between cases and controls, it is much more likely to be
due to chance than a true association. Figure 3 shows a
representative example of the distribution of variant
counts for a null variant and a risk variant that has been
observed a total of four times in a sequencing cohort
sampled from the extremes of liability. Specifically, under
the alternative hypothesis (OR 5 2), the variant is, on
average, more likely to be observed disproportionally in
affected individuals compared to unaffected individuals.
However, some fraction of variants under the null
hypothesis (OR 5 1) will also be similarly distorted, and

TABLE V. Expected odds ratio for observed variant
counts under liability and ascertainment model

Distribution of
variant counts
[case to control]a

Sample
ascertainment

Estimated OR
in discovery

cohort

Expected
OR in general

population

2 to 2 Random 1.0 0.954
Liability — 1.059

3 to 1 Random 3.0 3.273
Liability — 1.462

4 to 0 Random Z4.0 5.627
Liability — 1.973

ORs estimated directly from phenotypic extremes will be systemi-
cally over-estimated compared to the ORs expected in the general
population. Listed are the estimated ORs in the discovery cohort
and expected ORs in the general population given a total of four
observed variants counts assuming a population MAF of 0.5% for a
liability and random sample ascertainment of 450 cases/450
controls from a cohort of 27,500 individuals. The expected ORs in
the general population were estimated over a grid of effect sizes
(OR ranging from 0.1 to 10) simulated in the total population as the
weighted mean OR of a particular variant count distribution
observed in the discovery cohort. For example, for a variant
observed twice in cases and twice in controls, the mean OR is
weighted by the probabilities of each OR for those simulations
where a 2:2 case:control variant count was observed. The estimated
OR in the discovery cohort is based solely on the observed counts,
and note that in the case of 4 to 0, the OR is not calculable. In that
case, the closest approximation is that the estimated OR is at least 4,
but could be much larger. OR, odds ratio.
aFor n 5 4 variant observations (MAF 5 0.005), assuming 450 cases
and 450 controls.

Fig. 2. Difference in power of Fisher’s exact test between

liability and random ascertainment. The difference between
power of Fisher’s exact test for a liability and random

ascertainment given a significance level of 0.05 is shown. The

MAF and OR refer to parameters in the larger population

(n 5 27,500) from which the subsample of 450 affected and 450
unaffected individuals was selected. The mean liability scores

(standard deviation in parentheses) in affected and unaffected

individuals were 3.68 (1.37) and �2.54 (0.83), respectively, under

a liability ascertainment and 0.99 (0.83) and �0.60 (0.50),
respectively, under a random ascertainment. OR, odds ratio.

TABLE VI. Proportion of variance explained and power
to associate a low-frequency variant in a phenotypically
extreme sequencing cohort

Power of Fisher’s exact test

Nagelkerke
OR 5 2 OR 5 5

R2 MAF 5 0.005 MAF 5 0.01 MAF 5 0.005 MAF 5 0.01

0.00 0.004 0.019 0.074 0.382
0.05 0.013 0.067 0.348 0.881
0.10 0.015 0.105 0.504 0.959
0.15 0.018 0.110 0.582 0.975
0.20 0.021 0.126 0.616 0.981
0.25 0.028 0.133 0.654 0.989
0.30 0.027 0.152 0.709 0.992
0.35 0.026 0.153 0.715 0.993
0.40 0.030 0.169 0.738 0.997
0.45 0.027 0.169 0.757 0.996

Power estimates are shown for a sequencing cohort of 450 cases
and 450 controls ascertained from a larger population of 2,75,000
individuals in risk models with varying degrees of variance
explained (Nagelkerke R2 [Nagelkerke, 1991]), given a signficance
level of 0.001. OR, odds ratio.
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since there will be many more null variants than causal
variants, it is likely that a large fraction of alleles will be
phenotypically neutral, rather than risk-inducing.

In summary, it is relatively straightforward to design
sequencing samples with excellent power to discover
causal variants (if they exist); much larger sample sizes are
required before power is obtained to observe enrichment
of risk (or protective) variants in cases as compared to
controls. Moreover, where enrichment is observed, it will
likely represent an over-estimate of the true effect size in
the total population, which can lead to false-negative
replication studies.

