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We analyze the statistical properties of the urban public bus networks of two cities (Beijing and Chengdu) in China. To this end, 
we present a comprehensive survey of the degree distribution, average path length, and clustering of both networks. It is shown 
that both networks exhibit small world behavior and are hierarchically organized. We also discuss the differences between the 
statistical properties displayed by the two networks. In addition, we propose a weight distribution approach to study the passenger 
flow through the public bus networks we considered. A hierarchical structure is observed here also. 
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Solving the problem of traffic congestion is of great im-
portance for the safety and convenience of modern society 
[1–6]. Recently, empirical evidence has shown that many 
transportation systems can be described by complex net-
works characterized by the small world [7] and/or scale-free 
properties [8]. The small-world effect became so known as 
it provides an elegant explanation for Milgram’s experiment 
of the six degrees of separation [9]. The first suitable model 
capable of explaining the small-world effect was reported 
by Watts and Strogatz [7] which has motivated several ap-
plications to real-world systems. 

In recent years, several public transport systems (PTS) 
have been investigated using various concepts of the statis-
tical physics of complex networks [10–20]. Among them, 
many studies have focused on the complexity of urban pub-
lic transport systems. Latora and Marchiori [19,21] intro-
duced the definition of efficiency coefficient and applied it 
to a study of the Boston subway. Sen et al. [22] concluded 

that India’s railway network exhibited small world proper-
ties. Similar properties were reported by Seaten and Hackett 
[23] in a study of railway networks in Boston and Vienna. 
Jiang and Claramunt [24] found that the topological net-
works of streets exhibited small world properties but were 
not scale-free. Guimera et al. [25] showed that the world-
wide air traffic network was a scale-free and small world 
network. Wang et al. [26] proposed a hierarchical geo-
graphical model to mimic a real traffic system, upon which 
a random walk generates a power-law-like travel displace-
ment distribution with tunable exponent. Li and Cai [16] 
showed that the topological structure of the air traffic net-
work of China (ANC) had two key characteristics of small- 
world networks, a short average path-length and a high de-
gree of clustering. He et al. [27,28] investigated the urban 
transport networks of four cities in China and introduced a 
model whose numerical results can fit the empirical data 
well. Wu et al. [29] concluded that the urban transit system 
in Beijing is a scale-free network. Zhao et al. [30] intro-
duced three kinds of models to study the properties of the 
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public transport in Beijing. Zhu et al. [31] investigated the 
scaling of directed dynamical small-world networks with 
random responses. Some other noteworthy results can be 
seen in [32–40]. 

In this paper, we construct the public bus network based 
on the data for two Chinese cities, Chengdu (N = 220, E 
=12280, where N is the number of bus stops and E is the 
number of bus lines between two stops, www.chengdu. 
8684.cn) and Beijing (N=498, E=29450, www.bjbus.com). 
Three most robust measures of network topology: degree 
distribution, characteristic path length and clustering coeffi-
cient have been checked, as well as the passenger flow 
analysis. Despite a large difference in size of the considered 
networks they share several universal features.  

1  Comparison of fundamental characteristics 
of networks  

The degree distribution is one of the three most robust 
measures of network topology. The degree of a node is the 
number of edges connected with this node. The degree ki of 
node i can be defined as ,i i j

i G

k a


   (ai,j is the adjacency 

of connection among nodes). The average degree is 

/ 2 /i
i G

k k N K N


   (K is the total number of links in 

the network, and N is the total number of nodes). The way 
the degree is distributed among the nodes is an important 
property of a network that can be investigated by calculat-
ing the degree distribution P(k), i.e. the probability of find-
ing nodes with k links. The degree distribution is defined as 
P(k)= N(k)/N, where N(k) is the number of nodes with k 
links. The majority of papers about complex networks have 
shown that in most of the real systems the degree distribu-
tion follows a power law for large k: ( ) ~ ( ) ~ P k N k k  

with the exponent between 2 and 3 [41–43]. Networks with 
such a degree distribution are called scale-free [43]. The 
results found are in contrast with what are expected for 
random graphs [44]. In fact, a random graph with N nodes 

