Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

March 10, 2011

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

1 Power Iteration Method

2 Spectral Clustering

Over Iteration Clustering

・ロト ・ 一下・ ・ ヨト ・ 日 ・

æ 👘

Power Iteration Method

Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

For any matrix **W** with eigenvalue decomposition $\mathbf{W} = \mathbf{E} \mathbf{A} \mathbf{E}^{-1}$, the dominant eigenvector \mathbf{e}_1 can be computed via iteration $\mathbf{v}^{(t)} = \eta^{(t)} \mathbf{W} \mathbf{v}^{(t-1)}$ $(\eta^{(t)} \text{ is a normalizing constant})$. **Proof:** By induction, $\mathbf{v}^{(t)} = \eta^{(t)} \mathbf{W} \mathbf{v}^{(t-1)} = \dots = \tilde{\eta}^{(t)} \mathbf{W}^t \mathbf{v}^{(0)} \propto \mathbf{W}^t \mathbf{v}^{(0)}$ where $\tilde{\eta}^{(t)} = \prod_{l=1}^t \eta^{(l)}$ is another scalar constant. Since **E** is a basis in \mathbb{R}^n , the initial value $\mathbf{v}^{(0)}$ can be expressed as $\mathbf{v}^{(0)} = \sum_{i=1}^n c_i \mathbf{e}_i$. Then

$$\mathbf{W}^{t}\mathbf{v}^{(0)} = \sum_{i=1}^{n} c_{i}\mathbf{W}^{t}\mathbf{e}_{i} = \sum_{i=1}^{n} c_{i}\lambda_{i}^{t}\mathbf{e}_{i} = c_{1}\lambda_{1}^{t}\left(\mathbf{e}_{1} + \sum_{i=2}^{n} \frac{c_{i}}{c_{1}}(\frac{\lambda_{i}}{\lambda_{1}})^{t}\mathbf{e}_{i}\right).$$

Since $|\lambda|_1 > |\lambda|_2 \ge |\lambda|_3 \ge \cdots \ge |\lambda_n|$, hence $(\frac{\lambda_i}{\lambda_1})^t \to 0$ and $\mathbf{v}^{(t)} \propto \mathbf{e}_1$ as $t \to \infty$. Thus $\mathbf{v}^{(t)}$ converges to the dominant eigenvector.

Spectral Clustering

Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

• Given the data matrix $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n]_{p \times n}$, an affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined as $A_{ij} = s(\mathbf{x}_i, \mathbf{x}_j)$ where $s(\cdot, \cdot)$ is a similarity function.

- Define the normalized affinity matrix as
 W = diag⁻¹(A · 1)A. Then the top eigenvectors of W give an embedding of the original data X. Clustering analysis is further applied to the embedded data.
- So The Eigen-decomposition of **W** is expressed as $\mathbf{W} = \mathbf{E} \mathbf{A} \mathbf{E}^{-1}$ with $\mathbf{E} = [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n]$ and $\mathbf{A} = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$ $(|\lambda|_1 > |\lambda|_2 \ge |\lambda|_3 \ge \cdots \ge |\lambda_n|).$
- Since W · 1 = 1, (λ₁ = 1, e₁ = 1) is always an eigen-pair of W. So what is really useful for embedding is [e₂, e₃, · · · , e_k]_{n×(k-1)}, the rows being the embedding of the original n data points. The dimensionality of the data is reduced from p to k 1.

Power Iteration Clustering

Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

. . .

- The Spectral Clustering algorithm is summarized as:

 Construct the normalized affinity matrix W.
 Find top k eigenvectors of W as [e₁, e₂, ..., e_k].
 Cluster on [e₂, e₃, ..., e_k]_{n×(k-1)}.
- 2 The dominant eigenvector $\mathbf{e}_1 = \mathbf{1}$ seems to be useless for clustering. However, this paper turns the useless thing into a very useful thing.
- Solution What if we apply the Power Iteration Method to W? Of course as $t \to \infty$, $\mathbf{v}^{(t)} \propto \mathbf{e}_1 = \mathbf{1}$, but if we look closer

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Power Iteration Clustering (continued 1)

Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

- From the proof of the Power Iteration Method: $\mathbf{v}^{(t)} \propto c_1 \lambda_1^t \left(\mathbf{e}_1 + \sum_{i=2}^k \frac{c_i}{c_1} (\frac{\lambda_i}{\lambda_1})^t \mathbf{e}_i + \sum_{j=k+1}^n \frac{c_j}{c_1} (\frac{\lambda_j}{\lambda_1})^t \mathbf{e}_j \right).$
- **②** Typically k is selected such that $|\lambda_1| > |\lambda_2| ≥ \cdots ≥ |\lambda|_k ≫ |\lambda|_{k+1} ≥ \cdots ≥ |\lambda_n|. \text{ Hence}$ $(\frac{\lambda_j}{\lambda_1})^t \ll (\frac{\lambda_i}{\lambda_1})^t \text{ for } i = 2, 3, \cdots, k; j = k + 1, k + 2, \cdots, n.$ This means that components in the noise subspace $[\mathbf{e}_{k+1}, \mathbf{e}_{k+2}, \cdots, \mathbf{e}_n] \text{ will diminish much faster than that in the signal subspace } [\mathbf{e}_2, \mathbf{e}_3, \cdots, \mathbf{e}_k].$
- We can stop the iteration early, when the noise subspace vanishes while the signal subspace does not yet.

