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Abstract

We consider random graphs with node degrees drawn independently from a power-
law distribution. By computer simulation we study two aspects of graph robustness:
preserving graph connectivity and node saving in the forest fire model, considering two
types of graph destruction: the removal of nodes with the highest degrees and equiprobable
node extraction.
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1. Introduction

The study of random graphs has been gaining interest in the past decades due to the wide
use of these models for the description of massive data networks (see e.g. Aiello, Chung, and
Lu 2000; Newman, Strogatz, and Watts 2001; Durrett 2007; Hofstad 2011). Such models can
be used for representing transport, telephone and electricity networks, social relationships,
telecommunications and, of course, the main global network – Internet. While considering
these networks it has been noted that their topology could be described by random graphs,
with the node degrees being independent and identically distributed (i.i.d.) random variables
following the power-law distribution (Faloutsos, Faloutsos, and Faloutsos 1999; Reittu and
Norros 2004, etc.).

The structure of present-day complex networks contains many elements, wherefore theoretical
research in the field of power-law random graphs includes the study of the limit behaviour
of different characteristics of such graphs’ structure (Aiello et al. 2000; Pavlov 2007; Norros
and Reittu 2008, , etc.). Furthermore, one of the important questions raised in the studies
of these networks is how their structure and, therefore, functioning change if some of the
nodes fall out. That is why one of the important trends in the random graph field has been
the study of random graph robustness to different types of breakdowns (see e.g. Cohen, Erez,
Ben-Avraham, and Havlin 2000; Bollobas and Riordan 2004; Durrett 2007; Norros and Reittu
2008).

Alongside with the theoretical approach simulation modeling has always been one of the tools
for studying random graph objects (Reittu and Norros 2004; Leri 2009, , etc.). In our work
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we consider two aspects of graph robustness: link saving or preserving graph connectivity,
and node survival, which is closely connected to the study of forest fire models.

2. Power-law graph model

We consider power-law random graphs with the number of nodes that equals N . Node
degrees ξ1, ξ2, . . . , ξN are i.i.d. random variables drawn from the following distribution:

P{ξ ≥ k} = k−τ , k = 1, 2, . . . , τ > 1, (1)

For graph construction each node is given a certain degree in accordance with the degree
distribution (1). Node degrees form stubs (or semiedges) that are numbered in an arbitrary
order. The graph is constructed by joining all the stubs pairwise equiprobably to form links.
If the sum of node degrees is odd one stub is added to a random vertex. Obviously these
graphs have loops and multiple edges. Such construction gave these graphs one of their names
– configuration graphs with i.i.d. degrees (Durrett 2007; Hofstad 2011).

3. Link saving

Research in the last decades (see Faloutsos et al. 1999; Reittu and Norros 2004) showed that
configuration power-law random graphs with parameter τ of the node degree distribution
(1) lying in the interval (1, 2) are deemed to be a good implementation of Internet topology
at both rooter and domain levels. That was one of the main reasons for us to study such
an aspect of graph robustness as preserving graph connectivity or link saving. This issue is
important because it is essential to know how the network structure will be influenced by the
destruction of some nodes.

When τ ∈ (1, 2) the distribution (1) has finite expectation and infinite variance. Both theory
(Reittu and Norros 2004; Durrett 2007; Pavlov 2007) and simulation (Reittu and Norros 2004;
Leri 2009) agree on the fact that such graphs contain one so called giant component, which
is a connected set of nodes the expectation of which is proportional to the number of graph
nodes N .

For computer experiments we built a simulation model of power-law random graphs (Leri
2009) based on an algorithm introduced by Tangmunarunkit, Govindan, Jamin, Shenker,
and Willinger (2002) using a pseudo random generator “Mersenne twister” (see Matsumoto
and Nishimura 1998). Previously we showed (Leri 2009) that the structure of these graphs
dramatically changes with the variations of the value of the node degree distribution parameter
τ even within this small interval (1, 2), but is much less dependent on the graph size N . With
the value of parameter τ close to 1, the graph will be more connected and more than 95% of
all graph nodes will form the giant component. On the other hand, the closer the value of
parameter τ is to 2, the fewer nodes there will be in the giant component, i.e. only a half of all
graph nodes. This does not however imply a significant growth of the other components. For
example, the fraction of nodes in the second component will be rather small in comparison
with the giant one. Even at its most, it will not exceed a little more than 1% of all graph
nodes. In fact, other components will grow not in size, but in number. In particular, the
structure of these power-law random graphs is one of the reasons why is it interesting to see
how this structure changes when some graph nodes are removed.

In our work we consider two types of breakdowns: “random breakdown” when graph nodes
are removed equiprobably, and “target attack”, which means a removal of nodes with the
highest degrees. For simulations we took graphs of ten sizes N from 500 to 5000 and 9 values
of parameter τ from the interval (1, 2) with a step of 0.1 (for each pair (N, τ) 100 graphs were
generated to form statistical data). The graph destruction process looks as follows. When a
chosen node is destroyed, all the links going out of this node are also removed. And then all
isolated nodes are taken away.
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Let η1, η2, . . . , ηs be random variables that are equal to the sizes of graph components in
decreasing order (η1 – the size of the giant component, η2 – the size of the second component,
etc.), where s is the total number of components. A graph is deemed destroyed when following
event A occur: {η1 ≤ 2η2}. Hence, when the size of the second biggest component becomes
greater or equal to half the size of the giant component, the graph is considered destroyed.