and K edges (an average of k  per node), i.e. a graph obtained 
randomly selecting the K couples of nodes to be connected, 

exhibits a Poisson degree distribution centered at k . 
The comparison of degree distribution of the public bus 

networks of Beijing and Chengdu is presented in Figure 1. 
The power-law-tail behavior indicates that both networks 
have scale-free topology. The consequence of heavy tails is 
that the average behavior of the system is not typical [45]. 
There is overwhelming evidence that human activities in-
cluding traffic networks are characterized by heavy-tailed 
statistics [46–49]. The exponent of degree distribution for 
Beijing is 3.7, much smaller than that for Chengdu. This 
result shows there are comparatively more nodes with high 
degrees in Beijing than in Chengdu, where it is 6.1. The  

 
Figure 1  Comparison of the degree distributions of the public bus net-
works of cities Beijing (a) and Chengdu (b) in China. P(k) is the degree 
distribution function, and k is the degree of each node. A power-law dis-
tribution is obviously shown in the log-log plot and the fitting curve with 
black solid line matches the data well.  

reason is that more hub bus stations exist in the Beijing 
public bus network. 

Another robust measure of network topology is charac-
teristic path length. Analysis of many networks has shown 
similar properties: in most real-world networks it is possible 
to reach any node from another one, going through a num-
ber of edges that is small compared with the total number of 
existing nodes in the system [9]. The typical separation be-
tween two generic nodes in a graph G can be measured by 
the characteristic path length L, defined as 
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where di,j is the length of the shortest path between nodes i 
and j, i.e. the minimum number of edges covered to go from 
i to j. Clustering is the third robust measure of network to-
pology. In many real-world networks, for instance in social 
systems there is a high probability that two individuals 
linked by an acquaintance have a third acquaintance in 
common. Such tendency can be measured by the clustering 
coefficient C. For each node i of G, we consider the sub-
graph Gi of first neighbors that is obtained in two steps: (1) 
extracting i and its first neighbors from G; (2) removing the 
node i and all the incident edges. If node i has ki neighbors, 
then Gi will have ki nodes and at most ki(ki1)/2 edges. Ci is 
proportional to the fraction of these edges that really exist 
and measures the local group cohesiveness of vertex i. C is 
the average of Ci calculated over all nodes: 
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where ei is the number of edges in Gi. By definition, C takes 
values in the interval [0, 1]. Notice that C is related to the 
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number of triangles present on the network. A detailed de-
scription of the network can be obtained by the distribution 
of Ci among the nodes of the network. For instance, im-
portant information can be extracted by considering C(k), 
the average clustering coefficient restricted to classes of 
vertices of degree k. In many cases C(k) exhibits a power 
law decay as a function of k, i.e. a hierarchy with low degree 
vertices belonging to well interconnected communities and 
hubs connecting many vertices not directly connected to each 
other. 

Random graphs have a characteristic path length L that 
grows only logarithmically with N, and a clustering coeffi-
cient C=k=N going to zero for large N. Conversely, a regu-
lar lattice has a finite clustering coefficient and a characteris-
tic path length L which grows linearly with N. Watts and 
Strogatz have shown that many real-world networks have 
properties intermediate between random graphs and regular 
lattices. All such networks that have been named small 
worlds have at the same time: (1) a small characteristic path 
length as in random graphs; and (2) a large clustering coeffi-
cient, typical of regular lattices. To check whether a network 
is a small world it has been proposed to compare the value of 
L and C with those obtained for the randomized version of 
the network, i.e. for a network with the same N and K and in 
which the edges are randomly distributed with a uniform 
probability, among all the nodes. In a small-world network 
L~Lrand and C >>Crand. 

Therefore, we calculate the average path length and the 
clustering coefficient of the public bus networks of Beijing 
and Chengdu. The results in Table 1 are compared with 
those obtained from random graphs with the same number 
of nodes and links. Though both networks have a small av-
erage path length, Chengdu’s public bus network has the 
much smaller average path length in that any two bus stops 
can be connected in just two steps. In addition, the two 
networks have C >>Crand. The smaller C of Chengdu’s pub-
lic bus network compared with Beijing’s public bus network 
is because there are fewer bus hub stations in Chengdu than 
there are in Beijing. 

