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Power lteration Method

Power

Iteration For any matrix W with eigenvalue decomposition W = EANE Y,
clustering the dominant eigenvector e; can be computed via iteration
v = nOWyE=D (1) js 3 normalizing constant).

Proof: By induction,

Minha Chen (t) — OWy(ED) = = FOWEO) o WO where
H, 77(’ is another scalar constant.

power Slnce E is a basis in R”, the initial value v(® can be expressed

Method asv(® =37 cie;. Then

th(O) _ Iz_; C,'Wtei — Iz_; Ci)\}.el Cl)\t <e1 + Z o )\1 ) .

Since |Al1 > [A2 > [A|l3 > -+ > |As], hence (i‘—;)t — 0 and
v(t)  e; as t — co. Thus v(!) converges to the dominant
eigenvector.
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Given the data matrix X = [x1,X2, -+ ,Xp]|pxn, an affinity
matrix A € R"*" is defined as Aj; = s(x;, x;) where s(-, ")
is a similarity function.

Define the normalized affinity matrix as

W = diag }(A - 1)A. Then the top eigenvectors of W
give an embedding of the original data X. Clustering
analysis is further applied to the embedded data.

The Eigen-decomposition of W is expressed as

W = EAE~! with E = [e;,ez,--- ,e,] and A =
diag(A1, A2, -+ s An)  (JA[L > [Al2 > [Als >+ > |Aq]).
Since W-1=1, (\; =1,e; =1) is always an eigen-pair
of W. So what is really useful for embedding is

[€2,e3, -, €k]nx(k—1), the rows being the embedding of
the original n data points. The dimensionality of the data
is reduced from p to k — 1.
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[ © The Spectral Clustering algorithm is summarized as:

1)  Construct the normalized affinity matrix W.
2)  Find top k eigenvectors of W as [e1, ez, - ,ex].
3)  Cluster on [ez,e3, -, €klnx(k—1)-

© The dominant eigenvector e; = 1 seems to be useless for
clustering. However, this paper turns the useless thing into
a very useful thing.

Power

eration © What if we apply the Power lteration Method to W?

Clustering

Of course as t — 0o, v(t)  e; = 1, but if we look closer
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From the proof of the Power Iteration Method:
A
v o (en+ Y, £ er + X Z(3)'ey).

Typically k is selected such that

‘)\1| > ‘>\2| > e > |)\|k>>‘>\‘k+1 > > ‘)\ ‘ Hence
()t ()t for i =2,3,+ kij=k+1,k+2,

This means that components in the noise subspace
[€k+1,€k+2, - ,€n] Will diminish much faster than that in
the signal subspace [e;, es, -, e].

We can stop the iteration early, when the noise subspace
vanishes while the signal subspace does not yet.

If t is chosen properly in this way, then

v(t) oc g AL (el +3%, Cl(/\l)te,) which is a weighted
combination of the top k eigenvectors.
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Algorithm 1 The PIC algorithm
Input: A row-normalized affinity matrix W and the
number of clusters %
Pick an initial vector v°
repeat Wt o
Set v ¥ and & vt — e
Increment ¢
until [§' — 87! ~ 0
Use k-means to cluster points on v*
Output: Clusters C'1,Cy, ..., Ck.
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(a) 3Circles PIC result,

(b) ¢ = 50, scale = 0.01708 (€) ¢ =400, scale = 0.01066 (d) ¢ = 1000, scale = 0.00786

Figure 1. Clustering result and the embedding provided by v* for the 3Circles dataset. In (b) through (d), the value of
each component of v* is plotted against its index. Plots (b) through (d) are re-scaled so the largest value is always at the
very top and the minimum value at the very bottom, and scale is the maximum value minus the minimum value.
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Power Iteration Clustering (continued 3)

Question: Why this vector v(t) works for clustering?
Answer: Pair-wise distance of the embedding is preserved in a
similar way as that in spectral clustering.

pic(a, b) £ [v19(a) = vII(b)| oc [au ]| - (e1(a) — ex(b))+

S o) — e(8)) + S G (e(a) - g (5))
= 1 A I ek A !

t : i Aie
xla] 13 SEH () - ao)

This expression is similar to the pair-wise distance of Spectral

Clustering: spec(a, b) = \/fo:2(e,-(a) — ei(b))2.

The weighting factor (i‘—;)t in the proposed approach is
reasonable and improves performance for spectral methods.
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Minhua Chen Table 1. Clustering performance of PIC and spectral clustering algorithms on several real datasets. For all measures a

higher number means better clustering. Bold numbers are the highest in its row.
NCut NIW PIC

Dataset k Purity NMI RI Purity NMI RI Purity NMI RI
Iris 3 06733 0.7235 0.7779 0.7667 0.6083 0.7978 | 0.9800 0.9306 0.9741
PenDigits0O1 2 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000
PenDigits17 2 0.7550 0.2066 0.6301 | 0.7550 0.2043 0.6301 | 0.7550 0.2066 0.6301
PolBooks 3 0.8476 0.5745 0.8447 0.8286 0.8329 | 0.8667 0.6234 0.8603
UBMCBlog 2 0.9530 0.7488 0.9104 | 0.9530 0.9104 | 0.9480 0.7193  0.9014
AGBlog 2 0.5205 0.0060  0.5006 0.5205 0.5007 | 0.9574 0.7465 0.9185
20ngA 2 0.9600 0.7594 0.9232 | 0.9600 0.9232 | 0.9600 0.7594 0.9232
20ngB 2 0.5050 0.0096 0.5001 0.5525 0.5055 | 0.8700 0.5230 0.7738
20ngC 3 06183 0.3295  0.6750 0.6317 0.6860 | 0.6933 0.4450 0.7363
20ngD 4 04750 0.2385 0.6312 0.5150 0.6820 | 0.5825 0.3133 0.7149
Average 0.7308 0.4596  0.7393 0.7483 0.7469 | 0.8613 0.6267 0.8433

Result
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