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Power Iteration Method

For any matrix W with eigenvalue decomposition W = EΛE
−1,

the dominant eigenvector e1 can be computed via iteration
v(t) = η(t)Wv(t−1) (η(t) is a normalizing constant).
Proof: By induction,
v(t) = η(t)Wv(t−1) = · · · = η̃(t)Wt

v(0) ∝ W
t
v(0) where

η̃(t) =
∏t

l=1 η
(l) is another scalar constant.

Since E is a basis in R
n, the initial value v(0) can be expressed

as v(0) =
∑n

i=1 ciei . Then

W
t
v
(0) =

n
∑

i=1

ciW
t
ei =

n
∑

i=1

ciλ
t
i ei = c1λ

t
1

(

e1 +

n
∑

i=2

ci
c1
(
λi

λ1
)tei

)

.

Since |λ|1 > |λ|2 ≥ |λ|3 ≥ · · · ≥ |λn|, hence ( λi

λ1
)t → 0 and

v(t) ∝ e1 as t → ∞. Thus v(t) converges to the dominant
eigenvector.
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Spectral Clustering

1 Given the data matrix X = [x1, x2, · · · , xn]p×n, an affinity
matrix A ∈ R

n×n is defined as Aij = s(xi , xj) where s(·, ·)
is a similarity function.

2 Define the normalized affinity matrix as
W = diag−1(A · 1)A. Then the top eigenvectors of W
give an embedding of the original data X. Clustering
analysis is further applied to the embedded data.

3 The Eigen-decomposition of W is expressed as
W = EΛE

−1 with E = [e1, e2, · · · , en] and Λ =
diag(λ1, λ2, · · · , λn) (|λ|1 > |λ|2 ≥ |λ|3 ≥ · · · ≥ |λn|).

4 Since W · 1 = 1, (λ1 = 1, e1 = 1) is always an eigen-pair
of W. So what is really useful for embedding is
[e2, e3, · · · , ek ]n×(k−1), the rows being the embedding of
the original n data points. The dimensionality of the data
is reduced from p to k − 1.
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Power Iteration Clustering

1 The Spectral Clustering algorithm is summarized as:
1) Construct the normalized affinity matrix W.
2) Find top k eigenvectors of W as [e1, e2, · · · , ek ].
3) Cluster on [e2, e3, · · · , ek ]n×(k−1).

2 The dominant eigenvector e1 = 1 seems to be useless for
clustering. However, this paper turns the useless thing into
a very useful thing.

3 What if we apply the Power Iteration Method to W?
Of course as t → ∞, v(t) ∝ e1 = 1, but if we look closer
...
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Power Iteration Clustering (continued 1)

1 From the proof of the Power Iteration Method:

v(t) ∝ c1λ
t
1

(

e1 +
∑k

i=2
ci
c1
( λi

λ1
)tei +

∑n
j=k+1

cj
c1
(
λj

λ1
)tej

)

.

2 Typically k is selected such that
|λ1| > |λ2| ≥ · · · ≥ |λ|k�|λ|k+1 ≥ · · · ≥ |λn|. Hence

(
λj

λ1
)t�( λi

λ1
)t for i = 2, 3, · · · , k ; j = k + 1, k + 2, · · · , n.

This means that components in the noise subspace
[ek+1, ek+2, · · · , en] will diminish much faster than that in
the signal subspace [e2, e3, · · · , ek ].

3 We can stop the iteration early, when the noise subspace
vanishes while the signal subspace does not yet.
If t is chosen properly in this way, then

v(t) ∝ c1λ
t
1

(

e1 +
∑k

i=2
ci
c1
( λi

λ1
)tei

)

which is a weighted

combination of the top k eigenvectors.
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Power Iteration Clustering (continued 2)
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Power Iteration Clustering (continued 3)

Question: Why this vector v(t) works for clustering?
Answer: Pair-wise distance of the embedding is preserved in a
similar way as that in spectral clustering.

pic(t)(a, b) , |v (t)(a)− v (t)(b)| ∝ |c1λ
t
1| · |(e1(a)− e1(b))+

k
∑

i=2

ci
c1
(
λi

λ1
)t(ei (a)− ei (b)) +

n
∑

j=k+1

cj
c1
(
λj

λ1
)t(ej(a)− ej(b))|

∝ |c1λ
t
1| · |

k
∑

i=2

ci
c1
(
λi

λ1
)t(ei (a)− ei (b))|

This expression is similar to the pair-wise distance of Spectral

Clustering: spec(a, b) =
√

∑k
i=2(ei (a)− ei (b))2.

The weighting factor ( λi

λ1
)t in the proposed approach is

reasonable and improves performance for spectral methods.
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