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Abstract

Inverse cubic law has been an established Econophysics law. However, it has been only 
carried out on the distribution tails of the log returns of di�erent asset classes (stocks, 
commodities, etc.). Financial Reynolds number, an Econophysics proxy for bourse 
volatility has been tested here with Hill estimator to �nd similar outcome. �e Tail 
exponent or α ≈ 3, is found to be well outside the Levy regime (0 < α < 2). �is con�rms 
that asymptotic decay pattern for the cumulative distribution in fat tails following in-
verse cubic law. Hence, volatility like stock returns also follow inverse cubic law, thus 
stay way outside the Levy regime. �is piece of work �nds the volatility proxy (econo-
physical) to be following asymptotic decay with tail exponent or α ≈ 3, or, in simple 
terms, ‘inverse cubic law’. Risk (volatility proxy) and return (log returns) being two 
inseparable components of quantitative �nance have been found to follow the similar 
law as well. Hence, inverse cubic law truly becomes universal in quantitative �nance. 
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INTRODUCTION

Bachelier’s trailblazing random walk model (inspired from Brownian 
motion of particles) had an assumption such as the price changes emerge 
out as a result of many independent and external shocks. �erefore, he 
predicted the resulting distribution of returns to be Gaussian (Bachelier, 
1900). Since an additive random walk model may lead to negative stock 
prices, an appropriate mathematical construct could well be a multiplica-
tive random walk. Moreover, the price changes could be measured by 
logarithmic return. Return data from stock market o�en show larger de-
viation from its usual Gaussian distribution when taken for a relatively 
small length of time (Eugene & Fama, 1965). Commodity prices are no 
exception to this as well. Cotton price was found to follow a Levy-stable 
distribution (Mandelbrot, 1963). Contradiction surfaced as the long-run 
distribution of asset returns weren’t found to follow Gaussian distribu-
tion. Levy-stable distribution emerged as an apt alternative to Gaussian 
distribution. Surprisingly, it was found that while the major portion 
of the return distribution for S&P 500 �ts well apparently (Mantegna 
& Stanley, 1995) in a Levy distribution, however, it tends to experience 
a much faster exponential decay. Subsequently, it has been found that 
the tails in case of return distribution for any index interestingly found 
to follow the power law. Similar behavior has been reported from oth-
er prominent global indices as well while deploying Hill estimator (Hill, 
1975) for calculating the pattern and exponent of the decay of the tail. 

�e current work focusses to �nd the asymptotic decay behavior in the 
tails of a completely di�erent econophysical proxy for volatility. Firstly, 
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the �nancial Reynolds number (Re) has been calculated for both regular and high frequency domains 
following an Indo-Bosnian quest for �nding econophysical bourse volatility, this has been described in 
detail in the ‘Methodology’; section subsequently, the same has been tested using Hills estimator (Hill, 
1975) to �nd the tail index ‘α’. Most of the relevant studies have been found to focus on the log returns 
and other return measures for �nding both volatility and even testing the tail index in such a case. �is 
study (due to its unusual premise) has been focused completely di�erently on the same problem. �e 
study found similar tail index for ‘Risk’ (represented by volatility) that of ‘Return’. �is in turn com-
pletes the ‘Risk-Return’ characteristics comparison. Both ‘Risk’ and ‘Return’ ware found to experience 
the same decay coe�cient in its tails. 

1. LITERATURE REVIEW

�e cardinal question remains unanswered 
though: “What causes power law link in stochastic 
systems?”

Power law has many underlying theories and 
various schools of thought underneath its strong 
premise. �e �rst of it reads as: 

1. Random growth

1.1. If initial distribution of a set of time series 
from a same domain (such as �rms) is ran-
dom, so there is growth and decay in a peri-
odic manner satisfying Gibrat’s law of propor-
tional e�ect (Gibrat, 1931). Despite having the 
same standard deviation and the same growth 
rate, it (the distribution) tends to become log-
normal with larger variance. �is breeds the 
power law. However, the exponent remained 
a question of concern. �us, any economic 
model with a random growth will somehow 
have an embedded power law; however, the 
exponent may vary (Gabaix, 2016; Plerou et 
al., 2004). 