Simulation results allowed us to derive regression dependencies of node percentages in the
giant and the second biggest components (η1 and η2, respectively) and the total number of
components s on the graph size N , the parameter of the node degree distribution τ and the
percentage of removed nodes r.

In the case of “random breakdown” the following relations were found:

η1 = 129 − 36 τ − 1.1 r,

η2 = 2 − 0.25 lnN + 0.42 τ − 0.017 ln r,

s

N
= −0.18 + 0.2 τ − 0.004 r ln τ.

The determination coefficients (R2) of these regression models are equal to 0.98, 0.7 and 0.98,
respectively. The percentage of removed graph nodes has to be confined within the following
bounds: 100/N ≤ r ≤ 117 − 32.7τ . Here in after the lower bound implies the removal of
one node, and the upper bound means that the extraction of a higher percent of nodes will
lead to complete graph breakdown. The results show that the percentage of nodes in the
giant component does not depend on the graph size N and the percent of nodes in the second
component will not exceed 2% of the graph size.

The following regression dependencies were derived for “target attack” on the nodes with the
highest degrees:

η1 = 130 − 46 τ − 9 r,

η2 = 4.36 − 0.44 lnN + τ + 0.4 ln r,

ln s = −3.3 + lnN + 2.3 ln τ + 0.1 r,

with determination coefficients 0.95, 0.6 and 0.98, respectively, and the percentage of removed
nodes confined within the following bounds: 100/N ≤ r ≤ 14−5.15τ . Here again, the percent
of nodes in the giant component does not depend on the graph size N , and the percentage of
nodes in the second component will not exceed 4% of the graph size.

Below are the results of the estimation of the regression dependence of the probability P{A}
of graph destruction on the percentage of removed nodes r and parameter τ with R2 = 0.84
and R2 = 0.76, respectively.

For “random breakdown”:

P{A} =











0, r < 37/
√

τ ,
−0.2 + 1.5 · 10−4τr2, 37/

√
τ ≤ r

< 89/
√

τ ,
1, r ≥ 89/

√
τ ,

For the “target attack”:

P{A} =











0, ln r < 1.85 − τ,
−0.38 + 0.06reτ , 1.85 − τ ≤ ln r

≤ 3.13 − τ,
1, ln r > 3.13 − τ,

This means that in the “random breakdown” case (see Figure 1), for example, an estimated
probability of graph destruction equals 0 when τ = 1.1 for all r < 35.3%, and when τ = 1.9
for r < 26.9%. And P{A} = 1 for r > 84.8% when τ = 1.1, and when τ = 1.9 for r > 64.5%.
On the other hand in the case of “target attack” (see Figure 2) P{A} = 0 when τ = 1.1 for
all r < 2.12%, and when τ = 1.9 for r < 0.95%. And P{A} = 1 for r > 7.6% when τ = 1.1,
and when τ = 1.9 for r > 3.4%.

The results show that power-law random graphs with parameter τ ∈ (1, 2) are much more
vulnerable to “target attacks” than to “random breakdowns”. In order to destroy such a graph
by deleting high-degree nodes it is enough to remove 3− 7% of them. If however graph nodes
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Figure 1: Probability of graph destruction
for “random breakdown”.

Figure 2: Probability of graph destruction
for “target attack”.

are broken randomly, it may be not ruined even if more than 60% of its vertices had been
removed. Furthermore, robustness of these random graphs strongly depends on the value of
parameter τ . In both breakdown cases the graph proved to be more resistant if the value of
τ was closer to 1 and more vulnerable as it moved closer to 2.

4. Node survival – forest fire model

The second aspect of power-law graphs’ robustness we are considering here is node survival.
This issue branched off the studies of forest fire models (see e.g. Drossel and Schwabl 1992;
Bertoin 2012). Let us consider graph nodes as trees on a certain area of a real forest. Two
nodes are connected if a fire can move on related trees from one tree to another (for proper
implication it looks more like a crown fire). So, we pose the question of finding how many
trees should initially be set on a certain area to ensure their maximum survival in case of a
fire. This approach could be used not only for modeling forest fire dynamics. It also has other
applications (Bertoin 2011), including modeling banking system defaults in order to minimize
their negative effects (see e.g. Annakov 2008; Arinaminparty, Kapadia, and May 2012).