If t is chosen properly in this way, then $\mathbf{v}^{(t)} \propto c_1 \lambda_1^t \left(\mathbf{e}_1 + \sum_{i=2}^k \frac{c_i}{c_1} (\frac{\lambda_i}{\lambda_1})^t \mathbf{e}_i \right)$ which is a weighted combination of the top k eigenvectors.

Power Iteration Clustering (continued 2)

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

 $\begin{array}{l} \hline \textbf{Algorithm 1 The PIC algorithm} \\ \hline \textbf{Input: A row-normalized affinity matrix W and the number of clusters k \\ \hline \textbf{Pick an initial vector } \mathbf{v}^0 \\ \hline \textbf{repeat} \\ \hline \textbf{Set } \mathbf{v}^{t+1} \leftarrow \frac{\|\mathbf{W}\mathbf{v}^t\|}{\|\mathbf{W}\mathbf{v}^t\|_1} \text{ and } \delta^{t+1} \leftarrow \|\mathbf{v}^{t+1} - \mathbf{v}^t\|. \\ \hline \textbf{Increment } t \\ \textbf{until } \|\delta^t - \delta^{t-1}\| \simeq 0 \\ \hline \textbf{Use k-means to cluster points on } \mathbf{v}^t \\ \hline \textbf{Output: Clusters } C_1, C_2, \dots, C_k \end{array}$

Figure 1. Clustering result and the embedding provided by v^t for the 3Circles dataset. In (b) through (d), the value of each component of v^i is plotted against its index. Plots (b) through (d) are re-scaled so the largest value is always at the very top and the minimum value at the very bottom, and *scale* is the maximum value minus the minimum value.

Power Iteration Clustering (continued 3)

Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

Question: Why this vector $\mathbf{v}^{(t)}$ works for clustering? Answer: Pair-wise distance of the embedding is preserved in a similar way as that in spectral clustering.

$$pic^{(t)}(a,b) \triangleq |v^{(t)}(a) - v^{(t)}(b)| \propto |c_1\lambda_1^t| \cdot |(e_1(a) - e_1(b)) + \sum_{i=2}^k \frac{c_i}{c_1} (\frac{\lambda_i}{\lambda_1})^t (e_i(a) - e_i(b)) + \sum_{j=k+1}^n \frac{c_j}{c_1} (\frac{\lambda_j}{\lambda_1})^t (e_j(a) - e_j(b))| \\ \propto |c_1\lambda_1^t| \cdot |\sum_{i=2}^k \frac{c_i}{c_1} (\frac{\lambda_i}{\lambda_1})^t (e_i(a) - e_i(b))|$$

This expression is similar to the pair-wise distance of Spectral Clustering: spec $(a, b) = \sqrt{\sum_{i=2}^{k} (e_i(a) - e_i(b))^2}$. The weighting factor $(\frac{\lambda_i}{\lambda_1})^t$ in the proposed approach is reasonable and improves performance for spectral methods.

Result

Power Iteration Clustering

Frank Lin and William W. Cohen Presented by Minhua Chen

Outline

Power Iteration Method

Spectral Clustering

Power Iteration Clustering

Result

Table 1. Clustering performance of PIC and spectral clustering algorithms on several real datasets. For all measures a higher number means better clustering. Bold numbers are the highest in its row.

			NCut		1	NJW			PIC	
Dataset	k	Purity	NMI	RI	Purity	NMI	RI	Purity	NMI	RI
Iris	3	0.6733	0.7235	0.7779	0.7667	0.6083	0.7978	0.9800	0.9306	0.9741
PenDigits01	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
PenDigits17	2	0.7550	0.2066	0.6301	0.7550	0.2043	0.6301	0.7550	0.2066	0.6301
PolBooks	3	0.8476	0.5745	0.8447	0.8286	0.5422	0.8329	0.8667	0.6234	0.8603
UBMCBlog	2	0.9530	0.7488	0.9104	0.9530	0.7375	0.9104	0.9480	0.7193	0.9014
AGBlog	2	0.5205	0.0060	0.5006	0.5205	0.0006	0.5007	0.9574	0.7465	0.9185
20ngA	2	0.9600	0.7594	0.9232	0.9600	0.7594	0.9232	0.9600	0.7594	0.9232
20ngB	2	0.5050	0.0096	0.5001	0.5525	0.0842	0.5055	0.8700	0.5230	0.7738
20ngC	3	0.6183	0.3295	0.6750	0.6317	0.3488	0.6860	0.6933	0.4450	0.7363
20ngD	4	0.4750	0.2385	0.6312	0.5150	0.2959	0.6820	0.5825	0.3133	0.7149
Average		0.7308	0.4596	0.7393	0.7483	0.4581	0.7469	0.8613	0.6267	0.8433

<□> <□> <□> <□> <=> <=> <=> <=> ○ < ○