2. Economics of superstars

2.1. In any walks of life, there will be extreme-
ly high earners, earning substantially higher 
than their counterparts. A qualitative expla-
nation was suggested by an eminent research-
er (Rosen, 1981). O�en these are attributed to 
the ‘talent’ of the top management of those 
�rms, which are precisely non-quanti�able in 
nature. Using extreme value theory of proba-
bility, the tail possibilities of the talented indi-
viduals could be traced out even though the 
distribution remain uncertain.

2.1.1. Cross-sectional, cross country and time 
series predictions all are plausible, as well 
as possible under this broad concept.

2.1.2. In an innovative way, extreme value theo-
ry and power laws could well be the natu-
ral language to decipher quantitative an-
swers from the economic superstars.

Financial markets o�en witness powerful traces of 
power law. Each periodic crash in the bourses glob-
ally can be linked with power law connection. Stock 
market returns, volumes under consideration and 
more interestingly stock price jump were found to 
have a clear trace of power law (Botta et al., 2015; 
Laloux et al., 1998; Bree & Joseph, 2013; Sornette, 
2003). Stock volumes and returns (read as lognormal 
returns) were convincingly proved to have clear pow-
er law thread for two decades or so (Nirei, Stachurski, 
& Stachurski, 2018; Botta et al., 2015; Kelly, 2004). 
�ese various and thematic studies led researchers to 
believe that stock returns should ideally follow a α

-stable distribution instead of the popularly assumed 
Gaussian distribution. Several studies dating back to 
early 1970s till 2016 showcase that α -stable distri-
bution exists (Kyle, 2013; Kyle & Obizhaeva, 2016); 
however, the value of that α  is de�nitely not ‘1’. 
�ese studies �nd that, in most cases, asset returns 
tend to converge to normality with time aggregation 
(Wu, 2006). Continuing the similar work a group of 
researchers found asymptotic normalization in tails 
of a stochastic distribution in a unique way; further 
they found similar trend in non-�nancial and heavy 
tailed time series as well (Gardes, 2008, 2010). 

�e daunting question that loomed over was the 
measurement of that ‘α’ exponent. Respite to the 
research world came through in form of ‘Hill esti-
mator’. Hill estimator is no newcomer to the world 
of tail risk identi�cation; MIT professors have ap-
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plied Hill estimator (Jansen & Vries, 1991) to dai-
ly returns of US stocks and stock indices for a sub-
stantial length of time (from 1962 to 1986). �ey’ve 
found estimates for the tail index α  within the 
range of 3.2-5.2. Another group of researchers 
(Loretan & Philips, 1994 ) performed the same esti-
mator on daily returns of the S&P 500 (1962–1987) 
to generate α in a range of 3.1-3.8; they worked on 
a really long monthly stock index data comprising 
from 1834 till 1987 and found α in a narrow band 
of 2.5-3.2. Another trailblazing study appeared us-
ing the same tool in 1995 (Abhyankar, 1995), when 
a group of eminent American researchers have in-
vestigated a data set of daily stock return series from 
1985 to1990 covering various di�erent frequencies. 
�ey too found the tail exponent α in a band of 3-4. 
Similar study has been carried out by Lux (1996) us-
ing the Hill estimator on European index DAX for 
a reasonable length of time and found tail exponent 
α as 2.3-3.8. Indian researchers (Pan & Sinha, 2008) 
too found tail exponent α as 2.93-3.33.

Many research projects of the past have successful-
ly found an inverse cubic law in the fat tail part of 
the distribution of stock market returns. �is piece 
of humble attempt has been created bemoaning the 
dearth of necessary studies relating market vola-
tility. Market volatility has been put into test and 
inverse cubic law was found to exist in the fat tails. 
Markets being a complex system ideally relate with 
asymptotic power law exponent. However, return 
and volatility are two completely diverse parts of 
the domain. One resembles return and the other de-
picts risk. If it has been found to follow the same law, 
then it’s con�rmed to be universal rather unusually. 
Whether developing or developed market returns 
follow power law connection, especially in the fat 
tails. However, it was never tested from the volatil-
ity perspective. �is study not only �nds the cubic 
law connection from volatility perspective, but also 
rea�rms the universality of this result across two 
of its di�erent segments. Hill estimator has been de-
ployed here to estimate the tail exponent α  with an 
asymptotic power law connection. 