In this part of our work we consider the same configuration power-law random graphs with
node degree distribution (1), but with parameter τ > 1 with no the upper bound. Since
we assume that the area of a forest is limited, we have to also restrain the number of trees
growing there. So, to specify the graph topology, let graph vertices be placed in the nodes
of a square lattice sized 100 × 100. Links connect nodes in the “closest neighbour” manner,
so in a fully packed graph every inner tree (node) has 8 adjacent neighbours. This does not
mean that in the following study we consider power-law random graphs with node degrees
no higher than 8. The fact is that on the one hand high node degrees and, all the more, an
average node degree have low probabilities, and on the other hand the graph may contain
multiple edges that raise the probability of fire transfer from one neighbour to the other. That
is why we introduce the lattice only to determine the relation between the initial number of
nodes in the area and the parameter τ of the node degree distribution (1). If an average node
degree i is less than 8, some graph links are missing. Figure 3 shows a couple of examples of
lattice-graph topology for two average inner node degrees.

Taking into consideration that graph node degrees are defined by distribution (1), and having
determined the dependency between an average node degree i and parameter τ on the interval
i ∈ (1, 8] as i = ζ(τ) (where ζ is a Riemann zeta function) (see Table 1), we found that graph
size N ≤ 10000 is related to parameter τ by the following regression function (see Figure 4)
with R2 = 0.97:

N = 9256 τ−1.05. (2)
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Figure 3: Lattice graph topology for i = 7 and i = 4, respectively.

Table 1: Calculated values of τ and N for different i.

i 1.01 1.21 1.33 1.42 1.5 1.6 2 2.66 3 4 5 6 7 8

τ 6.75 2.96 2.53 2.32 2.19 2.05 1.73 1.49 1.42 1.29 1.23 1.18 1.16 1.13

N 3350 3600 3750 3900 4000 4200 5000 4780 4489 5578 6700 8350 8911 10000
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Figure 4: Regression relationship between N and τ .

For simulations we used a subset of configuration graphs the number of nodes in which
is specified by relation (2). We assume that the graph destruction process (or fire) starts
from some chosen node. As the first node is set on fire, it passes on along incident links
to the connected nodes with a given probability 0 < p ≤ 1. Let’s call it the probability of
link destruction. This means that each link becomes inflammable with a probability p, and
therefore a connected node is also set on fire. Otherwise a link becomes fire resistant and the
node connected through this link remains intact. This does not mean however that the fire
cannot reach this node via a parallel link (if any) with the same probability p.

The fire spreads over the graph until there appear inflammable links, and all burnt nodes
and links are removed from the graph when it stops. The aim is to find the optimal values
of parameter τ that secure maximum survival of nodes, and to find how they depend on the
probability of link destruction.

We consider two cases of fire startup: “random fire start”when the first node to be removed is
chosen equiprobably, and “targeted fire start” with fire starting from a node with the highest
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degree. Let g be the number of nodes remaining in a graph after a fire. Figure 5 and Figure
6 show the results obtained for p = 1 in both breakdown cases, respectively.

ææ

g=-1476.3Τ
2
+7247.8Τ-5313.4

R2
= 0.86

1.5 2.0 2.5 3.0 3.5
Τ

2000

4000

6000

8000

g

ææ

g = -1296Τ
2
 + 7025Τ - 6431

R
2
= 0.99

2.0 2.5 3.0 3.5
Τ

500

1000

1500

2000

2500

3000

3500

g

Figure 5: Relation between the number of
remaining nodes g and parameter τ (“ran-
dom fire start”, p = 1).

Figure 6: Relation between the number of
remaining nodes g and parameter τ (“tar-
geted fire start”, p = 1).

This means, for example, that in the “random” case the number of remaining nodes becomes
maximal for the power-law graphs with parameter τ = 2.45. The initial graph size N then
equals 3605 and an average number of nodes remaining after the fire is g ≈ 3580.

For both cases of breakdown start were found regression dependencies of the number of nodes
remaining in a graph g on τ and the probability of fire spread p. Below we give these models
for the cases of “random” start and “target” start, respectively:

g = 6008.8 − 1915.3 p − 217.4 τ2, (R2 = 0.91);

g = 2938 − 894.2 ln p − 74.5 τ2, (R2 = 0.95).

Obviously, the number of remaining nodes decreases as p increases. Relations were found
that describe the dependencies of g on τ for different values of p and dependencies of g on
p for different τ . This allowed to find the relation between τmax = τmax(p) of parameter τ
for which g reaches its maximum gmax on p and, thus, find the values of gmax = gmax(p).
For example, for p = 1 and p = 0.6 under “random” start τmax(1) = 2.46, τmax(0.6) = 1.1,
gmax(1) = 3585, gmax(0.6) = 4468, and under “target” start τmax(1) = 2.74, τmax(0.6) = 2.23,
gmax(1) = 3216, gmax(0.6) = 3995.

Thus, in order to secure a maximum of unburnt trees in some specified territory in the case
of a fire (either “random” or “targeted”) the topology of their layout has to correspond to
the topology of power-law random graph with parameter τ of node degree distribution (1)
between values 2.4 and 2.7. Such graph will represent a multicomponent structure with no
giant connected component with an average node degree 1.2 through 1.4. As for the difference
between graphs robustness in the two breakdown cases, the graph will be more robust and
more nodes will survive in a fire in the case of a “random” start than in the case of a “target”
start.
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