IMPLICATIONS OF EXTREME PHENOTYPIC
SAMPLING ON REPLICATION OF ASSOCIATION

As discussed above, ascertainment from the phenotypic
extremes is intended to increase the frequency of risk
alleles in cases, and by inflating the frequency distortion
between cases and controls increase statistical power
[Kryukov et al., 2009; Lander and Botstein, 1989; Risch
and Zhang, 1995, 1996; Van Gestel et al., 2000]. The most
powerful approach for replication would be to select an
independent cohort in which similar phenotypic extremes
could be obtained (Table VII). However, to obtain an
unbiased estimate of the genetic effect size, a random (or
complete) sample of the population is needed, even
though the statistical power to prove a statistical associa-
tion would be lessened. Alternatively, follow-up could be
performed in the same population as the discovery
sequencing cohort, either by continuing deeper sampling
based on liability score rankings or by sampling random
individuals—but power to detect the effect would be
reduced.

Fig. 3. Distribution of variant counts in affected and unaffected
individuals. The distribution of variant counts in affected and

unaffected individuals is shown under the null hypothesis

(OR 5 1) and alternative hypothesis (OR 5 2) for a variant

observed a total of four times in a liability ascertained
sequencing cohort of 900 individuals (450 cases; 450 controls)

given a MAF of 0.001. OR, odds ratio.

TABLE VII. Power and effect size estimates in follow-up replication study designs

Simulation
parameters Number case/control pairs OR

MAF OR
Phenotypic

extreme Random
Phenotypic

extreme Random
Expected
[Extreme]

Expected
[Random]

Follow-up in same population as discovery cohort
0.001 2 a 436,630 a a a a

0.005 2 7,200 7,200 2.09 (0.24) 2.06 (0.29) 2.04 (0.31) 1.97 (0.35)
0.010 2 2,000 3,550 2.63 (0.46) 2.08 (0.25) 2.51 (0.51) 2.01 (0.30)

0.001 5 8,050 8,050 6.13 (2.16) 5.67 (1.74) 5.47 (2.38) 5.24 (2.09)
0.005 5 675 2,000 17.2 (11.6) 5.31 (2.19) 10.6 (8.38) 5.16 (2.03)
0.010 5 350 950 18.4 (12.9) 5.23 (1.91) 12.9 (10.6) 4.85 (2.11)

Follow-up in independent population from discovery cohort
0.001 2 a 36,630 a a a a

0.005 2 7,100 7,160 2.09 (0.29) 2.19 (0.35) 2.05 (0.35) 2.05 (0.42)
0.010 2 1,750 3,510 3.03 (0.75) 2.06 (0.26) 2.88 (0.81) 1.98 (0.31)

0.001 5 8,000 8,030 5.90 (2.25) 5.67 (1.74) 5.18 (2.34) 5.00 (2.10)
0.005 5 500 1,630 22.4 (18.9) 5.63 (1.82) 19.3 (16.3) 5.23 (1.95)
0.010 5 225 830 23.6 (20.4) 5.38 (1.95) 20.8 (17.9) 4.88 (1.96)

Number of case/control pairs required to achieve 80% power to detect a genetic association assuming a significance level of 0.001 in a
phenotypically extreme sample and a randomly ascertained sample. The replication sample sizes were determined for studies, which
sampled from the same population as the discovery cohort (total n 5 27,500) and a completely independent population of the same size.
ORs are presented as median (median absolute deviation). The expected ORs were estimated across all simulations while the observed ORs
were estimated only for significant simulations (Po0.001). OR, odds ratio.
aRequired sample size exceeds the size of the total population and thus, parameters were not estimated for these scenarios.

243Phenotypic Extremes and Rare Alleles

Genet. Epidemiol.