2. METHODOLOGY

Financial Reynolds number (Re) has been estab-
lished as an apt proxy for ‘Risk’ in a typical bourse 
or stock market. Daily data have been analyzed for 

regular �nancial Reynolds number (total observa-
tions were 3,918 from January 2001 to December 
2016) and �nancial Reynolds number from HFT 
(total observations were tick by tick 2.8* 109 from 
February 2012 to December 2016) segment based 
on the works of an Indian Bosnian research pro-
ject. �e cardinal objective is to �nd out the hid-
den power law pattern embedded in the tail of an 
apt proxy for risk (�nancial Reynolds number). 
Furthermore, comparing that ‘α’ or tail exponent 
for risk with the ‘α’ or tail exponent of ‘return’ 
(covered in many studies across the globe). 

Financial Reynolds number (Re) was formulat-
ed as a combination of ‘Relative Volatility Index’ 
representing ‘momentum of the stock-market and 
‘Ease of Movement’ (Arms, 1996) representing vis-
cosity of the stock market by an Indo-Bosnian col-
laborative work in 2018. Donald Dorsey in 1993 
designed and possibly bettered ‘Relative Strength 
Index’ as ‘Relative Volatility Index’ (Dorsey, 1993).

Conceptually speaking, RVI represents the mag-
nitude (mass) and change in magnitude (rate of 
change of market mass or momentum) of relative 
volatility in a bourse condition; internationally ‘50’ 
has been kept as a critical point, if the RVI clocks 
over the critical point it enters bullish zone, else 
it’ll be in the bearish zone:

( )
100 ,

υΓ
υ δ

′ = ⋅
+



 (1)

where RVI Γ ′= ,  υ  – Wilder’s Smoothing of 
USD and δ  – Wilder’s Smoothing of DSD.

Welles Wilder developed Welles Wilder’s 
Smoothing Average (WWS) that is part of the 
Relative Strength Index (RSI) indicator usage.

USD = if close > close (1) then SD, S else 0; 10 day 
SD is in use

DSD = if close < close (1) then SD, S else 0; 10 day 
SD is in use

S = speci�ed period for the Standard Deviation of 
the close (as per Dorsey’s suggestion, it should be 
10 days).

N = speci�ed selected smoothing period (as per 
Dorsey’s suggestion, it should be 14 days).
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�e second key operator in this piece of calcula-
tion we found a path breaking analogy of ‘viscosity’ 
being present in stock exchanges as well. Richard 
Arms formulated ‘Ease of Movement’ (EMV) cal-
culation where the concept is derived from the 
�uid-mechanics concept of viscosity (Arms, 1996). 
�e calculation is basically a ratio, with numera-
tor being “Distance” and denominator being “Box 
Ratio”. 

To understand the concept, we �nd that high 
positive values of EMV indicating price increase 
due to low volume. Less of supply is helping the 
demand to go high. In a completely contrasting 
scenario, we �nd highly negative values of EMV, 
since the price is dropping owing to low volume. 
�at means thin trades are dampening the spirit 
of the traders following unlikely sales. �is shows 
ability to buy or sale freely is quite important. In 
absence of the freeness of movement (i.e. buy or 
sale), the operator EMV can be truly chaotic. �at 
free movement can well be linked with the con-
cept of ‘viscosity’. It’s perceived to be di�cult to 
move in a highly viscous material. 

( )

( )

1

2

1
.

2
  

Distance High Low

Prior High Prior

g

Low

= + −

− +

=
 (2)

Volume and current high-low range form the Box 
Ratio, which is quite similar to Equivolume charts. 