The correlation between the cluster coefficient C(k) and 
the degree k of two public bus networks is also investigated 
(Figure 2). A scale-free behavior is clearly emerging in 
Figure 2: (1) the power law fit yields exponents 0.65 and 
0.75 for Beijing and Chengdu, respectively; (2) both ex-
ponents are significantly larger for large N than the random 
network prediction C(k)~k1 [44,50]. Moreover, the nega-
tive correlations account for the hierarchy of the public bus  

Table 1  The coefficient of the public bus networks of Beijing and 
Chengdu in China 

 C L Crand Lrand K 

Chengdu 0.14 1.9 0.005 1.7 111.6 

Beijing 0.21 6.6 0.002 5.1 118.3 

 

Figure 2  Comparison of the correlation between the cluster coefficient 
and degree of two public bus networks of cities Beijing (a) and Chengdu (b) 
in China. C(k) is the cluster coefficient, and k is the degree. From the 
straight lines, we find that there is negative correlation between the two 
quantities in each panel. As the slopes are 0.65 and 0.75 respectively, 
the degrees of correlation in the two panels are almost equal. 

networks we considered. Many real-life networks including 
the Internet, World Wide Web, and the actor network, are 
characterized by the existence of a hierarchical structure 
[51–53], which can usually be detected by the negative cor-
relation between the clustering coefficient and the degree. 
All the general small-world-properties mentioned above are 
simultaneously present in our public bus networks.  

As an obvious human activity, the passenger flow is the 
main purpose of the PTS and naturally reflects its signifi-
cant features. We investigate the passenger flow on our 
public bus networks. The weight wi,j of a link between sta-
tions i and j is taken to be the sum of passenger flows in 
both directions on the link, i.e. i→j and j→i. The strength si 

of station i is then defined to be the sum 
1 ,

N

i j i j
s w


  . 

Figure 3 shows the distributions of passenger flow in the 
two public bus networks. It is observed that the weight dis-
tribution P(S) exhibits power-law behavior with exponents 
of 2.2 and 2.1, respectively. Despite a significant differ-
ence in passenger flow size, such nearly similar passenger 
flow distribution exponents account for the uniform hierar-
chical structure, as previously found and discussed, of pas-
senger flows in both Beijing and Chengdu’s public bus 
network. That is not unexpected, because as the metropolis-
es of China, Beijing and Chengdu’s bus stops are located in  
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Figure 3  Comparison of the distribution of weights for the public bus 
networks of cities Beijing (a) and Chengdu (b) in China. P(S) is the weight 
function, and S is the weight. (a) There is a power law distribution in most 
of the observed range of weight and the slope of fitting straight line is 2.2; 
(b) a power law distribution is also observed, and the slope is 2.1. 

a similar way. For example, most facilities are located near 
stations, so each station naturally has an abundance of pas-
sengers.  

2  Conclusions 

We have constructed the public bus network based on the 
data of two Chinese cities (Beijing and Chengdu). The pub-
lic bus networks under consideration appear to be strongly 
correlated small-world and hierarchical structures with power- 
law distribution of degree, high values of clustering coeffi-
cients (especially in L and less in C-spaces) and compara-
tively low average shortest path values. It is found that the 
clustering coefficient has negative correlation with the 
numbers of the bus lines that pass that stop. In particular we 
have considered the passenger flow on two cities’ public 
bus networks by the weight denoting the number of passen-
gers through a link between stations. The weights charac-
terizing the passenger flow also exhibit a hierarchical struc-
ture feature with power-law distribution behavior. The 
comparison of statistical properties between Beijing and 
Chengdu in detail shows more bus hub stations in Beijing 
than that in Chengdu, therefore a higher efficiency public 
bus network of Beijing. These results may contribute to the 
description of the hierarchies and organizational principles 
for the public transport networks. 

This work was supported by the National Natural Science Foundation of 
China (10747003). 
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