To estimate the power of each of these replication
approaches, we determined the number of case/control
pairs required to demonstrate statistical association
(Po0.001) by simulation over a collection of genetic
models. As expected, the smallest sample size required
was in an extreme phenotypic sampling from an indepen-
dent cohort (Table VII). For example, given a 0.5% variant
with a fivefold effect in the general population, a sample
size of 500 cases and 500 controls would be required to
achieve 80% power in an independent, phenotypically
extreme sample. If random samples were used, four times
as many samples (2,000 cases and controls) would be
needed to achieve comparable power. If the replication
samples were chosen from the initial cohort (i.e. the next-
most extreme samples), power is only slightly reduced
compared to those obtained from a completely indepen-
dent cohort (675 cases and 675 controls for 80% power).
Of course, if extreme samples are used in replication,
systematic over-estimation of effect sizes compared to the
true effect size in the general population will ensue.
Additionally, winner’s curse will heighten the effect size
estimates, and this augments the expected effect size for
both random and phenotypic extreme sampling replica-
tion efforts.

DISCUSSION

We present a quantitative framework to ascertain
phenotypic extremes of a dichotomous trait, and using
simulations, evaluate statistical power, prioritization of
variants for follow-up, and design of replication samples.
Our approach simultaneously ascertains ‘‘hypernormal’’
controls, samples which may be the most likely to carry
alleles conferring protection, as well as extreme cases,
which may be the most likely to carry a high-risk allele
burden. As expected, selection of individuals for a
dichotomous trait based on extremes of nongenetic risk
factors increases the difference in risk variant allele
frequencies in cases as compared to controls, which results
in an increase in power. We also observe that for a given
design, power to discover genetic variation is much
greater than the power to detect association between cases
and controls—with the implication that true variants may
be missed if only those with association in the discovery
samples are carried forward into replication. We observe
that the effect sizes estimated in phenotypic extremes
effect sizes are systematically larger than those estimated
in random samples; thus, replication studies will either
need to be performed in independent samples from the
extremes, or in much larger samples from the general
population to have sufficient power. Finally, while follow-
up in phenotypic extremes will have improved power, it
will also return inflated estimates of the effect size. Our
quantification of this intuitively powerful sampling
strategy reported here offers some practical guidance for
future phenotypically driven genetic studies, including
but not limited to resequencing efforts.

Our model to characterize liability given risk factors,
though similar in spirit, differs in implementation.
In contrast to Campbell et al., whose aim is to directly
model and estimate the proportion of genetic and
environmental variance contributions to an outcome
variable using Monte Carlo simulations, our strategy
focuses simply on each individual’s unexplained disease

liability conditional on a set of risk factors, which does not
make a specific assumption about genetic or environ-
mental variance explained. However, the specific informa-
tion, which is the focus of this work, could potentially be
extracted from Campbell et al.

Inflated effect sizes due to extreme sampling could be
corrected for with likelihoods that condition on the
ascertainment process [Clayton, 2003]. Such conditional
likelihoods have been used to adjust effect sizes estimated
in highly ascertained pedigrees (enriched for having
multiple affected relatives) with retrospective likelihoods
that condition the joint distribution of genotypes of
pedigree members on their disease status [Carayol and
Bonaiti-Pellie, 2004; Clayton, 2003; Kraft and Thomas,
2000; Schaid et al., 2010]. A similar conditional likelihood
can be envisioned for our ascertainment method, which
would consider the likelihood for inference conditioning
on liability scores. Such a correction would be valuable
for future studies that intend on sampling in phenotypic
extremes.

Our results generalize to other risk models with varying
degrees of variance explained (Table VI), with the amount
of enrichment dependent on the extent of variance
explained by covariates entered in the risk model.
Although the magnitude of enrichment increases as the
proportion of variance explained increases, we caution
against over-saturation of the risk model or the inclusion
of inappropriate covariates. The addition of covariates that
are statistically uninformative could dilute the efficacy of
the scoring method, leading to misclassification and error
or a reduction in power. Alternatively, caution should be
exercised including variables as covariates, which are part
of the phenotypic definition (e.g. covariates for glucose
impairment in the context of type-2 diabetes as the
outcome variable). These types of inclusions might cause
counter-intuitive extreme liability definitions. Genetic
factors could be easily incorporated into the liability score
[Plomin et al., 2009], although it is unclear how much
power would be gained with this approach. Family history
could improve estimates of disease risk and liability scores
[Campbell et al., 2010; Falconer, 1965; Feng et al., 2009];
however, researchers should a priori decide how family
history should be incorporated in the liability model. If the
ascertainment strategy is to select cases that have little to
no risk but have a family history of disease (and
conversely controls who are at high risk of being affected
but have no family history of disease), then the direction-
ality of family history should be reversed in the risk
model. Additionally, disease severity was not considered
explicitly here but in principal could be included in the
liability model in a straightforward way. Further research
is warranted regarding the incorporation of family history,
genetic factors, and severity into the liability model with
respect to rare variants.