/100,000,000
 

  

Volume
Box Ratio BR

High Low
= =

−
 (3)

( ) ( )
( ) ( )

 
 

1 1
    

2 2

/100,000,000  /  

  .      

Distance
EMV

Box Ratio

High Low Prior High Prior Low

Volume High Low

g

BR

= =

+ − +
= =

−

=

 (4)

Fluid transmission from a laminar into a turbu-
lent �ow all on a sudden was a daunting question 
in �uid mechanics till 1883, however, it was ma-
jorly resolved (Reynolds, 1901). Navier raised the 
query of ‘liner laminar �ow of liquids suddenly 
becoming chaotic and turbulent’ 60 years be-

fore Reynolds �nally tackled the same. Osborne 
Reynolds invented a unit less number, which in 
turn can represent the delta or change of �uid �ow. 
�e number was named ‘Reynolds number’ in the 
honor of such a great scientist. Experimentally 
observed facts prove that while a particle passes 
through a �uid, it experiences forces against the 
�ow, referred as drag (T and R). According to the 
research conducted by Reynolds, the pressure 
drag (R) and the viscosity drag (T) are represent-
ed as (Reynolds, 1883):

2

,
2

R C S
ρϑ

=

,T B lηϑ=

where ρ  – density of the �uid, S  – cross-section-
al area of the object, perpendicular to the direc-
tion of the �uid �ow, C  and B  – dimensionless 
constants, ϑ  – certain mean velocity of the �uid, 
η  – �uid viscosity, l  – linear dimension of the 
object.

2

.
2

R C S

T B l

ρϑ
ηϑ

=

A�er assuming 2C B=  and 2 ,S l=  �nally,

.
l

Re
ρϑ
η

=

Arriving at the �nal version of �nancial 
Reynolds number, we �nd it’s having viscosity 
indicators as denominator and momentum indi-
cators as numerator. “RVI” behaves quite alike 
momentum of particles having wave-particle 
dualism inside a de�ned quantum well, placed 
inside a �nite Hilbert space. On the other hand, 

“EMV” is similar to viscosity of particles having 
wave-particle dualism inside a de�ned quantum 
well, placed inside a �nite Hilbert space. �is 
striking resemblance allows RVI as numerator 
and EMV as denominator. �is in turn rede�nes 
Osborne Reynolds number for �nancial markets 
and bourses. 

In practical terms, using ‘RVI’ and ‘EMV’, it 
becomes:

100
.e

g
R

BR BR

υ
υ

⋅
= ÷

+
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This is how the explosive term in a stochastic 
time series emerges as a new face of volatili-
ty. This gets its name from the great Osborne 
Reynolds. If this explosive number breaches a 
certain critical value, then the embedded vol-
atility is beyond control, else the volatility is 
present, but within control. In reality, Gaussian 
distributions are rare to find. Most distribu-
tions are found with fat tails in financial mar-
kets. Hence, it would certainly be imperative 
that financial Reynolds number distribution 
would also have fat tail embedded. Each tail 
(both positive and negative) comes up with its 
own tail probabilities. Tail probabilities are 
generally defined in three categories, name-
ly Medium Tailed, Fat Tailed and Thin Tailed. 
This is primarily done by the function, defined 
as the survival or tail probability function i.e. Ḟ 
(Pape, 2007). It has been an existing knowledge 
that kurtosis ‘k’ of an entirely stochastic vari-
able ‘x’ stands as a measurement of dispersion 
around the two extreme values ,µ σ±  where µ  
is the mean expected value and σ remains as the 
standard deviation of ‘x’. In a typical Gaussian 
distribution, ‘k’ remains in and around close vi-
cinity of ‘3’. Higher ‘k’ indicates more mass in 
the tails. Hence, for all type of risk management 
purposes, it becomes quite essential to track. It 
would be interesting to note that ‘extreme val-
ue theory’ is linked to very high values of ‘k’. 
Under such circumstances, an extreme devi-
ation from the mean has been observed. This 
indicates to an asymptotic distribution of ex-
treme order statistics. However, this remains 
in questions only with independent, identical-
ly distributed (iid) continuous random varia-
bles only. { }1 2, ,   ,n nV max x x x= … …  denotes 
maximum number of ‘n’ sample observations 
of iid variables (Fisher & Tippett, 1928). Three 
non-degenerate limiting distributions for prop-
er rescaled sample maxima nV  will exist within 
the limits of ,n→∞  according to this seminal 
work. They are denoted as Generalized Extreme 
Value distributions or ‘GEV’. 

A famous volatility finder (Wiggins, 1992) has 
tested two famous models for extreme value vol-
atility namely ‘high and low of local volatility of 
a geometric random walk’ by Parkinson (1980) 
and ‘open-close volatility measure’ by Garman 
and Klass (1980). Wiggins has found that these 

models are far more reliable compared to their 
‘close to close’ counterparts. As a final conclu-
sion, Wiggins noted that for a specific value of 
single historical estimator has to be considered 
then extreme value method would be efficient, 
whereas close to close will work in a more so-
phisticated mathematical model. Since the cur-
rent study, a single historical estimator is used 
(read as financial Reynolds number), thus ex-
treme value calculations to find the decay com-
ponent alpha become apt. Hence, the current 
study remains valid and finds a strong theoreti-
cal foothold from Wiggins’s famous work.

Mathematically speaking:

1st Gumbel (GEV Type I): ( ) exp{ },x

IG x e−= −  
when ,x R∈  

2nd Fréchet (GEV Type II): , ( ) exp{ },IIG x x α
α

−= −  
when 0,x ≥  

3rd Weibull (GEV Type III): 

, ( ) exp{ ( ) },IIIG x x α
α = − −  when 0 0.x x≤ + >

x  is an indicator function and α is a positive pa-
rameter referred to as ‘Tail Index’.

If the Weibull and Gumbel hypotheses are ob-
served to be completely rejected, but the Fréchet 
hypothesis is not rejected, then there could well be 
sound evidence for a power law distribution.

( ) ( )xF x XP= >  of any stochastic variable X  
whose maxima could be de�ned by certain specif-
ic distribution functions ( ).G x  ( )G x  stands for 

“Generalized Extreme Value” distribution. 

( ) ( )ln ,x G xF = −  when ln ( )ln 1.G x > −

Hence, extending this concept to trail probabili-
ties for the speci�ed stochastic variable :x  

1st Category: Medium Tail: ( ) ( )=ex ,pxF x−  
when 0,x ≥  

2nd Category: Fat Tail: ( ) ,F x x α−=  when 1,x ≥

3rd Category: �in Tail: ( ) ( ) ,F x x
α= −  when 

1 0,x− ≤ ≤
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where ( )x  is an indicator function. Ideally all 
these functions indicate the patterns of decay for 

( ).F x  Asymptotic decay of the tails of any distri-
bution ideally follows any of these three categories. 
Fat tail decay exponent or α generally follow a hy-
perbolic pattern. 

Generalized Pareto Distribution comes up with a 
combination equation of all the three categories. 
It shows: 1

( ) (1 ) .F x x ξ
ξ ξ

−
= +

In this case, the sign ξ acts as a classi�er with fol-
lowing conditions:

Condition 1 0,→ξ  hinting at medium tail (the 
distribution is moderate and it carries moderate 
chances of any major catastrophic event).

Condition 2 0>ξ  hinting at fat tail (the distri-
bution is riskier and more chances of any major 
catastrophic event).

Condition 3 0<ξ  hinting at thin tail (the distri-
bution is safer and less chances of any major cata-
strophic event).

Tail exponent or α too is related to the classi�er :ξ
1

.α
ξ

=

A 1975 paper from the University of Michigan 
changed the feat of calculation of tail probabilities 
(Hill, 1975). Hill came up with a maximum likeli-
hood estimator for .ξ  

( 1) ( )

1

1ˆ {ln ln },
k

n i n k

i

x x
k

ξ − + −
=

= −∑

where ( )x i  stands for the i  order statistics and k  

denotes the number of n  sample observations for 
which the asymptotic decay is calculated.