Similar to all simulations, our work is limited by
assumptions about the underlying population model.
First, the simulations assumed that there was a genetic
variant that conferred an additional risk (or protection)
independent of other factors entered into the risk model.
The proposed strategy would decrease power to discover
genetic variants that indirectly influence the disease
through the risk factors included in the liability model.
However, this may be attractive as the strategy could
potentially reveal new biological mechanisms that act
independently of well-established risk factors. Second, we

244 Guey et al.

Genet. Epidemiol.



did not consider interactions between risk factors; if the
trait were influenced by one or more nonadditive inter-
action terms (and these are known a priori), including
them in the risk model would improve the sensitivity and
specificity of the liability scores. Third, our power/sample
size estimates regarding replication samples do not
consider the impact of founder populations, wherein the
value of conducting the follow-up study in the same
population could be substantially greater.

Fourth, we assumed no misclassification of cases and
controls and no sequencing errors. Selecting unaffected
individuals with the highest liability may result in
misclassification which would decrease power. This
problem can be alleviated if one imposes additional
criterion that ensures ‘‘disease-free’’ status for the un-
affected individuals. For example, if nondiabetics are
selected that carry many or all risk factors for T2D, one
could constrain the sampling to euglycemic individuals
with the highest liability. Sequencing errors (i.e. false
positives and false negatives) will undoubtedly have
deleterious effects for the prioritization of variants for
follow-up.

Fifth, we did not explicitly examine the impact of
liability sampling on mis-matching of ancestry or other
nonmeasured confounders. It is clear that appropriate
case/control matching will remain essential to minimize
false-positive associations due to population stratification.
This may be especially important for ascertainment of
extreme phenotypes, which are known to vary across
ancestry and geography (for example, stature, which
shows a North–South gradient in Europe). Sampling from
extremes of phenotypes might amplify population strati-
fication.

Sixth, we did not explicitly discuss the use of external
information (such as biological plausibility and allele
frequency in public datasets) in prioritizing candidate
variation for follow-up. Strategies which encompass
biological or functional information on sequence charac-
teristics (e.g. coding mutations) could also be employed
separately [Ng and Henikoff, 2003; Ramensky et al., 2002;
Sunyaev et al., 2001] or in conjunction with statistical
information to prioritize candidate variants for follow-up.

Finally, we employed a very simple model of association
(in which the collective frequency of a variant class is
compared between cases and controls with Fisher’s exact
test) and considered a stringent significance level of 0.001.
Fisher’s test in combination with a stringent significance
level will be substantially underpowered for rare variant
analysis and thus, alternative tests and methods will need
to be developed. More sophisticated association statistics
that analyze rare variants in aggregate [Li and Leal, 2008;
Madsen and Browning, 2009; Morgenthaler and Thilly,
2007] need to be evaluated in simulations such as these.
Although the absolute value of the power calculations will
no-doubt be influenced by the choice of statistical test, we
imagine that the conceptual results will likely be consis-
tent: i.e. that extreme sampling increases power, that
power will be much greater to discover variation than it is
to detect an association, and that replication studies will
face a choice of using extremes (thereby over-estimating
true effect sizes in the general population), or of requiring
much larger samples. These principles may prove of value
in the next couple of years as advances in next-generation
sequencing technology make possible dramatic increases
in sequencing studies of rare variants.

ACKNOWLEDGMENTS

The authors thank David Cox, Shaun Purcell, and Mark
Daly for their helpful comments on the manuscript. O. M.
acknowledges support from the Marianne and Marcus
Wallenberg Foundation. L. G. is supported by grants from
the Swedish Research Council (Scania Diabetes Registry)
and from The Sigrid Juselius Foundation and Folkhälsan
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