3. DISCUSSION

It has been noticed from Table 1 that the calculation 
of tail index or α has been carried out on a substan-
tial big data for �nancial Reynolds number (Re) in 
high frequency domain compared to regular day 
closing basis. �us, positive tail exponent or tail in-
dex is closer to 3 in the �rst case; as the observations 
are lesser the tail exponent value inches towards 4. 
�is observation echoes another research using log 
returns of stock markets in regular and HFT domain 
(Pan & Sinha, 2008). Ample amount of work has es-
tablished the fact of log returns across the globe fol-
low power law (inverse cubic law to be more precise). 
Stock returns, especially abnormal returns both in 
the positive and the negative directions, were tested 
in time and again across large geographical bound-
aries. However, the same study on risk was rather 
unusually absent. �us, the only di�erencing factor 
from other studies till date would be the econophys-
ical volatility proxy under consideration, instead of 
log returns of daily close. However, this study de-
picts power law connection in risk proxy (volatility) 
as well. Risk and return were found to follow similar 
power law connection. Stock markets are usually a 
speci�c form of long memory process having strong 
correlations with its lags. Such high degree of auto-
correlation indicates higher degree of predictability. 
In �nance, long memory in price volatility has been 
observed both for stocks (Ding at al., 1993) and ex-
change rates and in trading volume (Velasco, 2000). 
Hence, they behave in a similar way to the physical 
systems. Hyperbolic discounting in the form of as-
ymptotic corrections in the tails does indicate fair 
traces of psychological decision making (Farmer, 
Doyne, & Geanakoplos, 2011). 

Table 1. Comparison of the power law exponent α  of the cumulative distribution function  
for various index based volatility proxy (financial Reynolds number)

Volatility representatives ∆t Positive tail exponent, α  

Re regular Nifty 1 day 3.98

Re high frequency Nifty 1 minute 3.55
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CONCLUSION

According to Table 1, �nancial Reynolds number observations were substantially higher in case of 
ReHFT, resulting in a more accurate positive tail exponent or α. �e observation points were substan-
tially lower for regular Re in comparison to ReHFT. �is shows signi�cant di�erence in tail exponent 
or α value. �is unique observation echoes studies (Pan & Sinha, 2008) on Indian indices in the past. 
However, that study was focused on log returns generated from index observations, hence it would be 
distinctly di�erent compared to the current study. Financial Reynolds number (both Re and ReHFT) 
represents “Risk”. Hence it would be appropriate to quote that both risk and return follow power law in 
their tail exponent. Interestingly both risk and return follow inverse cubic law as well. Hence, the fun-
damental attributes in both risk and return remain similar in the extreme events.

IMPLICATIONS AND CONCLUDING NOTE

‘Risk’ in �nancial time series has a direct connection with the decay of asset returns, as well as volatility move-
ment. Returns of various assets were found to decay in an asymptotic manner in the fat tail of its respective 
distribution. �is study con�rms risk of assets (bourse as underlying asset) to follow the same. Power law 
driven decay in fat tails of both risk and return prove that the cardinal traits of both follow similar rationale. 
Empirical testing for power laws is quite di�cult due to the very fact that a power law is an asymptotic prop-
erty. �us the probability of a large regular real-time data set entirely inside the asymptotic regime could well 
be a far cry. It has been observed in the past that certain power law converge very quickly hence for most of 
the regime the power law is a good approximation. However in many instances the power law converge very 
slowly. It may produce a pseudo accurate result unless there is a very large sample of data. Recent studies have 
achieved this precision of prediction (asymptotic decay) by studying high frequency data, rather welcomingly 
involving millions of observations (Farmer, Doyne, & Geanakoplos, 2011). 

Every research is supposed to extend the body of existing knowledge. �is humble piece of research empiri-
cally proves that ‘asset returns’ and ‘risk proxy’ on the same underlying (read as ‘CNX Ni�y High Frequency 
Trading’) have similar fat tail exponent or ‘α’ in the tails of their distribution. �e �rst one has 3.33 (Pan & 
Sinha, 2008) and the second one has 3.55. �is could provide enough impetus to the policymakers in the 
variable income market. 
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